File size: 66,361 Bytes
d48d4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "sDv-N0TTz0VE"
   },
   "source": [
    "# What is Pytorch?\n",
    "PyTorch is an open-source library used in machine learning library developed using Torch library for python program. It is developed by Facebook’s AI Research lab and released in January 2016 as a free and open-source library mainly used in computer vision, deep learning, and natural language processing applications. Programmer can build a complex neural network with ease using PyTorch as it has a core data structure, Tensor, multi-dimensional array like Numpy arrays. PyTorch use is increasing in current industries and in the research community as it is flexible, faster, easy to get the project up and running, due to which PyTorch is one of the top deep learning tools."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "irVOTYdzyNJJ"
   },
   "source": [
    "# How to install Pytorch\n",
    "In order to install Pytorch, you could do it using different package managers such as `conda` and `pip`. Visit [this link](https://pytorch.org/get-started/locally/) for information about the installation on your device."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "YLQylD11zw4t"
   },
   "source": [
    "# Tensors\n",
    "Tensors are a specialized data structure that are very similar to arrays and matrices. In PyTorch, we use tensors to encode the inputs and outputs of a model, as well as the model’s parameters. Tensors are just like Numpy arrays, except that they can run on GPUs and other hardware accelerators. Tensors are also optimized for automatic differentiation (which is referred to autograd from now on). Tensor API is really similar with Numpy array API, so if you are familiar with Numpy arrays, you are probably not going to face any problem with Tensors.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "id": "FnosP4Qg1BuV"
   },
   "outputs": [],
   "source": [
    "# imporing packages\n",
    "\n",
    "import torch\n",
    "import numpy as np"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "wnoHqqlj1iGO"
   },
   "source": [
    "## Initializing Tensors"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "lDAnwOLG1hIu",
    "outputId": "dd68a255-49d8-4b0d-af30-031e56b13611"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tensor created directly from data: \n",
      " tensor([[1, 2],\n",
      "        [3, 4]]) \n",
      "\n",
      "Tensor created from a numpy array: \n",
      " tensor([[1, 2],\n",
      "        [3, 4]], dtype=torch.int32) \n",
      " \n",
      "Ones Tensor: \n",
      " tensor([[1, 1],\n",
      "        [1, 1]]) \n",
      "\n",
      "Random Tensor: \n",
      " tensor([[0.7931, 0.5523],\n",
      "        [0.8787, 0.1350]]) \n",
      "\n",
      "Random Tensor: \n",
      " tensor([[0.3151, 0.8994, 0.6220],\n",
      "        [0.1558, 0.1749, 0.5404]]) \n",
      "\n",
      "Ones Tensor: \n",
      " tensor([[1., 1., 1.],\n",
      "        [1., 1., 1.]]) \n",
      "\n",
      "Zeros Tensor: \n",
      " tensor([[0., 0., 0.],\n",
      "        [0., 0., 0.]])\n"
     ]
    }
   ],
   "source": [
    "# initializing directly from data\n",
    "data = [[1, 2],[3, 4]]\n",
    "x_data = torch.tensor(data)\n",
    "print(f\"Tensor created directly from data: \\n {x_data} \\n\")\n",
    "\n",
    "# from numpy arrays\n",
    "np_array = np.array(data)\n",
    "x_np = torch.from_numpy(np_array)\n",
    "print(f\"Tensor created from a numpy array: \\n {x_np} \\n \")\n",
    "\n",
    "# from another tensor\n",
    "x_ones = torch.ones_like(x_data) # retains the properties of x_data\n",
    "print(f\"Ones Tensor: \\n {x_ones} \\n\")\n",
    "\n",
    "x_rand = torch.rand_like(x_data, dtype=torch.float) # overrides the datatype of x_data\n",
    "print(f\"Random Tensor: \\n {x_rand} \\n\")\n",
    "\n",
    "shape = (2,3,)\n",
    "rand_tensor = torch.rand(shape)\n",
    "ones_tensor = torch.ones(shape)\n",
    "zeros_tensor = torch.zeros(shape)\n",
    "\n",
    "print(f\"Random Tensor: \\n {rand_tensor} \\n\")\n",
    "print(f\"Ones Tensor: \\n {ones_tensor} \\n\")\n",
    "print(f\"Zeros Tensor: \\n {zeros_tensor}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "1pS6uApz4gie"
   },
   "source": [
    "## Attributes of a Tensor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "id": "udW5cVKlyIR7"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Shape of tensor: torch.Size([3, 4])\n",
      "Datatype of tensor: torch.float32\n",
      "Device tensor is stored on: cpu\n"
     ]
    }
   ],
   "source": [
    "tensor = torch.rand(3,4)\n",
    "\n",
    "print(f\"Shape of tensor: {tensor.shape}\")\n",
    "print(f\"Datatype of tensor: {tensor.dtype}\")\n",
    "print(f\"Device tensor is stored on: {tensor.device}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "y39VfFN55e_4"
   },
   "source": [
    "## Operations on Tensors\n",
    "Torch Tensors contain various operations including arithmetic, linear algebra, matrix manipulation (transposing, indexing, slicing), etc.\n",
    "\n",
    "By default, tensors are created on CPU. In order to get the most out of tensors, we can move these tensors to GPU:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "id": "Xu0Ltb464p14"
   },
   "outputs": [],
   "source": [
    "# We move our tensor to the GPU if available\n",
    "if torch.cuda.is_available():\n",
    "    tensor = tensor.to(\"cuda\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "id": "Fd9ZbCgP6qcs"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "First row: tensor([1., 1., 1., 1.])\n",
      "First column: tensor([1., 1., 1., 1.])\n",
      "Last column: tensor([1., 1., 1., 1.])\n",
      "tensor([[1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1.]])\n"
     ]
    }
   ],
   "source": [
    "# Standard numpy-like indexing and slicing\n",
    "tensor = torch.ones(4, 4)\n",
    "print(f\"First row: {tensor[0]}\")\n",
    "print(f\"First column: {tensor[:, 0]}\")\n",
    "print(f\"Last column: {tensor[..., -1]}\")\n",
    "tensor[:,1] = 0\n",
    "print(tensor)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "id": "ruFKbyCR6xfk"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "tensor([[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.]])\n"
     ]
    }
   ],
   "source": [
    "# Joining tensors\n",
    "t1 = torch.cat([tensor, tensor, tensor], dim=1)\n",
