{ "cells": [ { "cell_type": "code", "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ], "metadata": { "id": "hVaj2LWCWxZA", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "309371cc-c56a-46de-df46-b004ed7de597" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Mounted at /content/drive\n" ] } ] }, { "cell_type": "markdown", "source": [ "## Download and untar the yesno dataset" ], "metadata": { "id": "t6wXW_Ifaobx" } }, { "cell_type": "code", "source": [ "!wget https://us.openslr.org/resources/1/waves_yesno.tar.gz\n", "!mkdir working\n", "!tar -xzvf waves_yesno.tar.gz -C working" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "TIM0W34CMr4i", "outputId": "50e1b1ad-6226-4a55-e65c-b84889c7d27f" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "--2024-05-10 19:41:43-- https://us.openslr.org/resources/1/waves_yesno.tar.gz\n", "Resolving us.openslr.org (us.openslr.org)... 46.101.158.64\n", "Connecting to us.openslr.org (us.openslr.org)|46.101.158.64|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: 4703754 (4.5M) [application/x-gzip]\n", "Saving to: ‘waves_yesno.tar.gz’\n", "\n", "waves_yesno.tar.gz 100%[===================>] 4.49M 5.68MB/s in 0.8s \n", "\n", "2024-05-10 19:41:44 (5.68 MB/s) - ‘waves_yesno.tar.gz’ saved [4703754/4703754]\n", "\n", "waves_yesno/\n", "waves_yesno/1_0_0_0_0_0_1_1.wav\n", "waves_yesno/1_1_0_0_1_0_1_0.wav\n", "waves_yesno/1_0_1_1_1_1_0_1.wav\n", "waves_yesno/1_1_1_1_0_1_0_0.wav\n", "waves_yesno/0_0_1_1_1_0_0_0.wav\n", "waves_yesno/0_1_1_1_1_1_1_1.wav\n", "waves_yesno/0_1_0_1_1_1_0_0.wav\n", "waves_yesno/1_0_1_1_1_0_1_0.wav\n", "waves_yesno/1_0_0_1_0_1_1_1.wav\n", "waves_yesno/0_0_1_0_1_0_0_0.wav\n", "waves_yesno/0_1_0_1_1_0_1_0.wav\n", "waves_yesno/0_0_1_1_0_1_1_0.wav\n", "waves_yesno/1_0_0_0_1_0_0_1.wav\n", "waves_yesno/1_1_0_1_1_1_1_0.wav\n", "waves_yesno/0_0_1_1_1_1_0_0.wav\n", "waves_yesno/1_1_0_0_1_1_1_0.wav\n", "waves_yesno/0_0_1_1_0_1_1_1.wav\n", "waves_yesno/1_1_0_1_0_1_1_0.wav\n", "waves_yesno/0_1_0_0_0_1_1_0.wav\n", "waves_yesno/0_0_0_1_0_0_0_1.wav\n", "waves_yesno/0_0_1_0_1_0_1_1.wav\n", "waves_yesno/0_0_1_0_0_0_1_0.wav\n", "waves_yesno/1_1_0_1_1_0_0_1.wav\n", "waves_yesno/0_1_1_1_0_1_0_1.wav\n", "waves_yesno/0_1_1_1_0_0_0_0.wav\n", "waves_yesno/README~\n", "waves_yesno/0_1_0_0_0_1_0_0.wav\n", "waves_yesno/1_0_0_0_0_0_0_1.wav\n", "waves_yesno/1_1_0_1_1_0_1_1.wav\n", "waves_yesno/1_1_0_0_0_0_0_1.wav\n", "waves_yesno/1_0_0_0_0_0_0_0.wav\n", "waves_yesno/0_1_1_1_1_0_1_0.wav\n", "waves_yesno/0_0_1_1_0_1_0_0.wav\n", "waves_yesno/1_1_1_0_0_0_0_1.wav\n", "waves_yesno/1_0_1_0_1_0_0_1.wav\n", "waves_yesno/0_1_0_0_1_0_1_1.wav\n", "waves_yesno/0_0_1_1_1_1_1_0.wav\n", "waves_yesno/1_1_0_0_0_1_1_1.wav\n", "waves_yesno/0_1_1_1_0_0_1_0.wav\n", "waves_yesno/1_1_0_1_0_1_0_0.wav\n", "waves_yesno/1_1_1_1_1_1_1_1.wav\n", "waves_yesno/0_0_1_0_1_0_0_1.wav\n", "waves_yesno/1_1_1_1_0_0_1_0.wav\n", "waves_yesno/0_0_1_1_1_0_0_1.wav\n", "waves_yesno/0_1_0_1_0_0_0_0.wav\n", "waves_yesno/1_1_1_1_1_0_0_0.wav\n", "waves_yesno/README\n", "waves_yesno/0_1_1_0_0_1_1_1.wav\n", "waves_yesno/0_0_1_0_0_1_1_0.wav\n", "waves_yesno/1_1_0_0_1_0_1_1.wav\n", "waves_yesno/1_1_1_0_0_1_0_1.wav\n", "waves_yesno/0_0_1_0_0_1_1_1.wav\n", "waves_yesno/0_0_1_1_0_0_0_1.wav\n", "waves_yesno/1_0_1_1_0_1_1_1.wav\n", "waves_yesno/1_1_1_0_1_0_1_0.wav\n", "waves_yesno/1_1_1_0_1_0_1_1.wav\n", "waves_yesno/0_1_0_0_1_0_1_0.wav\n", "waves_yesno/1_1_1_0_0_1_1_1.wav\n", "waves_yesno/0_1_1_0_0_1_1_0.wav\n", "waves_yesno/0_0_0_1_0_1_1_0.wav\n", "waves_yesno/1_1_1_1_1_1_0_0.wav\n", "waves_yesno/0_0_0_0_1_1_1_1.wav\n" ] } ] }, { "cell_type": "code", "source": [ "import os\n", "import re\n", "\n", "# Directory containing the audio files\n", "audio_dir = '/content/working/waves_yesno/'\n", "\n", "# Create a dictionary to store audio paths and text transcriptions\n", "audio_transcription_dict = {}\n", "\n", "# Iterate through the audio files in the directory\n", "for filename in os.listdir(audio_dir):\n", " if filename.endswith('.wav'):\n", " # Extract the numeric labels from the filename\n", " labels = re.findall(r'\\d+', filename)\n", "\n", " labels = [int(label) for label in labels if label.isdigit()]\n", "\n", " # Convert the numeric labels to \"yes\" and \"no\"\n", " transcription = ' '.join(['yes' if label == 1 else 'no' for label in labels])\n", "\n", "\n", " # Store the audio path and transcription in the dictionary\n", " audio_path = os.path.join(audio_dir, filename)\n", " audio_transcription_dict[audio_path] = transcription\n", "\n", "# Sort the dictionary by transcription (which ensures both lists are in the same order)\n", "sorted_audio_transcription = sorted(audio_transcription_dict.items(), key=lambda x: x[1])\n", "\n", "# Separate the sorted data into audio paths and transcriptions\n", "sorted_audio_paths, sorted_transcriptions = zip(*sorted_audio_transcription)\n", "\n", "# Create a text file to store the audio paths\n", "paths_output_file = 'paths.txt'\n", "with open(paths_output_file, 'w') as f_paths:\n", " # Write each audio path on a separate line\n", " f_paths.write('\\n'.join(sorted_audio_paths))\n", "\n", "print(f\"Audio paths have been saved to {paths_output_file}\")\n", "\n", "# Create a text file to store the transcriptions\n", "transcriptions_output_file = 'transcriptions.txt'\n", "with open(transcriptions_output_file, 'w') as f_transcriptions:\n", " # Write each transcription on a separate line\n", " f_transcriptions.write('\\n'.join(sorted_transcriptions))\n", "\n", "print(f\"Transcriptions have been saved to {transcriptions_output_file}\")\n" ], "metadata": { "id": "Y6xhhB_ATQzW", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "160f138d-ad36-41d2-baca-77c9f290992d" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Audio paths have been saved to paths.txt\n", "Transcriptions have been saved to transcriptions.txt\n" ] } ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "WHKy_KEgRkYH", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "72c4369e-815e-49e6-88f1-7c49f848253f" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Collecting jiwer\n", " Downloading jiwer-3.0.4-py3-none-any.whl (21 kB)\n", "Requirement already satisfied: click<9.0.0,>=8.1.3 in /usr/local/lib/python3.10/dist-packages (from jiwer) (8.1.7)\n", "Collecting rapidfuzz<4,>=3 (from jiwer)\n", " Downloading rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m23.