    "print(t1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([1., 1., 1., 1.])"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "t2 = torch.ones((4,4,4))\n",
    "t2[:,1,0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "id": "8MWGwqPI67RU"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix Multiplication: \n",
      " y1: tensor([[3., 3., 3., 3.],\n",
      "        [3., 3., 3., 3.],\n",
      "        [3., 3., 3., 3.],\n",
      "        [3., 3., 3., 3.]]) \n",
      "\n",
      " y2: tensor([[3., 3., 3., 3.],\n",
      "        [3., 3., 3., 3.],\n",
      "        [3., 3., 3., 3.],\n",
      "        [3., 3., 3., 3.]]) \n",
      "\n",
      " y3: tensor([[3., 3., 3., 3.],\n",
      "        [3., 3., 3., 3.],\n",
      "        [3., 3., 3., 3.],\n",
      "        [3., 3., 3., 3.]]) \n",
      "\n",
      "Element-wise Product: \n",
      " z1: tensor([[1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1.]]) \n",
      "\n",
      " z2: tensor([[1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1.]]) \n",
      "\n",
      " z3: tensor([[1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1.],\n",
      "        [1., 0., 1., 1.]])\n"
     ]
    }
   ],
   "source": [
    "# Arithmatic operations\n",
    "# This computes the matrix multiplication between two tensors. y1, y2, y3 will have the same value\n",
    "y1 = tensor @ tensor.T\n",
    "y2 = tensor.matmul(tensor.T)\n",
    "\n",
    "y3 = torch.rand_like(y1)\n",
    "torch.matmul(tensor, tensor.T, out=y3)\n",
    "\n",
    "\n",
    "# This computes the element-wise product. z1, z2, z3 will have the same value\n",
    "z1 = tensor * tensor\n",
    "z2 = tensor.mul(tensor)\n",
    "\n",
    "z3 = torch.rand_like(tensor)\n",
    "torch.mul(tensor, tensor, out=z3)\n",
    "\n",
    "print(f\"Matrix Multiplication: \\n y1: {y1} \\n\\n y2: {y2} \\n\\n y3: {y3} \\n\")\n",
    "print(f\"Element-wise Product: \\n z1: {z1} \\n\\n z2: {z2} \\n\\n z3: {z3}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "id": "XZvbDzkM7ayG"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "tensor(12.) <class 'torch.Tensor'>\n",
      "12.0 <class 'float'>\n"
     ]
    }
   ],
   "source": [
    "# Single-element tensors\n",
    "agg = tensor.sum()\n",
    "print(agg, type(agg))\n",
    "agg_item = agg.item()\n",
    "print(agg_item, type(agg_item))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Datasets and Dataloaders\n",
    "PyTorch provides two data primitives: `torch.utils.data.DataLoader` and `torch.utils.data.Dataset` that allow you to use pre-loaded datasets as well as your own data. `Dataset` stores the samples and their corresponding labels, and `DataLoader` wraps an iterable around the Dataset to enable easy access to the samples.\n",
    "\n",
    "Pytorch contains various pre-loaded subclasses of `Dataset` which you can load such as CIFAR10, MNIST, etc. Here is an example of loading MNIST test and train datasets."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [],
   "source": [
    "from torch.utils.data import Dataset\n",
    "from torchvision import datasets\n",
    "from torchvision.transforms import ToTensor\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "\n",
    "training_data = datasets.MNIST(\n",
    "    root=\"data\", # the root directory to save the downloaded dataset\n",
    "    train=True, # choose whether it is test or train\n",
    "    download=True, # choose whether to download the dataset or not \n",
    "    transform=ToTensor() # what transforms should be applied to the dataset, in this case it just \n",
    "                         # converts the images to torch.tensor\n",
    ")\n",
    "\n",
    "test_data = datasets.MNIST(\n",
    "    root=\"data\",\n",
    "    train=False,\n",
    "    download=True,\n",
    "    transform=ToTensor()\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Shape of the image of the first data: torch.Size([1, 28, 28])\n",
      "Label of the first data: 5\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGbCAYAAAAr/4yjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAPGElEQVR4nO3cfazX8//H8edHucjFN2pOjJ3IKS2SSOZa2GKYsvrDMoVlQ4YN4w81DDPXxshFuZq5KmYYE2FoyeVcLMmSlelCLo6LlPX+/uHnuW+Ln8/r43ROnW63zR8+ez/O511O3Xufo1etqqoqACAiNuvoGwBgwyEKACRRACCJAgBJFABIogBAEgUAkigAkEQBgCQKbLS+/PLLqNVqccMNN7TZx3z11VejVqvFq6++2mYfEzYmokC7uv/++6NWq8U777zT0beywfj666/j1FNPjT333DO222672H777WPo0KHxwAMPhFNoaG9dO/oGYFO3fPnyWLRoUYwaNSqam5tj9erV8dJLL8W4cePis88+i2uuuaajb5FNiChAB9tnn33W+XLVhAkT4sQTT4zbbrstrrrqqujSpUvH3BybHF8+YoOzatWqmDhxYuy///7RvXv32GabbeKwww6LmTNn/u3m5ptvjt69e0e3bt3iiCOOiI8//nida+bOnRujRo2KHj16xFZbbRVDhgyJZ555Zn3+UP6V3XbbLX755ZdYtWpVR98KmxBPCmxwfvzxx7j33nvjlFNOifHjx0dra2vcd999MXz48Hj77bdj3333Xev6Bx98MFpbW+Pcc8+NlStXxq233hpHHXVUfPTRR9GrV6+IiPjkk0/ikEMOiV122SUuvfTS2GabbeLxxx+PESNGxLRp02LkyJFF97h69er44Ycf6rq2R48esdlm//znr19//TV+/vnn+Omnn+K1116LqVOnxkEHHRTdunUrujf4VypoR1OnTq0iopozZ87fXvP7779Xv/3221qvfffdd1WvXr2qM844I19bsGBBFRFVt27dqkWLFuXrs2fPriKiuvDCC/O1o48+uho4cGC1cuXKfG3NmjXVwQcfXPXt2zdfmzlzZhUR1cyZM//fH8ef19Xzz4IFC/7pp6Wqqqq69tpr19odffTR1VdffVXXFtqKJwU2OF26dMmvoa9Zsya+//77WLNmTQwZMiTee++9da4fMWJE7LLLLvnvQ4cOjQMPPDCef/75uOmmm2LFihXxyiuvxJVXXhmtra3R2tqa1w4fPjwmTZoUixcvXutj/JNBgwbFSy+9VNe1O+20U13XnXLKKTFkyJBYtmxZPPvss7FkyZL49ddf674naAuiwAbpgQceiBtvvDHmzp0bq1evztd33333da7t27fvOq/169cvHn/88YiImD9/flRVFZdffnlcfvnlf/l+S5cuLYrCDjvsEMccc0zd19ejd+/e0bt374j4IxBnnXVWHHPMMfHZZ5/5EhLtRhTY4Dz88MMxbty4GDFiRFx88cXR1NQUXbp0iWuvvTa++OKL4o+3Zs2aiIi46KKLYvjw4X95TUtLS9HHXLVqVaxYsaKua3fccceG/u+hUaNGxT333BOvv/763943tDVRYIPz5JNPRp8+fWL69OlRq9Xy9UmTJv3l9Z9//vk6r82bNy922223iIjo06dPRERsvvnmbfan+7feeiuGDRtW17ULFizIeynx55eO6v2GNrQFUWCD8+efqquqyijMnj07Zs2aFc3Nzetc//TTT6/1PYG33347Zs+eHRdccEFERDQ1NcWRRx4ZkydPjvPOOy923nnntfbLli2LHXfcsege2/J7Cn/3/vfdd1/UarXYb7/9iu4N/g1RoENMmTIlXnjhhXVeP//88+OEE06I6dOnx8iRI+P444+PBQsWxF133RUDBgyIn376aZ1NS0tLHHrooXH22WfHb7/9Frfcckv07NkzLrnkkrzmjjvuiEMPPTQGDhwY48ePjz59+sSSJUti1qxZsWjRovjwww+L7r8tv6dw9dVXx5tvvhnHHntsNDc3x4oVK2LatGkxZ86cOO+884q/tAX/hijQIe68886/fH3cuHExbty4+Oabb2Ly5Mnx4osvxoABA+Lhhx+OJ5544i8PqjvttNNis802i1tuuSWWLl0aQ4cOjdtvv32tJ4IBAwbEO++8E1dccUXcf//98e2330ZTU1MMHjw4Jk6cuL5+mHU5/vjj44svvogpU6bEsmXLYquttop99tknpk6dGmPHju3Qe2PTU6sqJ24B8AfHXACQRAGAJAoAJFEAIIkCAEkUAEh1/z2F/z1uAICNTz1/A8GTAgBJFABIogBAEgUAkigAkEQBgCQKACRRACCJAgBJFABIogBAEgUAkigAkEQBgCQKACRRACCJAgBJFABIogBAEgUAkigAkEQBgCQKACRRACCJAgBJFABIogBAEgUAkigAkEQBgCQKACRRACCJAgBJFABIogBAEgUAkigAkEQBgCQKACRRACCJAgBJFABIogBAEgUAkigAkEQBgCQKACRRACCJAgBJFABIogBAEgUAUteOvgE2HXvssUdDu8suu6x4069fv+LNvHnzijdLly4t3tx9993Fm4iIL7/8sqEdlPCkAEASBQCSKACQRAGAJAoAJFEAIIkCAEkUAEiiAEASBQCSKACQRAGAVKuqqqrrwlptfd8LHWTMmDHFmyOPPLJ4c/jhhxdvIiJaWloa2rWHRn5dLF68uKH3GjZsWPFm/vz5Db0XnVM9v917UgAgiQIASRQASKIAQBIFAJIoAJBEAYAkCgAkUQAgiQIASRQASKIAQHIgXiez6667Fm/ef//94k3Pnj2LN9OmTSveREQ89NBDxZvu3bsXb0aOHFm8GTx4cPGmubm5eBMRcfvttxdvzj///Ibei87JgXgAFBEFAJIoAJBEAYAkCgAkUQAgiQIASRQASKIAQBIFAJIoAJBEAYDUtaNvgLa17bbbFm969OixHu5kXQceeGBDu9GjR7fxnfy1Rg7eGzZsWPFmxowZxZuIiP/85z8N7aCEJwUAkigAkEQBgCQKACRRACCJAgBJFABIogBAEgUAkigAkEQBgCQKACRRACA5JbWTWbhwYfHmzDPPXA93sq5PP/20Xd6nPZ1zzjnt9l5PPfVUu70Xmy5PCgAkUQAgiQIASRQASKIAQBIFAJIoAJBEAYAkCgAkUQAgiQIASRQASLWqqqq6LqzV1ve9wEanzl8+a/n4448beq+BAwc2tIM/1fP56kkBgCQKACRRACCJAgBJFABIogBAEgUAkigAkEQBgCQKACRRACCJAgCpa0ffAPyTLbfcsnjT0tJSvLnmmmuKN8uWLSvejB07tngD7cWTAgBJFABIogBAEgUAkigAkEQBgCQKACRRACCJAgBJFABIogBAEgUAkgPxaDfHHXdcQ7uJEycWb3baaafiTVVVxZumpqbiDWzIPCkAkEQBgCQKACRRACCJAgBJFABIogBAEgUAkigAkEQBgCQKACRRACCJAgDJKamdzJZbblm8mTBhQvHm5JNPLt4ccMABxZuIiC5duhRvFi5cWLwZPXp08QY6G08KACRRACCJAgBJFABIogBAEgUAkigAkEQBgCQKACRRACCJAgBJFABItaqqqrourNXW973QBvr371+8+eSTT4o3jXw+1PmptlF56623ijdXXHFFQ+81Y8aMhnbwp3p+DXpSACCJAgBJFABIogBAEgUAkigAkEQBgCQKACRRACCJAgBJFABIogBAciBeJ7P99tsXb0aOHFm86devX/Fm3rx5xZtGNfLzMGnSpOJN9+7dizeNHgzYyIF406dPL9488sgjxZsff/yxeEP7cyAeAEVEAYAkCgAkUQAgiQIASRQASKIAQBIFAJIoAJBEAYAkCgAkUQAgORAP/k9zc3O7bC677LLiTUTEUUcdVbzZYostijeNHLx30kknFW9WrlxZvOHfcSAeAEVEAYAkCgAkUQAgiQIASRQASKIAQBIFAJIoAJBEAYAkCgAkUQAgORAPNhJDhw4t3txzzz3Fm7333rt48+ijjxZvxowZU7zh33EgHgBFRAGAJAoAJFEAIIkCAEkUAEiiAEASBQCSKACQRAGAJAoAJFEAIIkCAMkpqdCJ9e/fv3gzZ86c4s0WW2xRvNlrr72KNxER8+fPb2iHU1IBKCQKACRRACCJAgBJFABIogBAEgUAkigAkEQBgCQKACRRACCJAgCpa0ffALD+zJ07t3jzwQcfFG8OOeSQ4s2JJ55YvImIuPnmmxvaUR9PCgAkUQAgiQIASRQASKIAQBIFAJIoAJBEAYAkCgAkUQAgiQIASRQASA7Eg05s0KBBxZuWlpbiTWtra/Hmo48+Kt6w/nlSACCJAgBJFABIogBAEgUAkigAkEQBgCQKACRRACCJAgBJFABIogBAciBeJ9O1a/l/0jFjxhRvHnvsseLNypUrized0Q477NDQbvjw4cWb66+/vnjT1NRUvHnllVeKNzNmzCjesP55UgAgiQIASRQASKIAQBIFAJIoAJBEAYAkCgAkUQAgiQIASRQASKIAQKpVVVXVdWGttr7vhTZw3XXXFW8uuuii4s3uu+9evPnqq6+KN43aa6+9ijctLS3Fm9NPP714M2zYsOJNRMS2225bvGltbS3eTJ48uXhzxx13FG/a8/OBP9Tz270nBQCSKACQRAGAJAoAJFEAIIkCAEkUAEiiAEASBQCSKACQRAGAJAoAJFEAIDkltZP5/PPPizd9+vQp3qxYsaJ4U+enWpvo1q1b8Wbrrbcu3jTy62L58uXFm4iId999t3hz9dVXF2/eeOON4g0bB6ekAlBEFABIogBAEgUAkigAkEQBgCQKACRRACCJAgBJFABIogBAEgUAkgPxOplBgwYVbyZMmFC8Oeyww4o3ffv2Ld5ERCxcuLB48/LLLxdvnnvuueLN0qVLizeLFy8u3kQ09vMA/8uBeAAUEQUAkigAkEQBgCQKACRRACCJAgBJFABIogBAEgUAkigAkEQBgORAPIBNhAPxACgiCgAkUQAgiQIASRQASKIAQBIFAJIoAJBEAYAkCgAkUQAgiQIASRQASKIAQBIFAJIoAJBEAYAkCgAkUQAgiQIASRQASKIAQBIFAJIoAJBEAYAkCgAkUQAgiQIASRQASKIAQBIFAJIoAJBEAYAkCgAkUQAgiQIASRQASKIAQBIFAJIoAJBEAYAkCgAkUQAgiQIASRQASKIAQBIFAJIoAJBEAYAkCgAkUQAgiQIAqWu9F1ZVtT7vA4ANgCcFAJIoAJBEAYAkCgAkUQAgiQIASRQASKIAQBIFANJ/AQmIi12V3zs8AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Choosing one data and visualizing it\n",
    "print(f\"Shape of the image of the first data: {training_data[0][0].shape}\")\n",
    "print(f\"Label of the first data: {training_data[0][1]}\")\n",
    "\n",
    "# Visualizing it\n",
    "idx = np.random.randint(0,10000)\n",
    "img, label = training_data[idx]\n",
    "plt.title(f\"Label = {label}\")\n",
    "plt.imshow(img.squeeze(), cmap=\"gray\")\n",
    "plt.axis(False)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Creating a Custom Dataset\n",
    "Most of the time, you might now work with pre-loaded datasets (such as some of the questions of your homework:)). In these case you must create your own custom dataset. In order to do so you should create a child from the class `Dataset` as shown below:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\ASUS\\AppData\\Local\\Temp\\ipykernel_18972\\1050226701.py:2: DeprecationWarning: \n",
      "Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),\n",
      "(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)\n",
      "but was not found to be installed on your system.\n",
      "If this would cause problems for you,\n",
      "please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466\n",
      "        \n",
      "  import pandas as pd\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "from torchvision.io import read_image\n",
    "\n",
    "class CustomImageDataset(Dataset):\n",
    "    def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):\n",
    "        self.img_labels = pd.read_csv(annotations_file)\n",
    "        self.img_dir = img_dir\n",
    "        self.transform = transform\n",
    "        self.target_transform = target_transform\n",
    "\n",
    "    def __len__(self):\n",
    "        return len(self.img_labels)\n",
    "\n",
    "    def __getitem__(self, idx):\n",
    "        img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])\n",
    "        image = read_image(img_path)\n",
    "        label = self.img_labels.iloc[idx, 1]\n",
    "        if self.transform:\n",
    "            image = self.transform(image)\n",
    "        if self.target_transform:\n",
    "            label = self.target_transform(label)\n",
    "        return image, label"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Preparing your data for training with DataLoader\n",
    "using `DataLoader`, you can shuffle data, created minibatches from it, and iterate through does minibatches just by one command:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [],
   "source": [
    "from torch.utils.data import DataLoader\n",
    "\n",
    "train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)\n",
    "test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "First iter: \n",
      " tensor([5, 1, 7, 1, 6, 3, 5, 4, 0, 3, 2, 2, 2, 7, 7, 3, 4, 8, 5, 0, 7, 9, 3, 1,\n",
      "        7, 1, 4, 2, 2, 7, 4, 3, 1, 0, 2, 4, 9, 3, 8, 1, 5, 8, 7, 7, 7, 9, 7, 0,\n",
      "        2, 3, 2, 6, 6, 8, 9, 0, 5, 4, 1, 6, 1, 4, 1, 8]) \n",
      " \n",
      "Second iter: \n",
      " tensor([9, 1, 3, 3, 7, 0, 6, 1, 7, 9, 8, 6, 7, 3, 8, 1, 9, 4, 7, 5, 3, 7, 7, 1,\n",
      "        9, 6, 8, 1, 5, 7, 4, 3, 8, 6, 8, 6, 3, 4, 6, 5, 5, 9, 3, 1, 2, 6, 7, 2,\n",
      "        0, 2, 9, 7, 7, 2, 9, 8, 3, 0, 3, 9, 1, 9, 4, 2])\n",
      "Features batch shape: \n",
      " torch.Size([64, 1, 28, 28]) \n",
      "\n",
      "Labels batch shape: \n",
      " torch.Size([64]) \n",
      "\n"
     ]
    }
   ],
   "source": [
    "# iterating on train_dataloader and printing just the labels in order to see the difference\n",
    "first_batch = next(iter(train_dataloader))\n",