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hInstalling collected packages: rapidfuzz, jiwer\n", "Successfully installed jiwer-3.0.4 rapidfuzz-3.9.0\n" ] } ], "source": [ "# @title install required libs and import them\n", "!pip install jiwer\n", "import pandas as pd\n", "import numpy as np\n", "import tensorflow as tf\n", "from tensorflow import keras\n", "from tensorflow.keras import layers\n", "import matplotlib.pyplot as plt\n", "from IPython import display\n", "from jiwer import wer\n", "\n", "from tensorflow.keras.preprocessing.text import Tokenizer" ] }, { "cell_type": "code", "source": [ "audio_files_path = \"/content/paths.txt\"\n", "texttranscribe_path = \"/content/transcriptions.txt\"\n", "\n", "# Load the audio file paths and corresponding text labels\n", "with open(audio_files_path, 'r') as f:\n", " audio_files = f.read().splitlines()\n", "with open(texttranscribe_path, 'r') as f:\n", " audio_labels_text = f.read().splitlines()\n", "# Create a dictionary with the data\n", "data = {'Audio_Path': audio_files, 'Transcription': audio_labels_text}\n", "\n", "# Create a Pandas DataFrame\n", "df = pd.DataFrame(data)\n", "\n", "metadata_df = df\n", "\n", "# Display the first few rows of the DataFrame\n", "print(df.head())" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Rya-e-KYTQju", "outputId": "67c8db63-6353-40f5-aa56-bd3285cf030e" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " Audio_Path \\\n", "0 /content/working/waves_yesno/0_0_0_0_1_1_1_1.wav \n", "1 /content/working/waves_yesno/0_0_0_1_0_0_0_1.wav \n", "2 /content/working/waves_yesno/0_0_0_1_0_1_1_0.wav \n", "3 /content/working/waves_yesno/0_0_1_0_0_0_1_0.wav \n", "4 /content/working/waves_yesno/0_0_1_0_0_1_1_0.wav \n", "\n", " Transcription \n", "0 no no no no yes yes yes yes \n", "1 no no no yes no no no yes \n", "2 no no no yes no yes yes no \n", "3 no no yes no no no yes no \n", "4 no no yes no no yes yes no \n" ] } ] }, { "cell_type": "code", "source": [ "text = audio_labels_text\n", "\n", "\n", "charlevel=True\n", "\n", "# Tokenize the labels and convert to binary matrix\n", "tokenizer = Tokenizer(char_level=charlevel, oov_token='')\n", "tokenizer.fit_on_texts(text)\n", "\n", "audio_labels = tokenizer.texts_to_sequences(text)\n", "\n", "word_index = tokenizer.word_index\n", "print(word_index)\n", "\n", "# Extract only the characters (keys) from the dictionary\n", "characters = [char for char in word_index.keys()]\n", "\n", "# Join the list elements into a single string\n", "vocabresult = ''.join(characters)\n", "\n", "# Print the result\n", "print(vocabresult)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "0YXztnyueesT", "outputId": "ebc0d02c-0701-44fd-bac3-9dd3a261420c" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "{'': 1, ' ': 2, 'y': 3, 'e': 4, 's': 5, 'n': 6, 'o': 7}\n", " yesno\n" ] } ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "7aQkJNTTRkYM", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "11a1bf98-abc0-45cc-9e4f-4651b0cc7241" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Size of the training set: 54\n", "Size of the val set: 6\n" ] } ], "source": [ "split = int(len(metadata_df) * 0.90)\n", "df_train = metadata_df[:split]\n", "df_val = metadata_df[split:]\n", "\n", "print(f\"Size of the training set: {len(df_train)}\")\n", "print(f\"Size of the val set: {len(df_val)}\")" ] }, { "cell_type": "markdown", "metadata": { "id": "6ts1U5VfRkYN" }, "source": [ "## Preprocessing\n", "\n", "We first prepare the vocabulary to be used." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "huysjs_qRkYO", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "e7e2d236-b145-4364-8c08-394455f8965e" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "The vocabulary is: ['', '<', 'U', 'N', 'K', '>', ' ', 'y', 'e', 's', 'n', 'o'] (size =12)\n" ] } ], "source": [ "# The set of characters accepted in the transcription.\n", "#characters = [x for x in \"abcdefghijklmnopqrstuvwxyz'?! \"]\n", "characters = [x for x in vocabresult]\n", "# Mapping characters to integers\n", "char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token=\"\")\n", "# Mapping integers back to original characters\n", "num_to_char = keras.layers.StringLookup(\n", " vocabulary=char_to_num.get_vocabulary(), oov_token=\"\", invert=True\n", ")\n", "\n", "print(\n", " f\"The vocabulary is: {char_to_num.get_vocabulary()} \"\n", " f\"(size ={char_to_num.vocabulary_size()})\"\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "8DyXAkBRRkYP" }, "source": [ "Next, we create the function that describes the transformation that we apply to each\n", "element of our dataset." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ODBBRjudRkYP" }, "outputs": [], "source": [ "# An integer scalar Tensor. The window length in samples.\n", "frame_length = 256\n", "# An integer scalar Tensor. The number of samples to step.\n", "frame_step = 160\n", "# An integer scalar Tensor. The size of the FFT to apply.\n", "# If not provided, uses the smallest power of 2 enclosing frame_length.\n", "fft_length = 384\n", "\n", "\n", "def encode_single_sample(wav_file, label):\n", " ###########################################\n", " ## Process the Audio\n", " ##########################################\n", " # 1. Read wav file\n", " #file = tf.io.read_file(wavs_path + wav_file + \".wav\")\n", " file = tf.io.read_file(wav_file)\n", " # 2. Decode the wav file\n", " audio, _ = tf.audio.decode_wav(file)\n", " audio = tf.squeeze(audio, axis=-1)\n", " # 3. Change type to float\n", " audio = tf.cast(audio, tf.float32)\n", " # 4. Get the spectrogram\n", " spectrogram = tf.signal.stft(\n", " audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length\n", " )\n", " # 5. We only need the magnitude, which can be derived by applying tf.abs\n", " spectrogram = tf.abs(spectrogram)\n", " spectrogram = tf.math.pow(spectrogram, 0.5)\n", " # 6. normalisation\n", " means = tf.math.reduce_mean(spectrogram, 1, keepdims=True)\n", " stddevs = tf.math.reduce_std(spectrogram, 1, keepdims=True)\n", " spectrogram = (spectrogram - means) / (stddevs + 1e-10)\n", " ###########################################\n", " ## Process the label\n", " ##########################################\n", " # 7. Convert label to Lower case\n", " label = tf.strings.lower(label)\n", " # 8. Split the label\n", " label = tf.strings.unicode_split(label, input_encoding=\"UTF-8\")\n", " # 9. Map the characters in label to numbers\n", " label = char_to_num(label)\n", " # 10. Return a dict as our model is expecting two inputs\n", " return spectrogram, label\n" ] }, { "cell_type": "markdown", "metadata": { "id": "ReqsqF65RkYQ" }, "source": [ "## Creating `Dataset` objects\n", "\n", "We create a `tf.data.Dataset` object that yields\n", "the transformed elements, in the same order as they\n", "appeared in the input." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ZmCwCErURkYR" }, "outputs": [], "source": [ "batch_size = 32\n", "# Define the training dataset\n", "train_dataset = tf.data.Dataset.from_tensor_slices(\n", " #old(list(df_train[\"file_name\"]), list(df_train[\"normalized_transcription\"]))\n", " (list(df_train[\"Audio_Path\"]), list(df_train[\"Transcription\"]))\n", "\n", ")\n", "train_dataset = (\n", " train_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)\n", " .padded_batch(batch_size)\n", " .prefetch(buffer_size=tf.data.AUTOTUNE)\n", ")\n", "\n", "# Define the validation dataset\n", "validation_dataset = tf.data.Dataset.from_tensor_slices(\n", " (list(df_val[\"Audio_Path\"]), list(df_val[\"Transcription\"]))\n", ")\n", "validation_dataset = (\n", " validation_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)\n", " .padded_batch(batch_size)\n", " .prefetch(buffer_size=tf.data.AUTOTUNE)\n", ")\n" ] }, { "cell_type": "markdown", "metadata": { "id": "bvwBXcb_RkYR" }, "source": [ "## Visualize the data\n", "\n", "Let's visualize an example in our dataset, including the\n", "audio clip, the spectrogram and the corresponding label." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "WsKwBIiaRkYS", "colab": { "base_uri": "https://localhost:8080/", "height": 526 }, "outputId": "856f0452-bd3b-4695-d56d-1d438651622c" }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "\n", " \n", " " ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAHDCAYAAAA+xjI9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZ5gc1Zm276rq6pwm56RRzgEFEBIZkbMJxmQbvA4YY2PWGC/LLsaLsTGYsJjwYTAYTM5BZIGEhJBQzpNz7O7p3BXO96M1jQZJIDCW17ju6+JCXX2qzqnqmu6n3vO+z5GEEAILCwsLCwsLCwuLrwHyP3oAFhYWFhYWFhYWFl8Vlri1sLCwsLCwsLD42mCJWwsLCwsLCwsLi68Nlri1sLCwsLCwsLD42mCJWwsLCwsLCwsLi68Nlri1sLCwsLCwsLD42mCJWwsLCwsLCwsLi68Nlri1sLCwsLCwsLD42mCJWwsLCwsLCwsLi68Nlri1sLCwsLCwsLD42mCJWwsLCwsLCwsLi68Nlri1sLCwsLCwsLD42mCJWwsLCwsLCwsLi68Nlri1sPia8p//+Z9IksSOHTu48MILCQaDBAIBLrroIhKJxIi2uq7z3//939TX1+NwOKitreWaa64hnU5/bj8XXnghXq+Xjo4OTjnlFLxeL0VFRfz0pz/FMIwRbePxOD/5yU+oqqrC4XAwbtw4fvvb3yKE+Nx+Dj30UCZPnsymTZs47LDDcLvdVFRU8Jvf/Ga3tr29vVxyySWUlJTgdDqZNm0aDz744Of2AVBbW8sJJ5zA+++/z5w5c3A6nYwaNYqHHnpot7aNjY184xvfID8/H7fbzbx583jppZc+t49DDjmEadOm7fG9cePGsWjRotxr0zS59dZbmTRpEk6nk5KSEi677DJCodCI/T766CMWLVpEYWEhLpeLuro6Lr744s8cxwUXXEBhYSGapu323tFHH824ceNGbHv44YeZNWsWLpeL/Px8zj77bNra2ka02b59O6effjqlpaU4nU4qKys5++yziUQiex3Hddddh6qq9PX17fbepZdeSjAYJJVK5ba98sorLFiwAI/Hg8/n4/jjj2fjxo0j9uvu7uaiiy6isrISh8NBWVkZJ598Ms3NzXsdxwMPPIAkSXz88ce7vXfjjTeiKAodHR25bStWrOCYY44hEAjgdrs55JBDWLp06Yj9otEoV1xxBbW1tTgcDoqLiznqqKNYvXr1XsdhYWHxNyIsLCy+llx33XUCEDNmzBCnnXaauOuuu8S3v/1tAYif/exnI9pecMEFAhBnnHGGuPPOO8X5558vAHHKKad8bj8XXHCBcDqdYtKkSeLiiy8W//u//ytOP/10AYi77ror1840TXH44YcLSZLEt7/9bXHHHXeIE088UQDiiiuu+Nx+DjnkEFFeXi6qqqrEj370I3HXXXeJww8/XADi5ZdfzrVLJBJiwoQJQlVV8eMf/1j84Q9/EAsWLBCAuPXWWz+3n5qaGjFu3DhRUlIirrnmGnHHHXeImTNnCkmSxIYNG3Lturu7RUlJifD5fOIXv/iFuOWWW8S0adOELMvi6aef/sw+7r33XgGI9evXj9j+4YcfCkA89NBDuW3f/va3hc1mE9/5znfE3XffLa6++mrh8XjE7NmzRSaTEUII0dPTI/Ly8sTYsWPFzTffLO69917xi1/8QkyYMOEzx/H6668LQLzwwgsjtnd1dQlFUcR//dd/5bbdcMMNQpIkcdZZZ4m77rpLXH/99aKwsFDU1taKUCgkhBAinU6Luro6UV5eLm644QZx3333ieuvv17Mnj1bNDc373Uc27dvF4C4/fbbR2xPp9MiLy9PXHzxxbltDz30kJAkSRxzzDHi9ttvFzfddJOora0VwWBQNDU15doddNBBIhAIiGuvvVbcd9994sYbbxSHHXaYePfdd/c6jqGhIeFyucRPfvKT3d6bOHGiOPzww3Ov33zzTWG328WBBx4ofve734nf//73YurUqcJut4sVK1bk2n3zm98UdrtdXHnlleK+++4TN910kzjxxBPFww8/vNdxWFhY/G1Y4tbC4mvKsLjdVRgIIcSpp54qCgoKcq/XrFkjAPHtb397RLuf/vSnAhBvvfXWZ/YzLIx3FUJCCDFjxgwxa9as3Otnn31WAOKGG24Y0e6MM84QkiSJHTt2fGY/hxxyyG7CL51Oi9LSUnH66afntt16660CGCEeMpmMOPDAA4XX6xVDQ0Of2U9NTY0AxJIlS3Lbent7hcPhGCF6rrjiCgGI9957L7ctGo2Kuro6UVtbKwzD2Gsf4XBYOJ1OcfXVV4/YfvnllwuPxyNisZgQQoj33ntPAOKRRx4Z0e7VV18dsf2ZZ54RgFi5cuVnntunMQxDVFZWirPOOmvE9ltuuUVIkiQaGxuFEEI0NzcLRVHEr371qxHt1q9fL2w2W277xx9/LADxxBNPfKFxCCHEgQceKObOnTti29NPPy0A8fbbbwshstc3GAyK73znOyPadXd3i0AgkNseCoUEIG6++eYvPI5zzjlHlJeXj/j8Vq9eLQDxwAMPCCGyD2pjxowRixYtEqZp5tolEglRV1cnjjrqqNy2QCAgvv/973/hcVhYWHx5rLQEC4uvOd/97ndHvF6wYAEDAwMMDQ0B8PLLLwNw5ZVXjmj3k5/8BGCfptn31k9jY2Pu9csvv4yiKFx++eW79SOE4JVXXvncPrxeL9/61rdyr+12O3PmzNmtn9LSUs4555zcNlVVufzyy4nFYrz77ruf28/EiRNZsGBB7nVRURHjxo3brZ85c+Zw8MEHjxjfpZdeSnNzM5s2bdrr8QOBACeffDKPPvpoLiXDMAz++te/csopp+DxeAB44oknCAQCHHXUUfT39+f+mzVrFl6vl7fffhuAYDAIwIsvvrjHFIO9Icsy5557Ls8//zzRaDS3/ZFHHuGggw6irq4OgKeffhrTNDnzzDNHjKO0tJQxY8bkxhEIBAB47bXXdkt9+TzOP/98VqxYQUNDw4hxVFVVccghhwDw+uuvEw6HOeecc0aMQ1EU5s6dmxuHy+XCbrfzzjvv7Ja+sS/j6OzszB1reBwul4vTTz8dgDVr1rB9+3a++c1vMjAwkBtHPB7niCOOYMmSJZimCWQ/mxUrVtDZ2fmFxmFhYfHlscSthcXXnOrq6hGv8/LyAHI/+i0tLciyzOjRo0e0Ky0tJRgM0tLS8rl9OJ1OioqKdutnV2HR0tJCeXk5Pp9vRLsJEybk3v88KisrkSTpc/sZM2YMsjzy6+2L9PPpa7a3fj6dk/pF+jn//PNpbW3lvffeA+CNN96gp6eH8847L9dm+/btRCIRiouLKSoqGvFfLBajt7cXyObwnn766Vx//fUUFhZy8skn88ADD+xTzvT5559PMpnkmWeeAWDr1q2sWrVqt3EIIRgzZsxu49i8eXNuHHV1dVx55ZXcd999FBYWsmjRIu68887PzLcd5qyzzsLhcPDII48AEIlEePHFFzn33HNzn/n27dsBOPzww3cbx+LFi3PjcDgc3HTTTbzyyiuUlJSwcOFCfvOb39Dd3f254zjqqKMoKyvLjcM0TR599FFOPvnk3L07PI4LLrhgt3Hcd999pNPp3Dn/5je/YcOGDVRVVTFnzhz+8z//c8RDkoWFxVeP7R89AAsLi78viqLscbv4VBHXp0XjV9HHV82+nss/Qz+LFi2ipKSEhx9+mIULF/Lwww9TWlrKkUcemWtjmibFxcU5ofVphh8oJEniySefZPny5bzwwgu89tprXHzxxfzud79j+fLleL3evY5j4sSJzJo1i4cffpjzzz+fhx9+GLvdzplnnjliHJIk8corr+zx2ux6/N/97ndceOGFPPfccyxevJjLL7+cX//61yxfvpzKysq9jiMvL48TTjiBRx55hP/4j//gySefJJ1Oj4jUD0dD//znP1NaWrrbMWy2T37SrrjiCk488USeffZZXnvtNX75y1/y61//mrfeeosZM2bsdRyKovDNb36Te++9l7vuuoulS5fS2dm5x3HcfPPNTJ8+fY/HGb4mZ555JgsWLOCZZ55h8eLF3Hzzzdx00008/fTTHHvssXsdh4WFxd/APzInwsLC4u/HcM5tX1/fiO0PPPCAAHLFNzfeeKMAxKZNm0a06+7uFsAei2t25YILLhAej2ev/Q9z6aWXCkVRdst