    "second_batch = next(iter(train_dataloader))\n",
    "print(f\"First iter: \\n {first_batch[1]} \\n \")\n",
    "print(f\"Second iter: \\n {second_batch[1]}\")\n",
    "\n",
    "print(f\"Features batch shape: \\n {first_batch[0].shape} \\n\")\n",
    "print(f\"Labels batch shape: \\n {first_batch[1].shape} \\n\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Transforms\n",
    "Data does not always come in its final processed form that is required for training machine learning algorithms. We use transforms to perform some manipulation of the data and make it suitable for training.\n",
    "\n",
    "All TorchVision datasets have two parameters -`transform` to modify the features and `target_transform` to modify the labels - that accept callables containing the transformation logic. For more information about transform you can visit [torchvision.transform](https://pytorch.org/vision/stable/transforms.html).\n",
    "\n",
    "Here is an example of using transfomrs on `torchvision.datasets.MNIST`. MNIST datasets contains PIL images which should be converted tensors normalized between 0 to 1(using `ToTensor()`)and labels which are integers and should be converted to one-hot encoded values as shown below.\n",
    "\n",
    "In the example below, we also use `Lambda` transforms which apply any user-defined lambda function. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [],
   "source": [
    "from torchvision.transforms import ToTensor, Lambda\n",
    "ds = datasets.MNIST(\n",
    "    root=\"data\",\n",
    "    train=True,\n",
    "    download=True,\n",
    "    transform=ToTensor(),\n",
    "    target_transform = Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(dim=0, index=torch.tensor(y),\n",
    "                                                                                    value=1))\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Features tensor: \n",
      " tensor([[[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0118, 0.0706, 0.0706, 0.0706,\n",
      "          0.4941, 0.5333, 0.6863, 0.1020, 0.6510, 1.0000, 0.9686, 0.4980,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.1176, 0.1412, 0.3686, 0.6039, 0.6667, 0.9922, 0.9922, 0.9922,\n",
      "          0.9922, 0.9922, 0.8824, 0.6745, 0.9922, 0.9490, 0.7647, 0.2510,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.1922,\n",
      "          0.9333, 0.9922, 0.9922, 0.9922, 0.9922, 0.9922, 0.9922, 0.9922,\n",
      "          0.9922, 0.9843, 0.3647, 0.3216, 0.3216, 0.2196, 0.1529, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0706,\n",
      "          0.8588, 0.9922, 0.9922, 0.9922, 0.9922, 0.9922, 0.7765, 0.7137,\n",
      "          0.9686, 0.9451, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.3137, 0.6118, 0.4196, 0.9922, 0.9922, 0.8039, 0.0431, 0.0000,\n",
      "          0.1686, 0.6039, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0549, 0.0039, 0.6039, 0.9922, 0.3529, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.5451, 0.9922, 0.7451, 0.0078, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0431, 0.7451, 0.9922, 0.2745, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.1373, 0.9451, 0.8824, 0.6275,\n",
      "          0.4235, 0.0039, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.3176, 0.9412, 0.9922,\n",
      "          0.9922, 0.4667, 0.0980, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.1765, 0.7294,\n",
      "          0.9922, 0.9922, 0.5882, 0.1059, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0627,\n",
      "          0.3647, 0.9882, 0.9922, 0.7333, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.9765, 0.9922, 0.9765, 0.2510, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.1804, 0.5098,\n",
      "          0.7176, 0.9922, 0.9922, 0.8118, 0.0078, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.1529, 0.5804, 0.8980, 0.9922,\n",
      "          0.9922, 0.9922, 0.9804, 0.7137, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0941, 0.4471, 0.8667, 0.9922, 0.9922, 0.9922,\n",
      "          0.9922, 0.7882, 0.3059, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0902, 0.2588, 0.8353, 0.9922, 0.9922, 0.9922, 0.9922, 0.7765,\n",
      "          0.3176, 0.0078, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0706, 0.6706,\n",
      "          0.8588, 0.9922, 0.9922, 0.9922, 0.9922, 0.7647, 0.3137, 0.0353,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.2157, 0.6745, 0.8863, 0.9922,\n",
      "          0.9922, 0.9922, 0.9922, 0.9569, 0.5216, 0.0431, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.5333, 0.9922, 0.9922, 0.9922,\n",
      "          0.8314, 0.5294, 0.5176, 0.0627, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000],\n",
      "         [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
      "          0.0000, 0.0000, 0.0000, 0.0000]]]) \n",
      "\n",
      "Labels tensor: \n",
      " tensor([0., 0., 0., 0., 0., 1., 0., 0., 0., 0.])\n"
     ]
    }
   ],
   "source": [
    "print(f\"Features tensor: \\n {ds[0][0]} \\n\")\n",
    "print(f\"Labels tensor: \\n {ds[0][1]}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Build the neural network"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Neural networks comprise of layers/modules that perform operations on data. The `torch.nn` namespace provides all the building blocks you need to build your own neural network. Every module in PyTorch subclasses the `nn.Module`. A neural network is a module itself that consists of other modules (layers). This nested structure allows for building and managing complex architectures easily."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using cuda device\n"
     ]
    }
   ],
   "source": [
    "import torch.nn as nn\n",
    "\n",
    "# setting the device to cuda if available\n",
    "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
    "print(f\"Using {device} device\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Define the class\n",
    "We define our neural network by subclassing `nn.Module`, and initialize the neural network layers in `__init__`. Every `nn.Module` subclass implements the operations on input data in the `forward` method."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [],
   "source": [
    "class NeuralNetwork(nn.Module):\n",
    "    def __init__(self):\n",
    "        super(NeuralNetwork, self).__init__()\n",
    "        self.flatten = nn.Flatten()\n",
    "        self.linear_relu_stack = nn.Sequential(\n",
    "            nn.Linear(28*28, 512),\n",
    "            nn.ReLU(),\n",
    "            nn.Linear(512, 512),\n",
    "            nn.ReLU(),\n",
    "            nn.Linear(512, 10),\n",
    "        )\n",
    "\n",
    "    def forward(self, x):\n",
    "        x = self.flatten(x)\n",
    "        logits = self.linear_relu_stack(x)\n",
    "        return logits\n",
    "    \n",
    "class NeuralNetwork1(nn.Module):\n",
    "    def __init__(self):\n",
    "        super(NeuralNetwork, self).__init__()\n",
    "        self.flatten = nn.Flatten()\n",
    "        self.linear1 = nn.Linear(28*28, 512)\n",
    "        self.relu1 = nn.ReLU()\n",
    "        self.linear2 = nn.Linear(512, 512)\n",
    "        self.relu2 = nn.ReLU()\n",
    "        self.linear3 = nn.Linear(512, 10)\n",
    "\n",
    "    def forward(self, x):\n",
    "        x = self.flatten(x)\n",
    "        x = self.linear1(x)\n",
    "        x = self.relu1(x)\n",
    "        x = self.linear2(x)\n",
    "        x = self.relu2(x)\n",
    "        logits = self.linear3(x)\n",
    "        return logits"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "NeuralNetwork(\n",
      "  (flatten): Flatten(start_dim=1, end_dim=-1)\n",
      "  (linear_relu_stack): Sequential(\n",
      "    (0): Linear(in_features=784, out_features=512, bias=True)\n",
      "    (1): ReLU()\n",
      "    (2): Linear(in_features=512, out_features=512, bias=True)\n",
      "    (3): ReLU()\n",
      "    (4): Linear(in_features=512, out_features=10, bias=True)\n",
      "  )\n",
      ")\n"
     ]
    }
   ],
   "source": [
    "# Creating an instance of the class `NeuralNetwork` and moving it to device\n",
    "model = NeuralNetwork().to(device)\n",
    "print(model)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "whenever we want to get the model's output on an input data `X`, we pass the data to the model directly using `model(X)`. This automatically runs `forward` method with some other background calculations. **Do not run `model.forward()` directly.**\n",
    "\n",
    "Note that the device of the data passed to the model should be the same device in which the model is saved."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model's output: \n",
      " tensor([[-0.0256, -0.0040, -0.0285, -0.0217,  0.0594,  0.0672, -0.0618, -0.0377,\n",
      "         -0.0170, -0.0272]], device='cuda:0', grad_fn=<AddmmBackward0>) \n",
      "\n",
      "Prediction probabilities: \n",
      " tensor([[0.0983, 0.1005, 0.0981, 0.0987, 0.1071, 0.1079, 0.0948, 0.0972, 0.0992,\n",
      "         0.0982]], device='cuda:0', grad_fn=<SoftmaxBackward0>) \n",
      "\n",
      "Predicted label: \n",
      " 5 \n",
      "\n"
     ]
    }
   ],
   "source": [
    "X = torch.rand(1, 28, 28, device=device) # creating a random input with the same device\n",
    "\n",
    "# passing the input to the model\n",
    "logits = model(X)\n",
    "print(f\"Model's output: \\n {logits} \\n\")\n",
    "\n",
    "# calculating model predictions by applying a softmax\n",
    "probs = nn.Softmax(dim=1)(logits) # finding the probabilities\n",
    "print(f\"Prediction probabilities: \\n {probs} \\n\")\n",
    "\n",
    "y_pred = probs.argmax(dim = 1)\n",
    "print(f\"Predicted label: \\n {y_pred.item()} \\n\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Each Layer in the previous models works as explained below:\n",
    "- `nn.Flatten()`: Flattens the data except for dim=0. For example a data with the shape of (1, 10, 10) is converted to a data with the shape of (1, 100)\n",
    "- `nn.Linear(in_features, out_features)`: A single linear layer with `in_features` inputs and `out_features` outputs\n",
    "- `nn.ReLU()`: Simply applies relu function on each element of its input\n",
    "- `nn.Sequential(module1, module2, ...)`: It is a container of modules. It simply passes the data through the modules with the given order\n",
    "- `nn.Softmax(dim)`: Applies a softmax function on the given dimension of the data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Model Parameters\n",
    "Many layers inside a neural network are parameterized, i.e. have associated weights and biases that are optimized during training. Subclassing `nn.Module` automatically tracks all fields defined inside your model object, and makes all parameters accessible using your model’s `parameters()` or `named_parameters()` methods."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model structure: NeuralNetwork(\n",
      "  (flatten): Flatten(start_dim=1, end_dim=-1)\n",
      "  (linear_relu_stack): Sequential(\n",
      "    (0): Linear(in_features=784, out_features=512, bias=True)\n",
      "    (1): ReLU()\n",
      "    (2): Linear(in_features=512, out_features=512, bias=True)\n",
      "    (3): ReLU()\n",
      "    (4): Linear(in_features=512, out_features=10, bias=True)\n",
      "  )\n",
      ")\n",
      "\n",
      "\n",
      "Layer: linear_relu_stack.0.weight | Size: torch.Size([512, 784]) | Values : tensor([[-0.0227, -0.0286,  0.0266,  ...,  0.0331,  0.0057, -0.0345],\n",
      "        [-0.0298,  0.0025, -0.0354,  ...,  0.0126,  0.0340, -0.0043]],\n",
      "       device='cuda:0', grad_fn=<SliceBackward0>) \n",
      "\n",
      "Layer: linear_relu_stack.0.bias | Size: torch.Size([512]) | Values : tensor([ 0.0288, -0.0333], device='cuda:0', grad_fn=<SliceBackward0>) \n",
      "\n",
      "Layer: linear_relu_stack.2.weight | Size: torch.Size([512, 512]) | Values : tensor([[ 0.0246,  0.0265,  0.0128,  ..., -0.0425,  0.0385, -0.0296],\n",
      "        [-0.0200,  0.0194,  0.0015,  ...,  0.0097, -0.0058, -0.0273]],\n",
      "       device='cuda:0', grad_fn=<SliceBackward0>) \n",
      "\n",
      "Layer: linear_relu_stack.2.bias | Size: torch.Size([512]) | Values : tensor([ 0.0084, -0.0268], device='cuda:0', grad_fn=<SliceBackward0>) \n",
      "\n",
      "Layer: linear_relu_stack.4.weight | Size: torch.Size([10, 512]) | Values : tensor([[ 4.0648e-02, -6.4324e-03, -1.7283e-02,  ...,  1.1251e-02,\n",
      "          3.5044e-02, -7.0807e-05],\n",
      "        [ 1.9634e-02,  3.4438e-03, -4.1713e-02,  ..., -1.3394e-02,\n",
      "         -4.3820e-02, -4.2858e-03]], device='cuda:0', grad_fn=<SliceBackward0>) \n",
      "\n",
      "Layer: linear_relu_stack.4.bias | Size: torch.Size([10]) | Values : tensor([0.0323, 0.0086], device='cuda:0', grad_fn=<SliceBackward0>) \n",
      "\n"
     ]
    }
   ],
   "source": [
    "print(f\"Model structure: {model}\\n\\n\")\n",
    "\n",
    "for name, param in model.named_parameters():\n",
    "    print(f\"Layer: {name} | Size: {param.size()} | Values : {param[:2]} \\n\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Automatic Differentiation with `torch.autograd`\n",
    "The most frequently used algorithm in neural networks is `back propagation`. One of the fundumental benefits of `Pytorch` and other deep learning frameworks is the implementation of automatic differetiaion using back propagation. This means that in order to find the gradients of a model, you can simply call `backward()` method and torch will automatically calculate the gradients of the pararmeters for you.\n",
    "\n",
    "For example, we try to calculate the gradients of a given function $y = exp(x^Tw)$ where $x \\in \\mathcal{R}^{10}$ is a constant vector and $w \\in \\mathcal{R}^{10}$ is our variable. Using back propagation, we can take $z = x^Tw$. Then $\\frac{d\\exp(z)}{dz} = \\exp(z)$, $\\frac{dz}{dw_i} = x_i$, and consequently $\\frac{dy}{dw_i} = \\frac{dy}{dz} \\frac{dz}{dw_i} = x_i . \\exp(x^Tw)= x_i . y $"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Expected gradients: \n",
      " tensor([ 3269017.2500,  6538034.5000,  9807052.0000, 13076069.0000,\n",
      "        16345086.0000]) \n",
      "\n",
      "Calculated gradients: \n",
      " tensor([ 3269017.2500,  6538034.5000,  9807052.0000, 13076069.0000,\n",
      "        16345086.0000])\n"
     ]
    }
   ],
   "source": [
    "x = torch.tensor([1.,2.,3.,4.,5.])\n",
    "w = torch.tensor([1.,1.,1.,1.,1.], requires_grad=True)\n",
    "z = torch.matmul(x,w)\n",
    "y = torch.exp(z)\n",
    "y.backward()\n",
    "\n",
    "\n",
    "expected_grads = (y * x).detach() # setting requires_grad to False\n",
    "\n",
    "print(f\"Expected gradients: \\n {expected_grads} \\n\")\n",
    "print(f\"Calculated gradients: \\n {w.grad}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "First method's requires_grad before: True\n",
      "First method's requires_grad after: False\n",
      "\n",
      "Second method's requires_grad before: True\n",
      "Second method's requires_grad after: False\n"
     ]
    }
   ],
   "source": [
    "# how to set requires grad to False\n",
    "# there are two ways to do so\n",
    "# 1\n",
    "z1 = x * w\n",
    "print(\"First method's requires_grad before:\", z1.requires_grad)\n",
    "with torch.no_grad():\n",
    "    z1 = x * w\n",
    "print(\"First method's requires_grad after:\", z1.requires_grad)\n",
    "\n",
    "# 2\n",
    "print()\n",
    "z2 = x * w\n",
    "print(\"Second method's requires_grad before:\", z2.requires_grad)\n",
    "\n",
    "z2 = z2.detach()\n",
    "print(\"Second method's requires_grad after:\", z2.requires_grad)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Optimization\n",
    "Now that we have the model, dataset and parameters, we should optimize our model on the given dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "NeuralNetwork(\n",
       "  (flatten): Flatten(start_dim=1, end_dim=-1)\n",
       "  (linear_relu_stack): Sequential(\n",
       "    (0): Linear(in_features=784, out_features=512, bias=True)\n",
       "    (1): ReLU()\n",
       "    (2): Linear(in_features=512, out_features=512, bias=True)\n",
       "    (3): ReLU()\n",
       "    (4): Linear(in_features=512, out_features=10, bias=True)\n",
       "  )\n",
       ")"
      ]
     },
     "execution_count": 41,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# creating an instance of our model\n",
    "model = NeuralNetwork().to(device)\n",
    "\n",
    "# setting models mode to train mode\n",
    "model.train()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Hyperparameters\n",
    "We define the following hyperparameters for training:\n",
    "- **Number of Epochs** - the number times to iterate over the dataset\n",
    "- **Batch Size** - the number of data samples propagated through the network before the parameters are updated\n",
    "- **Learning Rate** - how much to update models parameters at each batch/epoch. Smaller values yield slow learning speed, while large values may result in unpredictable behavior during training.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [],
   "source": [
    "learning_rate = 1e-3\n",
    "batch_size = 64\n",
    "epochs = 5"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Optimization loop\n",
    "Each iteration of the optimization loop is called **epoch**. In each epoch these two main parts should be implemented:\n",
    "- **The Train Loop** - Iterate over the batches and try to converge to optimal parameters\n",
    "- **The Validation/Test Loop** - Iterate over test/validation dataset to see whether the model is improving or not\n",
    "\n",
    "We also need a loss function. There are various loss functions implemented in `torch.nn`. In this example, we use cross entropy."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialize the loss function\n",
    "loss_fn = nn.CrossEntropyLoss()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We also have to add an optimizer to the loop. The objective of an optimizer is to use the gradien of the parameters and optimize them based on the selected optimization algorithm such as SGD, Adam, etc."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [],
   "source": [
    "optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Inside the training loop for each batch, we first call `optimizer.zero_grad()` to make all gradients equal to zero. Then we call `loss.backward()` to calculate the gradients (using the autograd which was explained before), and finally, we call `optimizer.step()` to adjust the parameters based on their gradients.\n",
    "\n",
    "The final implementation of an optimization loop should be something like this:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {},
   "outputs": [],
   "source": [
    "def train_loop(dataloader, model, loss_fn, optimizer):\n",
    "    size = len(dataloader.dataset)\n",
    "    for batch, (X, y) in enumerate(dataloader):\n",
    "        # Compute prediction and loss\n",
    "        pred = model(X)\n",
    "        loss = loss_fn(pred, y)\n",
    "\n",
    "        # Backpropagation\n",
    "        optimizer.zero_grad()\n",
    "        loss.backward()\n",
    "        optimizer.step()\n",
    "\n",
    "        if batch % 100 == 0:\n",
    "            loss, current = loss.item(), batch * len(X)\n",
    "            print(f\"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]\")\n",
    "\n",
    "\n",
    "def test_loop(dataloader, model, loss_fn):\n",
    "    size = len(dataloader.dataset)\n",
    "    num_batches = len(dataloader)\n",
    "    test_loss, correct = 0, 0\n",
    "\n",
    "    with torch.no_grad():\n",
    "        for X, y in dataloader:\n",
    "            pred = model(X)\n",
    "            test_loss += loss_fn(pred, y).item()\n",
    "            correct += (pred.argmax(1) == y).type(torch.float).sum().item()\n",
    "\n",
    "    test_loss /= num_batches\n",
    "    correct /= size\n",
    "    print(f\"Test Error: \\n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \\n\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1\n",
      "-------------------------------\n"
     ]
    },
    {
     "ename": "RuntimeError",
     "evalue": "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument mat1 in method wrapper_CUDA_addmm)",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mRuntimeError\u001b[0m                              Traceback (most recent call last)",
      "\u001b[1;32me:\\Sharif University\\Sharif Courses\\TA Files\\Social Robotics TA\\Pytorch_Tutorial.ipynb Cell 51\u001b[0m line \u001b[0;36m7\n\u001b[0;32m      <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=4'>5</a>\u001b[0m \u001b[39mfor\u001b[39;00m t \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(epochs):\n\u001b[0;32m      <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m     \u001b[39mprint\u001b[39m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mEpoch \u001b[39m\u001b[39m{\u001b[39;00mt\u001b[39m+\u001b[39m\u001b[39m1\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m\\n\u001b[39;00m\u001b[39m-------------------------------\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m----> <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=6'>7</a>\u001b[0m     train_loop(train_dataloader, model, loss_fn, optimizer)\n\u001b[0;32m      <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=7'>8</a>\u001b[0m     test_loop(test_dataloader, model, loss_fn)\n\u001b[0;32m      <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=8'>9</a>\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39m\"\u001b[39m\u001b[39mDone!\u001b[39m\u001b[39m\"\u001b[39m)\n",
      "\u001b[1;32me:\\Sharif University\\Sharif Courses\\TA Files\\Social Robotics TA\\Pytorch_Tutorial.ipynb Cell 51\u001b[0m line \u001b[0;36m5\n\u001b[0;32m      <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=1'>2</a>\u001b[0m size \u001b[39m=\u001b[39m \u001b[39mlen\u001b[39m(dataloader\u001b[39m.\u001b[39mdataset)\n\u001b[0;32m      <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=2'>3</a>\u001b[0m \u001b[39mfor\u001b[39;00m batch, (X, y) \u001b[39min\u001b[39;00m \u001b[39menumerate\u001b[39m(dataloader):\n\u001b[0;32m      <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=3'>4</a>\u001b[0m     \u001b[39m# Compute prediction and loss\u001b[39;00m\n\u001b[1;32m----> <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=4'>5</a>\u001b[0m     pred \u001b[39m=\u001b[39m model(X)\n\u001b[0;32m      <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m     loss \u001b[39m=\u001b[39m loss_fn(pred, y)\n\u001b[0;32m      <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=7'>8</a>\u001b[0m     \u001b[39m# Backpropagation\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\ASUS\\.conda\\envs\\torch\\lib\\site-packages\\torch\\nn\\modules\\module.py:1518\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1516\u001b[0m     \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_compiled_call_impl(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)  \u001b[39m# type: ignore[misc]\u001b[39;00m\n\u001b[0;32m   1517\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m-> 1518\u001b[0m     \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_call_impl(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n",
      "File \u001b[1;32mc:\\Users\\ASUS\\.conda\\envs\\torch\\lib\\site-packages\\torch\\nn\\modules\\module.py:1527\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1522\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[0;32m   1523\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[0;32m   1524\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_pre_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks\n\u001b[0;32m   1525\u001b[0m         \u001b[39mor\u001b[39;00m _global_backward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[0;32m   1526\u001b[0m         \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[1;32m-> 1527\u001b[0m     \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m   1529\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m   1530\u001b[0m     result \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n",
      "\u001b[1;32me:\\Sharif University\\Sharif Courses\\TA Files\\Social Robotics TA\\Pytorch_Tutorial.ipynb Cell 51\u001b[0m line \u001b[0;36m1\n\u001b[0;32m     <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=12'>13</a>\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mforward\u001b[39m(\u001b[39mself\u001b[39m, x):\n\u001b[0;32m     <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=13'>14</a>\u001b[0m     x \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mflatten(x)\n\u001b[1;32m---> <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=14'>15</a>\u001b[0m     logits \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mlinear_relu_stack(x)\n\u001b[0;32m     <a href='vscode-notebook-cell:/e%3A/Sharif%20University/Sharif%20Courses/TA%20Files/Social%20Robotics%20TA/Pytorch_Tutorial.ipynb#Y101sZmlsZQ%3D%3D?line=15'>16</a>\u001b[0m     \u001b[39mreturn\u001b[39;00m logits\n",
      "File \u001b[1;32mc:\\Users\\ASUS\\.conda\\envs\\torch\\lib\\site-packages\\torch\\nn\\modules\\module.py:1518\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1516\u001b[0m     \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_compiled_call_impl(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)  \u001b[39m# type: ignore[misc]\u001b[39;00m\n\u001b[0;32m   1517\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m-> 1518\u001b[0m     \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_call_impl(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n",
      "File \u001b[1;32mc:\\Users\\ASUS\\.conda\\envs\\torch\\lib\\site-packages\\torch\\nn\\modules\\module.py:1527\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1522\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[0;32m   1523\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[0;32m   1524\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_pre_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks\n\u001b[0;32m   1525\u001b[0m         \u001b[39mor\u001b[39;00m _global_backward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[0;32m   1526\u001b[0m         \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[1;32m-> 1527\u001b[0m     \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m   1529\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m   1530\u001b[0m     result \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\ASUS\\.conda\\envs\\torch\\lib\\site-packages\\torch\\nn\\modules\\container.py:215\u001b[0m, in \u001b[0;36mSequential.forward\u001b[1;34m(self, input)\u001b[0m\n\u001b[0;32m    213\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mforward\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39minput\u001b[39m):\n\u001b[0;32m    214\u001b[0m     \u001b[39mfor\u001b[39;00m module \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m:\n\u001b[1;32m--> 215\u001b[0m         \u001b[39minput\u001b[39m \u001b[39m=\u001b[39m module(\u001b[39minput\u001b[39;49m)\n\u001b[0;32m    216\u001b[0m     \u001b[39mreturn\u001b[39;00m \u001b[39minput\u001b[39m\n",
      "File \u001b[1;32mc:\\Users\\ASUS\\.conda\\envs\\torch\\lib\\site-packages\\torch\\nn\\modules\\module.py:1518\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1516\u001b[0m     \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_compiled_call_impl(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)  \u001b[39m# type: ignore[misc]\u001b[39;00m\n\u001b[0;32m   1517\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m-> 1518\u001b[0m     \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_call_impl(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n",
      "File \u001b[1;32mc:\\Users\\ASUS\\.conda\\envs\\torch\\lib\\site-packages\\torch\\nn\\modules\\module.py:1527\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1522\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[0;32m   1523\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[0;32m   1524\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_pre_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks\n\u001b[0;32m   1525\u001b[0m         \u001b[39mor\u001b[39;00m _global_backward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[0;32m   1526\u001b[0m         \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[1;32m-> 1527\u001b[0m     \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m   1529\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m   1530\u001b[0m     result \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\ASUS\\.conda\\envs\\torch\\lib\\site-packages\\torch\\nn\\modules\\linear.py:114\u001b[0m, in \u001b[0;36mLinear.forward\u001b[1;34m(self, input)\u001b[0m\n\u001b[0;32m    113\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mforward\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39minput\u001b[39m: Tensor) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m Tensor:\n\u001b[1;32m--> 114\u001b[0m     \u001b[39mreturn\u001b[39;00m F\u001b[39m.\u001b[39;49mlinear(\u001b[39minput\u001b[39;49m, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mweight, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mbias)\n",
      "\u001b[1;31mRuntimeError\u001b[0m: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument mat1 in method wrapper_CUDA_addmm)"
     ]
    }
   ],
   "source": [
    "loss_fn = nn.CrossEntropyLoss()\n",
    "optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)\n",
    "\n",
    "epochs = 4\n",
    "for t in range(epochs):\n",
    "    print(f\"Epoch {t+1}\\n-------------------------------\")\n",
    "    train_loop(train_dataloader, model, loss_fn, optimizer)\n",
    "    test_loop(test_dataloader, model, loss_fn)\n",
    "print(\"Done!\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Saving and loading the model\n",
    "After training the model, we should save it to be able to use it afterwards. There are two ways to do this:\n",
    "- Saving just the weights of the model\n",
    "- Saving the weights and the structure "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Saving & Loading the weigths"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "NeuralNetwork(\n",
       "  (flatten): Flatten(start_dim=1, end_dim=-1)\n",
       "  (linear_relu_stack): Sequential(\n",
       "    (0): Linear(in_features=784, out_features=512, bias=True)\n",
       "    (1): ReLU()\n",
       "    (2): Linear(in_features=512, out_features=512, bias=True)\n",
       "    (3): ReLU()\n",
       "    (4): Linear(in_features=512, out_features=10, bias=True)\n",
       "  )\n",
       ")"
      ]
     },
     "execution_count": 30,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# saving\n",
    "torch.save(model.state_dict(), 'model_weights.pth')\n",
    "\n",
    "# loading\n",
    "model.load_state_dict(torch.load('model_weights.pth'))\n",
    "model.eval()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Saving & Loading the model and its weigths"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "NeuralNetwork(\n",
       "  (flatten): Flatten(start_dim=1, end_dim=-1)\n",
       "  (linear_relu_stack): Sequential(\n",
       "    (0): Linear(in_features=784, out_features=512, bias=True)\n",
       "    (1): ReLU()\n",
       "    (2): Linear(in_features=512, out_features=512, bias=True)\n",
       "    (3): ReLU()\n",
       "    (4): Linear(in_features=512, out_features=10, bias=True)\n",
       "  )\n",
       ")"
      ]
     },
     "execution_count": 31,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# saving\n",
    "torch.save(model, 'model.pth')\n",
    "\n",
    "# loading\n",
    "model = torch.load('model.pth')\n",
    "model.eval()"
   ]
  }
 ],
 "metadata": {
  "colab": {
   "collapsed_sections": [],
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3.9.13 ('base')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.18"
  },
  "vscode": {
   "interpreter": {
    "hash": "304d98a18a6597b5074573a35a99b631fbbf66bbb48b57fc984d20c778d1912e"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}