5Xb58+R6LiT7NIYccIiZNmrTH/mtqanKvjz76aFFaWrpbzutjjz22x+KpT1NTUyOOP/74PfZ/yCGH5F6PHTtWzJkzZ7d2//M//7PHYrE98eMf/1jk5eWJwcFB4fV6xY9//OMR73/ve98TiqKIRCLxucf6NI888ogAxL333vu5bW+77TahKIro7OwUo0aNEqeeeuqI93/zm98IQGzduvULj2Pp0qUCEL/4xS8+t+1zzz0nAPHhhx+Kww47TMyYMWPE+48//rgAxGuvvfaFx7Ft2zbhdrvFueee+7lt165dKwDx+OOPi4suukgUFRUJTdNy7w8X/v3xj3/8wuPo6ekRFRUVYv78+V94XwsLi33DSkuwsPgX57jjjgPg1ltvHbH9lltuAeD444//yvoxDIM77rhjxPbf//73SJL0lUWxjjvuOLq7u/nrX/+a26brOrfffjterzeXv/lV9PPhhx/ywQcf5LbF43HuueceamtrmThx4uce47zzziMUCnHZZZcRi8VGRAchG/UzDIP//u//3m1fXdcJh8NANsVEfCqqPBxR3JfUhHPOOQdJkvjRj35EY2PjbuM47bTTUBSF66+/frd+hBAMDAwAMDQ0hK7rI96fMmUKsizv0ziOPfZYCgsLuemmm3j33Xd3G8eiRYvw+/3ceOONe8wtHrYSSyQSI6zDAOrr6/H5fPs0jqlTpzJ16lTuu+8+nnrqKc4+++wRUeFZs2ZRX1/Pb3/7W2Kx2F7HYRjGbikZxcXFlJeX79M4LCwsvhxWWoKFxb8406ZN44ILLuCee+4hHA5zyCGH8OGHH/Lggw9yyimncNhhh30l/Zx44okcdthh/OIXv6C5uZlp06axePFinnvuOa644grq6+u/kn4uvfRS/vjHP3LhhReyatUqamtrefLJJ1m6dCm33nrrbjm/X5Z///d/59FHH+XYY4/l8ssvJz8/nwcffJCmpiaeeuqp3XJ+98SMGTOYPHkyTzzxBBMmTGDmzJkj3j/kkEO47LLL+PWvf82aNWs4+uijUVWV7du388QTT3Dbbbdxxhln8OCDD3LXXXdx6qmnUl9fTzQa5d5778Xv9+ceXj6LoqIijjnmGJ544gmCweBuDzT19fXccMMN/PznP6e5uZlTTjkFn89HU1MTzzzzDJdeeik//elPeeutt/jBD37AN77xDcaOHYuu6/z5z39GUZRcMdZnoaoqZ599NnfccQeKoowoCgTw+/387//+L+eddx4zZ87k7LPPpqioiNbWVl566SXmz5/PHXfcwbZt2zjiiCM488wzmThxIjabjWeeeYaenh7OPvvszx0HZHORf/rTnwLsJrJlWea+++7j2GOPZdKkSVx00UVUVFTQ0dHB22+/jd/v54UXXiAajVJZWckZZ5zBtGnT8Hq9vPHGG6xcuZLf/e53+zQOCwuLL8E/OHJsYWHxd2Jf0xKEEELTNHH99deLuro6oaqqqKqqEj//+c9FKpX63H72NS1BiKyV049//GNRXl4uVFUVY8aMETfffPMIO6W9sa9pCUJkp34vuugiUVhYKOx2u5gyZUrOxunz2Ne0BCGEaGhoEGeccYYIBoPC6XSKOXPmiBdffHGf+hlmeMr/xhtv3Gube+65R8yaNUu4XC7h8/nElClTxM9+9jPR2dkphMhaVZ1zzjmiurpaOBwOUVxcLE444QTx0Ucf7fM4hqf8L7300r22eeqpp8TBBx8sPB6P8Hg8Yvz48eL73/9+Ll2hsbFRXHzxxaK+vl44nU6Rn58vDjvsMPHGG2/s8ziGp/yPPvrovbZ5++23xaJFi0QgEBBOp1PU19eLCy+8MHe+/f394vvf/74YP3688Hg8IhAIiLlz54rHH398n8cx7PU7duzYvbb5+OOPxWmnnSYKCgqEw+EQNTU14swzzxRvvvmmECJrVXfVVVeJadOmCZ/PJzwej5g2bdoI/2cLC4uvHkmIr7gSw8LCwsJin7ntttv48Y9/THNz8x5dGvYXzz33HKeccgpLliwZYYO2v1m7di3Tp0/noYceGuHYsL/p7++nrKyM//iP/+CXv/zlP2wcFhYWXxwr59bCwsLiH4QQgvvvv59DDjnkHypsAe69915GjRo1wrf3HzUOr9fLaaed9g8dx5/+9CcMw/iHCmwLC4svh5Vza2FhYbGficfjPP/887z99tusX7+e55577h82lscee4x169bx0ksvcdttt/1NlnB/Cy+88AKbNm3innvu4Qc/+EFuIYv9zVtvvcWmTZv41a9+xSmnnEJtbe0/ZBwWFhZfHistwcLCwmI/09zcTF1dHcFgkO9973v86le/+oeNRZIkvF4vZ511FnffffcIV4D9SW1tLT09PSxatIg///nPX1nh3xfl0EMPZdmyZcyfP5+HH36YioqKf8g4LCwsvjyWuLWwsLCwsLCwsPjaYOXcWlhYWFhYWFhYfG2wxK2FhYWFhYWFhcXXBkvcWlhYWFhYWFhYfG2w3BIsLPYjZveYr+xYE5aeh64pbD/0TyO2v5OUOdRlYgiTS9sW4lI07qhYsU/HvHmwnqvyGwBy+19cvIT1qSqa0kUomDz6wTyuPvQl/tR8IPNLGnlxx2S+Of4jrivaBMCzcS+P987mL3Vvf25/mzMJJtjdjHvg3xD1cSaXd9GT8OGzp8l3JOhJ+nh03KMcu+YiXpn+AMWKhy49xkU7zqLCHWFLuJilU5/+zD6u6DqAW8s+AuCRaAHn+gboNeI8HJnC5ngZupCpcIZ5vnkytXkhwikXx5dvYGOsjDVPTkY9tJ9Vsx7ntB1HsXZ1PecftoTrijaxNGWyIjGaK/Mbc32tSmd4Nz4+t+1bzYeyqb+EjG4j35PAZdMo90SwSSYRzckEXzfXF23kjIYj2TZQhBAS6+f+ZZ8+qz1x2MaTuXbUi1y18Qxqg4PsGCzk9Lq1PPjuAn5w+OvcvuwIZk9sRDdlLi1fQpESZbRqEJBduWuzr8xadSaJjwopmd/JmEAfb24ezw8OeJtvBdaz4KGfYtYlKckfont9CY6QhDYlzjUzXuFCf++I46xKZ7i/fyG/Kn2LByKTGe3o5iRPAgBNGKiSslvfixMqW9Pl/DCvhTvDVdyy+kiEKXH7QX/hh8u+idzjoGp6Jy0dhTQeff8ex9+gxahXvZ97ntf0TOXRlXN5Y9HvqVe9PBIt4N6WBbR25/ONKas52r+eIiVO2HTyUmQ6N5WsyZ3XLIedce+dz1/n3Mt0h4OnYn5O9w4BMOqNixlf1c1JJWv5brBjn6/7F+XNpMJENUJFZdffrQ8Li/9rWOLWwuKflM3z/7zH7Ye6TAAUSeb+6ve/0DGHhe3w/jP9LZQqCf6aKGecuxsFk9HjuhjUvUhStha1PD/C9ngx7BS3axPVnytsE2YGt2zHI2fH+pdv3sblW8+m1BWlyBnDq6TpSgWQJYFXUplb2kqxkrWG6jNtvDr+peyB9sEaNqo5c/+uV3sBhZXpAj6K1FDrHmBNuJKZvlbcdo1Kd5hDC7ZxrHcDg7qH2Re/xDn+TYCHp0e/DqNfzx1rvlNmvrNxRF81Nm2E2P12yRLecE8iaag0xQsYTHloGiqg2B2lIxZgkq+Ldj3G+aXLUMpMwsbfZn81NtDLC+EZnF+/gsZkEYMpD24ljZKUqbQPINlNatyDmELiGHeazRkddefPwBcRtgAV/iGev+xxVqUz/HfriQTy4qiSwXbNRaZMQxESZ1Wt4lnbNFTZoMw9tJuwBZjlsDOrYjngHnHtgD0KW4BH++cR1+38MK+FrYlSRMiOsJtsT5ci0gqSCQF7ivLSEAD9RpxCZeS1/WtkFtcUbv3c87yxZB03nrAOyArhAiXGrIJWOgcCbB4qpUQd4gB3I21aAVE9e68ZwkQh+/exdcFDgAOAax/+Fqd/9y4Ath9xH99tX8B4x99XdB7hMliVtmN5Plj8K2GJWwsLi70yxt7NgOmgP+1ljEum1tHH/4x6ipXJOmYUdlDhCDOmood8WwyAtND4t/yVwGeLtB4jQ0I3mGTPCoYqm0Ys5cBnS+FTUiz0bmFtsgafkqTd0DgmuC4XCXsjNpGpnxJBn8V3it/l1YSbY9xpMmTFUp/uJ2MqpE0bmqkQMVyUeqLM8jYzxtHNBLubXxYtxys7P/dcduXTAupQl0mJsoI/h+YR1ZwcX76eN3omIEsCnz3N2kgFtxkLmOdtIGqqexSYETNJQHbtU/9/rPwAgI2ZJNeH6pEkwfpoBWPmtNCULkaymSzwbcUvpwBYlhyF5mpmqn2fTzHHBWXLSAuNAcPD5EAnkYyTGnsfq5N1eIJJDEPmksB21kSruLrsNR4KzfvineyFY/PX0ZQu5rFoHiv7qvFURkkmHLSl8kEWOMdG8NuTHJDXQshIsDbj5wiXMeIY+yJsP83ihIqMyRRPOy2V+fQnvbzSM4nKqgHaM/kcGtgMZB8Mpzscu+3/xwvvyv1bkWTurVr6hcfwZZjl+BIfsIXFPzGWFZiFxX7kq0xL2B+8k5R5cnA2ccPORcXv0aZlp643ZpK4JYOgLKNK8k4R+OVp12M8GZ1M2lSZ625gmj2GQ7Lhlu3cMjiKA9yNbEmXc2mg8ys6s2xKxFNDM3HIGqaQaUwW8rOS1/dpqnpPLE8ZzHPuOdK4OKHSrBUxz9VIjU2wVbMxaHhJCZVa2wDr0hWc7+//W05nNx6L5tGp5bE1UUK5I0KNo5+5zmYm2N27tb0/Usolge4v3EerHqPa5s31d7YvxGXtBzLa3UtbKp+fF2cj+GW2L3dNP4/7I6W0ZgqosIfwy0mOdLdzysbz+Gn9Yg5x9pKn7H6ufysJM8MGTUJB8Ku24/lD7TM8OjRtxKzH/0Xk0u3/6CFYWOw3LHFrYbEf+WcTt7BzilX6+9ee7q2fLj2GT7b9zQL680gLDYekfun9e414LnVib6zLpJhq3/081qTTe4z0fVX8ref2Rbixf1wuKrpNizNW3b8rjV3SevAXTsf5sjweC3CmN8KzcS+neGKEjMTfRVB/FVji1uJfCUvcWljsR/4Zxe0XZX8KKYt/HP8I4Wrx5bHErcW/EpYVmIWFxQi69NjftP+wsL0nUk7CzHB7qOarGNZn0m/Ec/9u1WNc1zfp79rf/jgngA/T2j63/UnXzL/jSEayTYvz/R1n77a9Qfvb7p2NmSQRM/mZba7vm/g39fH3YHjMmjBIi08+M0OYuX9vziT+7uP401Dx370PC4t/Bixxa2Hxf4gZK3cXDJ/mpoFs9DdhZgByP6YbM5+Igp90zeTDtMZJ248BshZYAHeGqwB4NeHgnkg5AN/ryBb6nNFwJADf2vZN1qTTPBbN+0Li6tP8teMAdugmrel8encRn4/HApzddPiItv1GnM2ZBNu0T/7f/hkie1U6M+L1w0OTuHmwHoAnh6byyOKFufeejXtZnFC5NVTLzYP1LEll82OXpwweGirkpYSTh4YK9/lcn4+7WRGp2+N7S1MmS1LwUsLJ9X0TubpnOreGarms/UAuaz+QRZtP4KWEk8vaD2RNOv2Z/TwSLeCO7iNGiKJ2Pca3mg8d0W74YaRAjbNNi494b3Mmwa2hWhYn9j2SfmuoFoCYmWJNOj1CoEXMJGmhMVb1UOCMEzI+GdsPOuby87aTeSyaxzU9U3f7jD6L4eP8quM4WnRpxHvteix3rwJsjJbxVMwPZO+bmwbGcMSmkzi/ZSHf65jHLYOj9rlfgGO2HL/btpsGxrA0lT3vXf+udr2OixMqfxoq5sC1pzPvg0u5pmcqH2dM/qd/Wq7NyrTIfc4nL//ubv0sydb1ETNTI7bfHf5y3gZ7cqOwsPhXxHJLsLDYj7TrMSo/o7jm49mPfe4xjvRuBOycvPV0/lD/V8aq2RzOSfZPKuoXBdZz4aqL2HTQwwD8tXs25/pe5fvBNkJGgoZMFVVqtjLfZ8v+sJ5a/DEAb058HnAw3RHiqVgBv2xcyOyCFl5qmYQkCSYXdeGQDSZ4uhjl6GWuoztXMBQyEryXKqRTy6PMPcS/N53GWH8vD4Snc6p/DWNVD2d6I5zpfQv4xJP3ocgUXuuZSOeQn2TSTn4gTnjIja4plBRF8NozHFuykSvzG/kwrfFfLScTSrmo8oXpjAXQTJkbxj7Ld9rmc2/VUl6Z2Z5zGTjFkxV/R7ubc9fnjIZFVLrDdKf8fNRcQ3lhmO6Qj6kVnUzxdzLN3YpT0jjGneb2UNa1IWWqfDfYwbpkNQcGRxYPDRdWzXcOxwtSHO/elHv/Ws1HtWOAcwpWsCw+hm2RYn4y9A0MU+bsypUc5dm6WyHbtlQpg2kPaaFwbe8UXmufwOySVqb523JtPkxrzHFk93PKGupO+6nZq89koCEfR3mcTIcH06ujuAxGl/USzTio8YVydm0L15/KHeMeZVmiHrecpl/zAfDwUP1u/qsB2YUmsq4D4bQLY2d/fxoqZpy7m/bEeG5tOAKAt7rG0tvv59RJaxjn7ma+qyF3j27OJAjKJudvP4fXJ7zA68kyzvRG+GBrPVPrRuYkV9q82CU991qWBCmRFZlbNRdrhyrxqBlUyaQ9EeSNN2ZwtwSHHb6G0e7ezy30+m7Vu7ttuyJ/U24GYnjMryYcfJSo42j3Fl5KOLmz7XCSusrk/G7unTbseqAyp+iTzz1bYKjQa8TZtvChEX0MF+ABeGXnCFeMHi0AfLb37ajXL6bxqP8HwHfa5lPjGuDawi2fuY+Fxb8KVs6thcV+5NmGaTmDesiKok7dxTynspuJ/t4M7LOCRmV5yqDSlsyJ5SYtRlTYcgVLV/d8Yih/2o6jsj6tO3kkWsA74fH8unzxbvZVexx33EtjupiAkqAhVcxfN85iVm0r67vKKQ0OcUTJVqrt/TzSMY9tzaU0HXsfDw0V8mzvjKwYMVRsksmzY177zH6G/W+HeSyax9uR8bzx/jS8oyJkPs7j1996CFXSuXHHcRS4EjT0F1BXMMjsvBYArihYxbk7TiOpqzuF+r6zOKHyWmQKMcPBHys/4IRtx3Jk0Wae7ZjO8eXruSq/gcdjAaKGK+cusDGTHPFg8UV4NeHgoZ6DiOkOTiheR7/mY7Szm6NcXTTqNpq1wpzpf5MW40/huVxd8DHPxMs41zfA1A/P4b0D/h9XtB/Ne431/OXAe5nj2HuUtteIs11zsTI5irXRKgbSHnRTxi4b/HvVy8xywNjFl9K06H4u75zNH8pXjtg/YWZYl1GY51Soe/nbNB133177SpgZlqR8HONOowmDdRmDp8IHUOEI8fbAOJ6sf2NEW7dsZ006zaPhuSz0beF4d4p3kjLznVru7+DspsPZ3FfC2jmPfuZ1bdJiJISS+1wei+ZxrKcTr+TYrWix7tVv8+RhdzHLkXXmuDK/MWc7B9ko7hX5m5j49qU8Nf/uL1X4N/xQO3v1mayc+ThpofFkrHTE3/twn7eHaiiyDbHI3YEsSftkAzf+/fM4bcxabixZR6sewy1JFCqeEUWaVs6txb8Slri1sNiP/NeGEznSu3E3y6hbBkfxx40H7zR8z4pPn5zEL6eQJZOFnyqwvztcQUqoXJHXTL8RZ0PGx6Euk9tDNfwwr4WYmeL63gO5uTQbjT143WncO/7hnA3ULYOjeKTpgNyqX1+GXQuKhoX4Ni3OH3oP546KFVzXN4kLgys4fe0lpDUbP5r49ldq5fVpJi8/l1Vz/0S7nubIV67EVxpl3eeIoL2x6+pV1/RM5YrCDyiQXbsJo8djAa5+6yyWHXfLV2Z3NVxx/2rCwTHu3VMXeo04dw7O4fqijcTMFPeEJ7J6qJqlW+u57sAXvtTU9HAEfW9jGRafTVoMDYnX4+O5/YkTeeT8W79yD9UzGo4klHZzVe1rHONO5xwmGrQYxz5yFVqBTtOJ936pY+/6wLcnjtlyPNPyOlg9WMXjY//KCRu/xeT8LgbSHmYG2jgjsPpLFdF9UceRPTmE7Mlq7vyWhVxZ+jrnr72QC0ev4ATfeu4dOJgxrp4Rf2vf65jH3bP2vOiLhcXXESvn1sJiP7K4awIzHCNFRMRMcoJvPeX5kdy2oBJnc6oCn5wian7yA7c5k+DDtMa3/A0kjGwE6YHI1JwwuSSwnXWZFD/rOpQ8WzZC/Ei0AFUxRvibjnN2Mr2ok2LFw82D9SxPGbyZ3LNH697Y9Ud+OLI2VvXgt2VzFA/07KBO9bL6gL+y8cBH/q7CFmBqSScOSaVe9VIzqpefjn/983faC7umCNxYso5ixbNHcXKmN8LDR9/Nk9GvroBtWEzuKmx3zTktVjws6R3N9X0T8cpOvhvcwn9XvMiUUR0c52n6Un3uSdgOj2VjJpmLpm/VChirevjtskXYpkR4LTrlS/X3WTxZ/wa/H/04Y9QBWvUYP9h6DgDXdZyAZMLJB3z8pY/9WcLWECbHl2xAweT1CS+Qp7j5Xt27/LHyA2RJMM7ZxVvxsV+q30ei+17oFTGTOCWZqKmP2L6rsF2Syv5d17v7OfXt7/Pw9AdoTBZxTevJpE0b7wyOG7HvB521X2rcFhb/rFji1sJiP/Kjujd3s8kKyC4Spo2Ty9eyLpPNfz3GleCHeRuZ5bBzpCsKDEdzTO7vW4hXdnKwN+slumtOoVu2M9XuxCYZHOTZzhVdB/BOeDw31D8zos/j3amcF+hcdwMrk6NYEhv/lZzjjSXrsuewh6jj35NiZ/Y6GcLk4OKGr3xRhE8XuA0X8s13yvxwZ0rEV8WuqRnAbg8Gb096jut25na6ZTt1qpdR3v4vHYX/LB4Nz8kVfN3dcSgANy18gkOrdrDIt/4r7w9gqt1Jveql23DQvi0rDJc31fGLM55gWfeei/n+VhRJZqKzneuLPxHP5/oGaNBiXFf5IhW2EA2pvYvUvRUkGsLkNG/7CEePz9rn7WQR/xuawQu7COnr+yZyY39WsDZpMYrkBFXqAE80zODwiVtYnarm8uK3eLL+DS4ueJ9CRyz3ma1Jp/cpl9/C4uuEJW4tLPYjw/mTn2ZIONiWKOW8NRfxzabD+Fn3ATwfLwGgXc+KxDKbl0qbl63h7PbGTPFebbvOyF/JAY4EZfYIm0MljFP3bq/kl9I81TGDY33r/pZT+5sJGQmWpLI/xrtW4e+NiJnMRTQfi+Zxa9lHALyQ8LPQ+9mFNb1GnCYtxv2RUl5NOLi+byLvJPf8dTgsSpySxDtJmV4jTr8R58b+6ft0Xpsz2fO6O1zBZe0Hcme4iqUp82+2zfo0Pyp8Z4QAb9VjLE2Z3B8p/VL2bsPi/bFNs1idyRaZtYTzgGzE+syCFbmUhISZYXnK4NZQLfdHSnk8FhjhMvBFWJdJ0aTFeDbu5X/ajsNRmqBJi/HC/Ds5399PX3sw1/aeSDn3R0q5ousAzm46/As7JXyahc7Mbnnuv2w/kUn2bF78cJrPzYP13DQwhjXpNJe0Hszd4QrKlTTfaZu/2zGVnSv4fTq3/c2kssf86CJliL82zuS+xvlc3TOdZ+NeQrqbllQ+p2xfRJ3qZYLdTYUS4z8mv8gPS97k3fC43EzKBLvMaXmraNGz53HRugv+pmtiYfHPiCVuLSz2I/1GnNtDNSxNmdw0MIbHolmxkDJVNFMhnbHRGs3jua1TOcTVxlMxP1e1nEqTFuORaAEhI8FA3E2XHuOjaB3XdB67x34WOrMV2JcG13JE2VZ+3buA6/om5aI/u7IxU07aUAjIe4+0tu60oLqqewZ/Girm6p7pe7Tq+kHH3N2sqoZZktrj5hyqJNOcKWRLppQ7QzO5vHM2izafwA394/kwrXFtb3YK3BAmryYcfJAKUmoLA1mngGE2JSs42v3Ztl7Fioc61ctsVzPHuNPMcDfjk1MsTxm8lHCOsN96MpqNoBUqHg51mRQrHgoVD9cXbfzsE9rJBLubhU74brCDuyqWcv+OgyhSktSrXkJGIuc+ANnc5adi/pxl2zCfFqcxM5WL8g9TpNhGOHEMuzc0pYvQgMvaD+SU7Yt4PBbYp3H3GWlWpTPMrG7jCJdBux7jpNr19BpxHo8FRuSBu2U785wKV+Q1M8bRzXh7D2NV+wgbsX2lWcvn3eQobm44mkjGxQn1G4gKGxPsbjRh8POFL+XaXhro5JJAN7eWfURKV3HvvIeXpwy69NheH5J29aIFcnZd6zLZz2LXKOv2UNFu+2umjZN8a5nucHB/9ft8N9hBpc3LvVVLd2u7N25rP2qP2/sMP3abQSJtZ3u0iJSpMt7VRY1zkEjmk4t+Q9exzHZ0MN3h4Mi8TbTrMXqNOP/RO5uUUOkwAsz86CxOqv37RNctLP4vY4lbC4v9yIaMj3GOTl4ZmsbVBdupVbNT58VKjPOKlnLnrL9wx7hHmViRtdfakKyk3tuPR5b47Zaj+Es0K07/o2sRBfYY6/rKPtNP9L7IFBZ6t7AxUsZ8zzbWDFUCI8XSH5sX4rVnWJbce9Sr2ubl4dp3uLn0Y/7cPo8jfBtZnS5myopvclX3DM5vWchxW4/jrZYxVLjCXNU9g4nLvsWHaY2mnRHK7enSz7w2XtnJ+f5+zvaFuLZwC38oX8lrE17k2sItzHGoaELhur5JbNNSHONOc4w7zUxHL116jBu3ZUX+raFaPgpXs02L75OwGnaWOMmTYJYjK9AK5DgJ8YlL4qftsP4WFEnmirFv5qJseYobVVJyglOVFMbbe1jgzla2X9Z+IACpT5X9emXnbsv4fq/t6D32eUPxeqptXv5Y+QGTA51U2EK59xYnVJ6Pu/c4PT4slH9Q/iYALbqbOZ5sCkxQTuwmEIcpVeJMtTtRJSWXp9y6l8jxYRtP3i3Ce5InwYX+Xo4s28rxpRs4PfhR7lwfjxVzib99j8e6o+6p3Gc1z6kQNmUuaTp5j7nkw6lBV3XPoF2P0arncVX3DLZkyoDsg8zw38jM4rbd9r+mcOuIHPYvwxjvngv/XhqcRplviAMrmpkS6OQb3gHWxasI2BKcU/mJe8WivA38W8NZQDZ9ImrKnLvtbF5omMxdHYcRNVxIkiCk/d9cDtjC4u+J5XNrYbEfCZtuDnL24JSz0ZR5ToVn416aM7Wc4dtApc3Ls/ECnh/zKgD/lr8SFYk8xUMiZeeDcD1Tirt4t3E0Tx74R/7cejBM3r2fdj3Gu8ka3hsYg5kvc2HFMo52azjL3+SdpMw0+yfPtQcXN1BsH+I0byPw+T+En9hraUyZeQ+VNhfPxPN5PTSZ20c9nivG+qC3jnfj4+lIf5Iy8LdwU8kaLu+cPUJUDAuwX49/GgBTyGzoKEepEdwWGs2V+Y1fuJ9hb9K/F3vKBT7T+0kx4a62YklDzTk3LE6oTLSHdvNJXpxQ6dTzuLL0deCzbapuKF7PrjGNuc5smoxT2vNPQYmSoUTJXo+LV17IsaM34Qmu5mi3RsTU6dTT1H3Kn3dPbgLVe3GS8KgZTl1+2W4esAAhzU3KVHkjNol5zmyaiSEkTMQeP51PX5dGPZ9zS1dQZRsCPISMBF7ZMSLt4Aj/JiptXu4P1XJi8GMWOrPOETMccVRJ4v5IKecWfrDHsf+t/K5s9R63bwqVUOULMz+wnVJbBEWS0UyF7wc/EdnbtDgDRhVuW4bn425O8iSYYHdzetlqVnrqeHvrWN53j+XKsW9yX+vBUL7HriwsvrZYkVsLi/1IRii8lajkzV2q64uUIRQE+TuLiI50fSJ+ihUPYTM7DV+WN8S2UBHHF67D7tApVQyCVeE9WjHd1r8Ap6Tx29qneLZ9as4sfqETFjj1nNUUZAvArshrJk/54hGeOtWLKimc6Y1wR+U7I1wGbhv3GFflNzDe1QXAGb4vV8m/K5/2XR3mCFd2Ovkc/zoKglkx+GWE7b5wRdcBAJyw7VhGv30Rh208eUQkfDiXdm+RzS/CQzVL+H3vEdzYP46EcPCb3sNy761KZ/gwrfFyZBqrYzVf2H81YWZ4JZ5VPQ5JzU3Nn9FwJIs2n0CXHmPQtKFKCusyKU4YvYF53gaWxcewJJUthPy0sP2i/KDyLe6Z/TD9Rpy7wxXcH8lG9w9edxqLG8czw93CA2sPzKVpJEwHbyb3fJ9+egbjzz0Hcbp3iKiZjdKuzvj49+7ZuRX+4JOix+uKNuXSLH7TegzHbTiXQsXDQa5G5jo+/3PcnElwdc/0L3Tue6N30E9PIpvjHDcdhIwEm0IlIyLQfxo8kD88cwIXli1lgbM/d88V2aJ8p/hdfjL7dbYOFXP9x8fTsq10j6uwWVh8nbHErYXFfqRYiRJUEsgIEmaGBi3GHIdgrnsHjp3RM6/szC2JC3D34MH8vuUoDipqJK3ZCCpxRhf0szxVRDTmyq1rP8xFrQv4oLeOMfZeVARlnmx0brj4SpGyRVF/6Zub22d4edxd8z+/KJ92gRgW3f+v6SAAmjR5t7Fmt391hVUPhGcxlHDusVjr09Xqe6pe3xN/GirOCdo3kwq3ln1ExEwyL7+JO+b+hcuql4zwuB0W+MPX47FoHrNXn8kPOuZyfstC3knKbM4kdsuZ3Rv/XvIm1xRu5RRPjGJ7NLf9d52LSJgOzstfhip98c/NLds52xciLUzeTCpcsPZCIGvFNa+widWZQp4fmg7A4+HZHOTbwUmeHpyyxvfWnLvHYz40VAh8IuybtNhuSwL3G3G+0zaffiPOi6HpHOoyeTdZxq1PnoRHzub5dm4voqogzCJ3B9Wlg9yyKrs09E3vHs8BjsE99v3jbWfxWDSPZ+PZ6z+0Mz91+D7cni7l2wXvkzJVftI1M7ffp5e+PalkLXYlez0n2N273de7siSVPeegbH6mzdiuHLf1uBGvF20+Afgk33pCRTdtvflsTpbz8uBUHohM5pCSHbn2z8fdPLpiHtMO2cbi8BTaDJkbuo5lYybJhmQl3UaA7wZaOL1sNfNrm/CURwk6vlxxn4XFPyuWuLWw2I80ZIpRJZ0rClbxaLSaRyMHsDSlsj1TyjYt+yPba8TZHC7JFWY9sW4mDWsqiRkOfj7hVVQMWsJ5LI2NRZJNbtpFpIaMBBXOMIeWbuepyCxu6DqGhG5nSQo2xCt4Pu7m9lAN3YbCbH8LixPZH+4ftJzE47EAPcbuP4K3DI76wh64u/La1AcBuGDthblI4a7kK9ljL9p8Atf1TeLyzmx07dm4l/sjpdzYP46XEs6c8E6YGe4MV7EqnWFVOsPGTJLDNp6cPX/dzcmj1nPssu9zZuMRI/r5dLV6QgjSQqN9Z+FRux7jqZg/V+Q3nAvqltOs6K2hVY/lIsQB2cUB7iZSQkWWPju392xfiJUzH+eOihU8VLOEQ10mE+xufJLO47EACXP3nOldr7e2S77tlfmfOFrsCBeyLD6G6XYbi1v3buO2PGVwfstCzm9ZyFGbT+SbTYeNENZtusqA4UXbWV3/UsLJ9lgx49V+ri7YyLpMii3REu5qPZTNGpSoEQxjzz8dwykXW7Xsdfp+45kE5ay7AGSF5Op0kNMLPuIXXUcywZO1OIubds45+V18SpK7eg5HeHU6w35USaa1Ox/vahe3DI6idnTPXlfUWzLlGbr1AKd4si4RJa7oiKLH7wY7mGB3c03helb01QLZlI5dF0oACCoJ4plPZkMiZpJbBkft0f1hoTN7zp+1gMfwg+Ocj78BQNeQf+Q1q/yA5+Nu7g6PYrazk1He7DV8u3MMGwdLeWdgLNM9LTRning27uWNyCTUQYVCR5y3np3Fe4kxrOsr49aeI1kVrubO1sP401A59zfO59j8dXgcGXTT+qm3+NfCuuMtLPYjz/TM4M6OwwnILn69+ljuXzWfB/vmc9Pmo3k3kZ0uPWHdhYzyDfBw7TskzAwlxRFEcZpXd0xgvL0bp6xREYjwassEtISdDUPlLE1lBdZWzcFoZw9jnV083TiNBcFtRNJOHuw9GIArPjibx9pmYQqJIz2b+X89CwAIpd0M6t7d8hYBrsxv5AiXwbW9U/jTUDG3DI7KTcM/HgvkIqDD08JpoY2oyM9T3KSFRqkvmkuP2JXh5UVfm/Ai1xdt5A/lK7m6YDuneGJcEujmhY7JFClR3ky6OXDt6dwTGcs3fFsYp5o80L+A/zcwn7cnPce0D8/hmqKlrBqsZtshD/Lt0iWf+VlU27w4JJVKm5c8xU2lzZuzavvTUDHundHQM70RPpj21G55o8e405ziifF4z+wvZbVVp3o50xvZzdMWPkmzGG43HF3cte28kmaeapnG60kX6dTeo4vznAoP1SzhtspXqfUO0pfy8vvuo9icSbBNizPLYeedyARunv4ky1MGfbqfWvcA9aoXGYkL1l7IuvYK8hwJliXGMKh7+cGkdz7z3IYLwH5R8yLFioer8hvQhMF9kfEc7dY4xp1msqeTSwPNAHjkDNcVbcr5L8uqSZEvzg5NwkzZGBqnszle9rnX9Iq87PGCcpoHqt/b4/28LmPw/tSneScp81Dv/J3bstdXEwYfJ2roa8vjW82HsiqdYXPGTnOq4EsvsTzsPfzhjCcAuG7iiyPeP9c3wG8bFzGoe6i2eYnrDmTFYGBrAYmMik0yWBYdw1865vDbhqOpcg5SNLMHzVQQNrhz0yGcXrOWN9ZPoKG/gKaeAm549ySCriSDupe+AR9rl43ZbVwWFl9nrIIyC4v9yPaeIux2HUbDMWM34ZA1tseKiYbcbIhX0u7dSvz9It6qyoPq93k+XsKMwg7WSYLBmJtew0upLco5ZR/yH20nMWtMMzHNwffWncuEoh4yhsKGzjLOmbAKm2xygqeJ/+o9ASEkXKqGw6XhVjXeik/gEM8WQqls/uIPq9+k2hbiswqSssVIAL1AVjRkC6E8nNl4BMcVrmeWoxeHpKKJkV8tDknl1vrH2ZeCtU/zwbSnABVIc8y0p3ZuzQqGn5W8mROda+c8Crh5bUJWPHyeHdjeONsXYlU6s8/5pE/Wv8Hw9fh78enoIsAB3iZebJnJ1cZpFOV9kq6wt2V78xR3zqrq2t4pIwrz7qpYvvNfCvOcvbBzCV8dg7Rm47ixG5nibkcTCquitUz3tQLZh5tdi+E+zXznJ/ETVVI4yrMZyIrE7wYbc8Vd9Wofu957/zvvYWY6wmzI+CitzKYh1LgGclHyXZd+3hOfFqJNWiz3eQ6nKRzqMhlX+SLgzYnxdRmDrpSfuVN2EM64UCWTt+IT2DZU/JUVZZ3iibEklS1+HF4Z7rTKj5nuzF7T5lg+hqZgeg2EkGgbyqM/6eWYsk0EbAnG2Lu5Nzyf5UknmlegbvBTMin7GaTTKmZGAUlwXsUH3LrtCAKBBP9z4MPAlV/NCVhY/BNgiVsLi/2IoSvEU9k/u1+VvcM94cl0pQKorqwQey0+mpPPfB+3kqFdjxE2KmiO5ZPWbcytbGHQ8BI1XSiYnDhxPQomSdNO44pqVvR6ceUn+c2srHPAs2IqL8drEAkboaibnridSw54nw3R7K90t+GnZSCPJi3GAmeCTVr2B/57HfMwhMQfK/e9SvzxUW+OeH2ub2C3Nn+rddKe2FsV/q7cHqrhL60H4FY1flf/xD4VXu2pSG9fuKp7BmnThkvRKLOHGe/o+rut1FZsiyJkQWZ1Htrcvtz2fenvkweVz8Yhqfzn1BeosIXIl1NEhcqz3dMpcQwBbdyw6TjOnPPoPh1recpgnvMT0TlcqDbV7iTzqUnE7IOJh43pCorcceyyTspUmeVrIWFm+K+O43m49p196hegRfdTp+6ePuKTR/4E/mVwHl5bhjPz3ydsulmfruBPW+ehaQp/Ki/mQv+e7bu+KP/28bkU+eK8M/lZAEbZeylS4oCL3qgXWRFIXo1EzIHmUBhMeyisjrImVs0H4Xr0Xhe2HgWjQsfwwtp4FcGiGIXeOJ1hP7pLYdDwEl+fz9zDN9Jn+D9zPBYWXzestAQLi/2Iw5lB6c6Kq3eTBTy4bR4b+0qRJPDY0rwfGUOeGueH+R9z9+CB5NtibF1bTSzpIF+Nsyw6mpcHp9Kp5ZExbazsr2Gqp42KAzpR/WmSfW4yQuGdofFE2/082H4QrqIE7PCgDKhEdBcf7qhlce8E3hmawNiSPhr1AH+NjsEnZ7ii6wDy1ThvbBvPwvWn/l2uQa8RZ/6607iqewb3RMpzXq5/Dz5MazSkiqjwRtAMhd90HjOiWO+rxBAm73SO4cjARuqdvbSl8nk+NOMr72fYMzZuOigf1U+qLs3YvL7P2evLM93RyROhOTTq+QTlDFOCnTQnCvhJ10wS8d0jyntjwNw90jocMV25B4/lbVqcZ7ums6hoI6aQWNo3igdb5nHr4BT6kvsWKW/XYyTMTC5C+mm8spNtWpyEmeHG/nG8sG0KQzsf8g529vDH5oUYGwLMqW7lSPfnu2+khZYrpht2n9iVBi27GEoy7qBz0M8tg6O4qHUB70XH8VpsEu8kZZIpFSEkbDYDYci4HNkZl8X9E9k+VMS63jLqJ3WSrNVwt9nAadAazwdglK+fU+vXUZ4fwRQy7skhUobKn9oP2qfrZWHxdcEStxYW+5GgJ4lRkuH+SCkvDM5ACBga9FCWN8SKvlr6Ul56M35u6D2IxzfP5ExvBKkozbyqZkodERyyzvZIESVqhMGMm3JvhOd7puFRM9hsJqPGdJMyVWqd/eTVhFhYtIOAJ4nuEXjGhJElgerU2bq1gtdax3Nc0XpG2bLH8Ek6L75zAElDRbEZDMTce1yF7G/lhVg9p1Supd7Zy4u9U9kxtPsKUF8Fz8fdXLLmAjKmjXpvPydWrOPAYCPvtIz+yvsKGQn+q38KRZ7s9QoqcWZ6W6hz9bE0ZfJItIBHogXcHa7Yo2PEvrI8ZfCbniNYmjL5feORXFyzjEl1nbTHggA8FfPToGUFXe8ubhCftdDHpxkuMgwZCRYnVK5tO4kXt07mldA0wqadQjXGtlARrzw9D1nOnluXHuMnXTM5Yduxe3S/6DXiHO/O5rVGzORuRXT19l7eTCrc2D+O5+Nu3kwqXNt2EgDfD7YhS4LusJ/6QD9pYUNVDJakYGnK5PyWhVzTMzW3gt2wxR3Ac7EJ9JuZnFPInhwygjLcOjiFp1qmMbaslwpXmG49gFNS0EwZzW+SMmzs0PwsT322K8VWzeAnndn89j3NEDwUnsuOcCHfmLKa705+n7vXL2DzYAlJw85b/eP4jx0nI0wZI6pmRa0nQ7jbR1lwiK39xSiSic+ZZpy/l3H1nQgZlEGVC8uX4rRrOGSdGe4Wan2D1Nj7SWVUYpqDas/uue4WFl9nrLQEC4v9yCElO1jCaB5oOYif1b/KL8te44TV32FWQStPfzSLaxe+wCWBbgAW+LYC8N6C2ymzeXkzqVDkjbOst44CJcYPy94A4LI15xF0Jzm8ZjtnFqwgZaqc6GnloMnbKZLTJEw7Sul2vEqaf8v7mDODH/KLplMZSHgY4+imTvVydtmHXNV6CobPoCsVQE+pmIbCT9tO4qj8TcxytnxhH9U90WvEWRYZTZkzkvv2CSVc3B8pZW28ClUyiBkOXIqGW85wSf6yEd65fxoqZnOynBuLVxMykxQqnlz+5TU9Uzkvb3ku/eEkT4IfhV18ZK8iz5mk3BPhkOBW5ldl/XaXpkzWp6o4y5ddDezdVDHHukMjrJ+2aXHCpp05jr0XbPUacbZrLrxKiv6Eh04tj34961OaMlVG2RLMd+6appGdmt9bbuxTMT+ne4f4MK3l+n027qVUibAyOYpV/ZWcX2hwWuUaVEnHq6YpcUZp0mI82HUMLzrixHU7AykPx5duYJF3I+8lJhCUN3D/4EGU2SNcEtjOkpSPt6MTuDBvGY9FZnN90UYSZoZ6NcbiRB5HuJyETTe9CR/5gTjdKR9jbBq/jVTzvfp3ueWtM9Cb3fwyczKbp63kuOBaflOqoUheNmeyiwoctflEKj1hWmN5PDD2LyxLVvHH1pMpcw/xl7q3c+fbqeVxUWArqrSVhc6sI8ZthopmZHNyCxxxzh23kguDH1Fp8zLq/YO5VT6KaYEOflT6xog0kpTI5mdf2zuFrlSAItsQppAAuLpjEfdXvw9ko6ir0hWc6YXzg6vwKSlO9W3kmegkatV+vLKTd6Y+xiLlG5xUtIZuPcAdTYcxt6iZQ/xbOMmz+9K+U+1Ozin4gL3FjVqT+fxy7It8nKilxt6PNmTnkPFrKVGH2BgupXMgQJ4/QX/YTsCVIplWsQfT+NQ0jd2l9Nl0EikHE6o7qXIO8tDMIEXuFCe6h+io+ZC0mV3J75zC5WxNl3PZxPc43LOFf9vyzb3evxYWX0esyK2FxX7kUN9m+oc83Dv+YeY5+6i2eZle0kGtcwBJkzlnZ6EOkPvxHLYZ2pIuZ5Jqpz6QtQqa75RpyBRzePU2esNejs1bi1PScMoabllljkOl03BTZg8z1tWNKmcXb9iSKeMbZavo7wjw5tAk1qTTnO/vZ2N3GZPGtjOYdiM0GZuqc3j+FsY4urmz93CO23oc1/ZOYZsWz1k77cq+LHcrAx/3VrCkZzQrQnUUOOJohsLaeBXHBdfxu7LV/LHyA24t+4j/Ll7DL9pP4ob+rM3V0pTJ6lgN1Y4Bfjs4jiejY0kLLVdYdG3RR7vl9U6o7aK/z09TbwHvNdbzxuBEFgS25q7fd4Md5Clu8hQ3p3hi9Blpbg3V8tBQIU/F/LglQbmS3qMV2nBktFjxME5NUmKLYJgS6+JVfBSq4e3esWyIlO/VJmpY2A5ft2F/1mHHhqjp5J1k9iv6YGcPa1LV5Nti/HrsMyRMB1fmNzLJ0cn67jIuKH6fX3acwAVly8hX43hsGS6uWsoP87Yzye7iirxm6lUvZfYIz3ZNwy3bGaUOckPxKibY3VxftJHFCRW3bKde9XK0W0ORZM70RjilYg1/nfwAAykPeYqb1a1VXOjvJToxg6kKhC5zsHcbHimTW253+HN4dOxjVDjD3DPmL1QobqY4Orm67lX+UP2JY8Dp3iFWROq4dXB6biEFt2zn4vL3Obp0MwBbwyVcW7iFRSsvA+CF429lor+bSvsgNbaRhYOn7Iyeu+UM91e/z5neSG5Z3mFhC1k/4uFiuEqblx/mtWSFs6OHeU6FbVoch6SiyCbn+/u5dtXJeO1p3ukcTdjYe/74rkV0n+bdlROZ7Rjg8cYZLA5Pwh5Mc6B3BzuSxfRFvdjtOvmuBJIh4VB00oMuFtVvZoyvF29pjHjSga4pTHFmVys7rm4Td4x/lB91Hsj3g22c4V9HSqgElQTNqQKuyGtmqt3JtILOvY7JwuLriCVuLSz2I3bJQNcVJtjd/K5/Pue3LGSSt4utiVLc7Qr3RMYy+Q/f2+O+050tKJLMovyNZERWbHVpeThkHbPNw4DupVsP8GZ0Eos2foMlKVgcncJfmmezOlbDGz0TWJ4yuKPxUNYnKpk7uYEP+us4/ZkfAVBf1E845WIw6QabSSal4peTLHTCf5W9hlPRSJs2Ho/MYu1QFd9pm89j0Twu75zNRa0LOGLjaVzUmrUWG7YmW/KpdQqcksJhFdsJJVy4bRlCaTeJmAO/LbVbFFORZB6re4trC7NLr853yvyg6B2+H2zj6oLtHOfdyubMJ4LaLdt3y3Ocnd+CN5igNH8IjzvNqo4qPozuLsyHqbR5uSKvmfP9/ZzuHaLSlrVHO8JlEDJGRupSQoz4t1PWiMad9Kc9mEikdRvr28p5NeH4zIUq3kmpLE2ZOKWRIq1UifFgX9aqqlDx0JQuImo4OdSVjTgbwmSWw05iwE3CdBDTHJTawrgUjcOCm1nkbh2x1CzAD/Nacssnj1U9I97fk7tEyEgQ0j3UqV7envQcAJMrsivOVVQMIkrSlJSFGaMOsCZVvdu0f6Hi4bv5H1CvelEkmUl2F8e40zmv2uGHhnOKl/Ni+2RGLb6EtNBYkoIPYqO5pjD7INLSlE1d+dXU7Bgm2V3Z9BnJ5NGhiXu8rsP7flF8cvamXZ/OWo81byin34hTX9KPXTHw2DXsn1o046XEvuUef+PgFbwar6HAk2Dx6ikcXNOIKuks3j6eRIcXSRIosomckolpdhR/hmJ7lLRpI5lwYLOZHDyqATsGW+KlHB9YS5GS4cfF2YLOapuXQd3L4ugUZns/WRHwquI3vtS1sLD4Z8UStxYW+xEDielV7QBMcrVzZenrTHa1sSFUhi0Of3jjGJiTjSYtXH8qN/aP47q+SdwdruCh/vnc0D+eQd1LY6aYW0O1HOBuZH24HMegxM2bj2ZHupSHVhxEa2cBd3UdzoutkxjYXsC6wQrimp0nQrOZnN/Nqw0TmODtpj/moWxitgJ885oakpqNcNSFlLAhUgrLY/X0G3FUSeKU4o/5TsH7THW1ckLBWqZ621nkzkbE3musJ+hIMt7TTaueXXVtYybJ6mRt7twTZobn4hUYO792whk369vKoc+BW963nNAS5ZOvrGqbd7dUiasaz8j9+/5IKTICh80g35lA0xVSAy5eWjOV+yOlbMwkv1BO8aeXJ27WP4nIVtq8tGQK0VNq1jM46Sap2TBTCv+v+2BOX3sJ90dK99jfES6D+U45J+6HF6uYZHfxXsMn+cEtiXx+s3IR1/RMJaDEGf/n7wMgpWV+tOosDsxvJGy66ct4KbDFeD9Vkot6f1mu6zmE1zomsDnzibBfWLCdVekMkaQT+w4XkbiLJ4dm8Gz3dK5oO35E2+FrszeG/XxLlSHunvAIjUffj0NSme8weW77lNxDgeQ06DXiFClDuX1fa5nAu+FxPNQ0l1O2LxqRY/xlWZXO0JgpZpsW5yBnNtp52sIVfLf5ZI4t3UBfwoOqGLw/NJazmw7nktaDadBiXLXmDLr0rMXXqwkHj0QLWJXO8J22+Ry28eTcgizzvdv4z+Unc2LZepAFGwdLacsUACAcJlrGxlDaCZKguz+AqcusiVTyXkc95qCdZMJOvbuP5yMzaBoqQJV0bu9fQL3qzRWztabz2RIr5dn+GaxKZ7g9VEOjHtjbKVtYfC2xcm4tLPYjDZkSTCFxXd8k2pN5dHnyONa3nnp/P+/MySMYSBBwpViaMplb1My9Hyzk0GlbeLdnDKaQeGfldPzTB/jFuJe5ueFolnnrGeUbYHtJFUGbzo5kMbMmNJEyVNZ2VmA0eKma2UXaUEhr2ZWszqpfzdv6GFYM1nJi7QZWh6p4Pu7G1SXjmaARaslDTkmYQub15nG0xvOY6O+mzB7GLQn8corDXYN45RDg5g/lK6l1DnBJcOPOBRk+ETPbEqWQ18zYJeczubyLj7fXkFcUpSoYpiWUh6nJ2HQJTSg5G625vkYWuFr2aPM1vODD3nh9wgtc0zOVG0vWoUgmJhL9fT6KPDF0XUYNpNGSKn/Yehi/SR+Nx5VGkgSyBKdWr+Xqgs25qXXIph4U72VFrOEp9H4jTqHi4aXOKRQURoll7MTTdtJpFbsvQ3Mkn9CAl9fyJ3Hb1sOINwZw1kS5atLrI6ylbuwfxzWFW3loqCKXd73jsAdy7+umjNBl1oQr+aC/jj+feQfbtBQHzdrKYNrN480zOGHKOqZ623k9MpmVfdV09QSpnDv4pS2sNobLyOgKZ625hN9OfpKZjjA7ksVEDSfxDh+KR6D3uXjGM41I3EUL+ZzeeSlOu8bqA/76ucc3hIkiyTwensM5wRXZPjNJtmtFnDh6A68nxtKv+fjZ7Ne4oedQkoYdtfgdBg0vQsCyljq0HhehAg/zO77P4vl37JM/8SnbF/HAqGdGPLCsSme4v38hLjnDtmQpqmxwrG8dF+Yv4+S3fsz6qnLy/XGiaQdrBioYSjk4t/4jfth4JpsOehjwUmaD5akETkljlsNOX8pLS1cBZx3wEQC16iAHjG6mX/OSXxahpy2PhtJihCmheHQmV3TSk/BheE3kPge2lMRWXzFiRRDVJ7B1ulheWYdmKLR25fMr9QRaBvO4ufRjHJLK/ZFS+tNeBtNuImknj4fn8Oy2qSysbeCoui91C1hY/FNiiVsLi/3InVsPIZm0s7WvGG27n/dqR1E5Y5B8exyPL0U86eAn497gvPe/zY1zn2HMwh7sks66vkOpCw7SP96DIpvMdHQzq7CN1145gMtOfY3FRWk8do1KRwhDSHQkgnhdaY47djUbh8rImDY2dZSiqgavdE6ksjBMhTvCgOYh6EjyeN8cMkFBJOlEOExMUwZDItHvZm1LPR8HaigpC7O1uJQq5yAlynom7GIFe2V+I8OFUpBdJOBg7zZsO6dvty18CIBv2Q5l6bqxFIxJEB1yUV4WolMrIGY4eGbzdIy0wgvadCSnQTAvzok1G7i+aOMXusYGMu16jJnOFNuSpUgJG039BTidGg6bQX/YQbQlgL0sTrgtSF51iIFBL/cNzmdZ9SheHPtK7lhPR8fm8jX3hiYEtwyOonVrCcGaMIosYRgywpRybc6cvoqp7jZOKJQITkrwWO9cfrX6OA6af2cuZ/hgb3Ya/TRvI+DereDsB+Vv8Yp3Kh8NVNPak89AnYdnIrPwqykcss6WljI2Zkp5d3AsG7rL0DUFSRHcsOp4bpAE1858eYTIvaF/PBOcnRTZhnJC/eqe6VxR8D4vx0dzsreB3qiXeIcPTLg8czYF/jhdvUEOGbsdT7NCJk+AKujt81Nf2YduypS4o7RFg6xJp5liV1EkmWfjXtoyBXwQHsWcYBOHurfy58EDWT1YxVElW3jynXmUHDXE//aV8G7zaGRZUFswyJMfHcDo+m5urX+cP25fQEUgwkP9B/PS6qlITgOhy/iqhzi8aju9KR/HLP8e1YUhXp/wAjEzxRvJQgwhU2oLc4DDoFHTmGB347RpNOo2ZilwT6Qcu6TzSMdcipwxOvUAbluGIc2JW85wkm8tlKcYU9KHZij0xT30dQUYW9fNBGcHR9ZuBHZZOc6pAJ+ky+TlxXL30GibzJq2Spr9+Qx2B8grG2JId6IoJqpdp9QVpT/pBbuJPKSg+02Cdo2YDUwFJhy3jZ9Xvsy/bTqXytIQba/Uctg3VnHU5hN5fcILvBseS749zoctNZhC4vHmOdjzUuwYKvxCf0MWFv/sWOLWwmJ/8nYeShCmHb2ZwpptTHR38lZoApqQibX5kQyJcxcM8FRtGymhUqv2sTZVTVpTqXSH8VWmaY8HyZdt9Ke9ZAoMBnUPNlWnrbGIdd4KNvWVEO31MmFMB3WOPpakRqMZCkbKhjnooDPspKQiRCjjYttAEVOLu4hpDgqm99LdUoDk1iElIxmAy0BoMgjobSzghdZ8iqpCrM2r4qdlr+3VQeGG4vVZ79CBSihfmds+N9DEMvcoIiknIq3gVjWQBZuHSjGiKoWVYQZDHsykDcOUebdnDDdIRi7v9rO4M1zF94NtbIyUcXn0VO6pe5Yh3YVw66RidjSHgm7XkZMyjuoYC6obWCKNZkF5I8kSlQ2DZWzrKubmwnquym/gsWgeXVqQkLGdqDD3umDEA+FZPNowC1tUZijqJi8QR8vYME0ZYYLPkWaGu4VF7o5cpNAsXsmKxlpO+ODfcsJ/WGBe0Hgaz495ledDMzjGvTzXTzbXNsRzg1NwODUu/+Ac3N6s+LXJJlPr2nm8ZzarNmVDdM78FKNK+mkLBUkMuvnvlcdzfcrG4VM2U+iI8cyWaRTlRclzJnkp0MWawUoOKmzkuI+/TTTu5LGSAbzONDHZi6zJVORHaNpUhrNHYYW7BnsaPO2geRUkp06td5DZ/ibq7T38T+o4zlx+KdqQHWRw5SXJZGzQ4WLLuGIStQ4O8W9hSHexOlJFoD6EW04TyrgZVTSAKSSOL1mPLAlG+/oImw5Um0FjfwEbN1UhmRLykA21NsZRVVu5uGApY1U717ln8PT2adQ9fyn2vBTTKjrojAXQTZlo0oHbodHf6+fCWcsoUTLETJO/dhyAT03T0pdHr9NLOmNjbEkfRc4Y66MV9GZ8yJLAJpls7iol4E8gJRQ8appSWwSfrLGruN0Vp03jvFEf5haruGVwKlrYQV/Ujn+TSkgPsJJqTCGRjDtY0laP3aaDAMNjIqRsXneyQkdy69R5BpigwmDYS2lBhMSUJEcGN/LSR9Mwxpt82FZDbeEgWsSRvc+jEmnZwaia3RdVsbD4OmPl3FpY7EdkDcyJMYqdUU7LW8V3Am24FI3WaD5yfgYllY32BewpXu6fwtL4WN4bGENFIEJUczKQ9jCYcJESBn0pL77yKGvClWSSKt5GG+u6yol2+nC1qfQnPDzaMYdwwsVgzI0yoOJuV1DCNno6gzQMFhLt9zCkOVnXUoHfnsYWVpD67cgZCckAlyeNcBtIaQUMCVST/n4fK5pruXzb2bn80D1xT2QsbS2FNGkx1mWyRTob4lm/0fCQG0zoj3kgI7OtqxjFn6HIE8Ph0nAEU8wsbWduUTO9GV/W93Snj+ktg6N4NeHgex3zaNBiRMwkZzQcibIzWiZLgon+bjZpHhpjBaDLoMkYKRvJQReSCVrGRpUzxIzydmZ6mlkY2EZ9oJ+xZb2kzaz9VqktwlRXGw8PTWB9pjDncdprxHMOB8dtPY7tiWJ0XUEr1DEiKpGYEy2uYmoySBDP2Pk4UZNbAQ6gyjbImIpetJidwzaePOK6PT/mVQD6057cdfvTUDH9RhxNKKiqgc1mUPCmk9igG1kSRLcHaRgsYNXGUXiasuO32QxqvIOcPGo9J8/8mFHl/SyYvJUyZ4SAksSmGtT4QiR1lceXz6GpL5+ALcHpdWugw0Xzykr89jRKMJsPbZNM8Ot4DuxHa/CRKBMkykDWQVGz92NDqpignERGIFrcyB6diqoBTqzfwNTKDgyvQbE3xvZEMTc1HMMsXzPHFm5gdH4/mrCxpr2CbZ0luG0ZXuieysbNVXzUV82A4aW/34fTrmELZnD2KDgHJISAQc1Dh+5HlZSsGC7ux9Fjo7owxJEFm3GpGmnNht1mIEkCdyBJnaOX2/oX8HSskq6wn2rPIFrCTnTIRXrIQdNgPg2RQj5qr+LptTPRkiprt1RjJmzEkw6kvAxeNc0b0cmsTFXvvN/L+WbTYaxJp/lm02HcNDCGCmeYBe5tPB6ezeKEylNN01H8Gq78JJn5UVwdNsKtQcyQA6XLgaoYWfszCYTDQBISac3G2LGdePwp3ukcwzPxMq6d9RI/qHubA+ub6NYCYBNc0zuTUUUDHFjQxNwpO5CK02TyTeSEgomEhcW/Epa4tbDYj8QOTqB3uWmN5yFLJkmRocgeJaGpVBUP5mYzP+yoptAR5/FtM9nWU0TGVJjua8MmGaiKybJUEWndRjqtsnFbJQiJeJWBlrGBTaB5BbGkg8ZVVTjtGn53CsmARKWB4TFQIjbiCQf+wjhORUMYEjHNjukUyBkJIYOQQdMUZNUAA4TTAFOisDBKWUEEzZQ5YsMZXNMzlSu6DuBbzYdye6iGK7oOAGBx70TyyyLcHzqQZyIz6TXiNEcLEAkbWsQBQiLc78U2pKDFVVyuDEldxaHqeFxpql2DzPI0UWof4giXwQf92YjklfmNlNsiHBrYTL3qpd8wuKjsfRa4d2SXZq1+jnODK7ivZyGaqSA7dTAlEIAsMPwGpiGxJlKJLmQa0iXsSJWQMlSSusqGaDkJM8OBzjSne4coUcO0ZQooUbKLLxQrHlr1BI9EC0jqKn0pL067hqTJIIM2lD03YUqYGYXe3gCvt43j163Hc2P/OB6JFvDgwPzsghoeje7wnhcHOK1oNT9rPJ2NmSS3bT2c52L1jHZ0M6+8BSEkwosSqJ4MPmcaJSVhrgzi7LQh6YCQSCXttMTyccg6uqngU1O0RvPRhELCtDO3soVp/nbaB4JIuoQ25KAxmXVkMJ1ZObSgaAd1JQMIm6B1MI+x1d24VI3Cqb0YToE5JoGSktAHXKzdUcVz26dwf/9CYpodvVDDsdlFJOkkaWRnHmyBDIaQWd1dSWdrAR/HqnHKGk5F483+8dg2ejGSCtWeEI09hUimRDxtZ2u6DLnPTrE3hmlKOAaz0/TpkJP3G+u5qflYruubREcqSOeQH1mDtG7DI6eZGuxgXGEvx1ZvIhx1cVBlM39sXsjK/hrWxqtJdXlwyDqYoDp0yMiktgboXV6GlrEhD9nw58cJbFCRUjKZASdmysaqziru+3g+f+6YxynbF7FyqI6moXzeSYxj+ZqxPNkyA78tRVzY6Un76dTzmFnSjuhxUJUXJuhNIJng6FfAAD1gUBMMkYg7UBxGVuBKAgFkTIU8d5JkRmVJZCzTHW2c7Qvx8/JXeGtwPOqAjTfaxzLB382KwVpMIaHaddzl2YK8hoiVlmDxr4WVlmBhsR+pLh6kY0cFGzrLSJQ7eDflZGWohlDEw9jaPlpdZTRpMbSMjf8sfZPXtkxAdegMxN2McvTQ4CkilHZzZ+vh2ShPUkWOKYh8E+HTsakGhkNG90tUBqL0DfrJcyYJpVz4Jg6STNvxutJEoi6K86IcV76RznSQirJsrq6zKkoqaUdE7NiGZPQBF5ggVAF2E5IKUwq6mO1v4v3wGOo9fSzvryOm2YmmHHy7ZAmaUDhs48m8Pek5Hhoq5ERPKy26QtgEEwk5KWO6TNRAOpsXagIyJBMOOlIqhi6jOnS2xkpwyxmakoXAVqbkfeLVOdom45M6AC8NWh5tmQLGqAN0GQZT7G5O3HZq1tIMkBWBKQAtW1BmmjJCwKrNdTiCKbbYiwEwTRlZNtEMBbdsJ2ImcUgqm5MVDGgeurRgLv/3yeg03uwdT1tfHmdPXMWRRZu5rfcovIVxYiE3qktDS9mQFIHQZIZiLkJdfrZ4S1FsRu49BBTlRXkiNJt5Zatz5xcyEpztg9vSThq0Ar5Zv5JtqVIKvDFW91YQ6/Ii6RIFo0J0bivCZiN3HXU3YIIetrM1VUY4lXU0ME0JPaPQH/NwZM1Wal0DtKXy0TMKYyZ2sK2plAsKlvKXwXkQ0PBUJ8izxan0hGkpyiMdtzNpVBdPfzyTc2Z9yHNLSpgyt43168ejpBRMm4LhVHktPQEzacs+UACxATfrveUUuWJUFIZRZYN4QwC1PMkHnbVEd0a0t/QUI5wCKaXQHCsgPxCnN6NQlzfAynAtrvohhJCg30F4so630YYassGAjaaBMprai1DsBmavE9kn0EyZt0IT6En5GOXtJ2BLosXs6ELGadMpcw+xMVKGLSrzTucYlIiNaeObWEsFGbsdtclOaWGEbhFgXGEvmzx5OHsUNL/AdAiSaS+SJhEtcXBYxTauLtjOmIYLmTmumeK6Aar9IcrsYQYNL8vaazmvaClLpTHYkhJJXSWt2WBWBH27H+E2QBG0RoKYQyqyX0OK2SAvw6i8Qda3lSPJAo87jd+W4t+bTuO5cc/SpgdZuWkUvl6JigOHqHUO8OzmabjcGVJhJ/MnbWdZ5zi6B/1/5282C4v/W1iRWwuL/YhD0TFV0PtcrE7U8nGilrZwEEOXGePpxV07xFuJ0RTnRYmagitmvoXHlSaRcPD84AziuoP2vjy2b66gzD0EEZXiCX3Y3RnYuR49EiiBDAcWNpEsNeka8lPkjjO2oA9JEtQEBqkrHmBSfhcn+9fgsaU5v2Y5PQ2FmKaMGVMRNhMEyAkZNSwjGRLsnGb32NKMcXTz7ZIlXF+0kZ/XvsxDEx7iD1P+yqEukyvzG3lpwhMAnO/vJ09xM93hoN7mImBPYroNJLeOz5vMpj0oIA/ZoNOJFnJgxlUyfW5WbKvj+Y4pLGuv5dWEg2uK3+V7HfOArKetT86Kp6PdGquitSxL1tGm+zm3+UjG+ntJZFT6BnwYevZrTk7KmEJCsRkgQO23kelxEwu7ifZ6ifdl/63I2fC5W8rmUV5buIE/lK+kWB3iznAVAK92TyKacSDLJsf61/JN/0aQBC67BibZFbHSCkKXUZwGHncaJaZgxG0Ybe5cZNdmNwg4UmyPFWdzlPvHUf/WRQya2TH8fPQrdOtBrspvYEVfLS8NTiMad4IiEE6TWNKBGpWR6uIYdkiVa6RLDCRNxj6oYO9Q6dtWiN7gRTR4ECE7mqZQqMbwKSkaYwUoNhOPmgZNZqpdwW9L4XBpTCrqpjVdwERvJ4fUNSAMiUHNA7rMeFcnYmdoxLZzNWHJACUNYtCBLWxDTsmkJySxuXWEkGgIFaCbMkNpJ0IGpysbdc63J1jVXoXNZiKPjSFkQXfcR3/IB0Mq1Z4QG7rLOLF2A9saypBTEjgNDDsICZBAMiSUbjtmtxM5LWE6BF57hqjuoD/hYXlPLW/3jUX1aBwYaODq2ldIGTZa3qnBcAlCEQ+iOM0JhWspCUaZPb6J1Jg0ppDIz4tjCgltRgzdJ7KzGhIIm8BWnmBaQSc/zc8WA86uaWGULcaxFZuY6u8gqMQZMpz4XGnGq3HeWjYFBJR7IxxTtZl7ZvwZUZUCRWB3a9gUM5vnrssIh0kwGGdhwXbGlPdiJGwMdfnYGCmjL+6hXU/zo1VnYQvbcIQFcc2OgYQkC4p8MfJKhpji68BRksDo+myXEQuLrxuWuLWw2I+4bdm82rzaEP9vw4G0JAuIxZyIpMIEVwfH1GRXZIoknbyZGMslge04VR1hSCzeOJE31k1Ej6oEqrJeuGpMYmpBJw67jtqrkog7wJQYXdoHgLMqSmxrHvPzG2iPBkn1eNjUU0rGVFAlkz7Dw3zvNg51b0c4TFJ9LrDtzI2QAVkgVJB0CUmTkUyJ1f1VvB8bx0R7FIBR6hD1qpdDXSMXVPg0iiRT7oqALbuqVSqjkkmryDrY4hKyPtxQgAFyWKVrazGJPg+3th7JmnSQWd7m3PEKd7Ho+q+y13BKGm45jV3WubFkGQeWN1NcOIRIKShxGTkjYcRVTENGUQ20Ah38GoVFQwRLojjyUth2Rsmv65vEkpQ9N26AWc5mnJJGkxajZ8hHRrehhZ2sTtaxMl0AMsRTduSoDSOmIqVlpLiCkVZwqDpGvobqy4AE3mAC2WYyobQHzVToS3h4NFrNgObhoqkf5JYcPsmT4NJANmKtyCZBNcHUik7UQBrVl8Fo8GLYobowhOEU2LwaUmBn7rYAWZNQUhJqXEIo4BhQ0NI2WpIFbI6XYQoJo9tFXHOAarIuY9CazCfd4+bjrgrWhirQTBsTPF1INpOlTaMorRmgNVOI7hGsbKoBAUIB0y4wbaCkJAxP9l4oK4wgySadg36iMRfRlIO+iBfTazC9pINjyzdxZHAjToeGaUrk++KU1A7itOkYcRtyfoYFvm2k270M6S7svTYcYQlXowOhZIuuTLtA2ASyAabLxHCZUJCmN+qlO+4n6EwyFHfS0F1ERWGYb3h3sCldweqGGlI12c/D5U4zd1Qz/bqfzv4gTkWDIRs9DYV47BlWf1xPvj+OnJawJT65V+12HZ8txapMNq3kFxUvszpdjCKZLB+s4/r1J/BkzwEcXraN9Rk/pk/HcMBUXweH+jYz3ykztrwHdBmbzUDTFRS7idAlUASKLAgoCc4uX0lNdT+SR2fztgoyuo016XLGlPShF2oICVrWlvNO/zjKCyL0Dnkp8CRImSoHVTVhD1s/9Rb/Wlh3vIXFfqQ34UPzmfx+0uMYUZWo7sDjTWHvtWGXDCocISY5OphR2o6CSZeRoXfnlKKtx07eKhs1dX1UBCK0x4KIUQmCapJiXwwBmDGV4uIIY/29rBysodgfQ/cbaEKhoz0fR6+CzWYQTrjYGC7lpcg0Jtl7eT0+nrySIXCYSKoJQsKwCzAlJA1Mu4lQTaSMROf2Ip5umsadg3NYk07zVmIUvUaceyLln3v+kz0doEtIURvJDi9GyIGSyEZgDYdA8ug4gylsxUlMj4Hw6LiL4oRTLv7tg2+xJVnGdX2TuD9SOuK4PtnG1lQZRXKauYEmTEzOLfyACm9WTBtuEyRwdKrocRWbLZsWUVIcYXx+DweUtlGWN0RBMEYi7mRJ72ge7J3PhKXnccyW43kq5qdDz6NCDfFafBzxsItQxIPNn+HZrmn8ZPU3UN0Z0il7NpK4021C0rLnGop4kG0muqZg2sBt13A6NfIcCdoHg4Rjbl7oncY38lbmnCEWJ9Tc+Z3RcCSqbKBKBpP8XVQVhrMV8WkJoWQr6g23gFYXwtgpviQwXNnUh1SxgakKDKcg730Hb66YzJsfTWZrcxlScZpqbwhkeKB/AXHDjqRJpBJ2WgfzWB2pYnO8DKHJaBEH4/N6eXDDPOS0hPcjF7IOkpYV0juL+xFuHTkl4Xek0IYc6AMu9D4nQ4MeMiEnkt0gqCZZN1TBpmQFf5z6MDabQXd/gHklzUSSThSvxiH125nr7MQWlXhp3RRMG9gjAnsElAyfCPi4jOEQIAs8bQp2p060JUBHbxCnojO2pA89ZSOccLEsnc+9W+bj2eDAHUwipGxueZkzwoM75qJuc6GbCnJBBkmXSGgqri6F7u4gjkFQoyBnJJSoQizs4sP+Gr6z9nzuj5SyJVPCbS1H8mrnRDZuqkLXFbb1FNGT9nPZivMoKQ9jBHUihovGTDEPDRVyZtlH2DwayaiTcL8XU5eQHQZSSiboStKaKSCoJJhd2MLBY3aAKSGWB7m77RBG+/ooLx8kOgoOOmgT5e4Ik/O70Df5adhQQWsyn5n+FgLzvpzPsYXFPytWzq2FxX6kraMAd12UhU6QHGa2qlxIaNVpZEzWRqs42buBw/O2YAiZpcla9LAdZ7eNTNAkWivxn3WL+dFb5zJ6dDeSLFAwCdiT6EEDKS0Tibt4ryO7xGx9fj9abT/v99eDIkiPSrGwvBlTyKwfyC4vGjbt3Ld9PhldAVlATEUys9Ousi5hOEH2Z5dmlYYUnL0KQx4PDzct4LHyWbidGRYX9mAi5aKMAGvSaaY7HKSFxh9C4znNt5Z3BsehhmwoKYlM0ETKkI0MG2A6TVSHjteVxqVqRJwaFYEIQXuSIc1JIqPy/PYpmIbM8eM20ODeQaGicEX70QTUJBvDZWhCYUnPaHpL/VTbB0jodhSnjlAlzJSMXmyAJDAMGdOUUWWThG7H5YgzEHcjhISRVihwxumIZ9NF2kJBru4+jelV7Uzxd7IxWobDm0ZVs0spNzYX4yuMk0raMVIKipGdJjcdAkywxWSIu5BtoCQl0iU6sZQDu01nS6iYdELF7tKQpWy0c5sWp0iWOMgp06DprEmX0zqUR/+Aj764h0WVW5AlgaRLTD1iKxt7SjGFhOk2cPSrGFE1G8UdjtaGJLQSA3ubnXR1mmTCgRqRMR0gFybRNYW0qSAlFT7oruGk6g2sCIyitHCIvkE/kYyL7QNFyEM2REEGzVTwLnUTqxakCsHbStaaKw0ICUkHPa1gS0rIkgBdQjgMbAMqpi4hCjK4vGne7xyF/EI+W48v5po5W/E4MsQiLlTJwOPIIMsmKzprWF1QTKZcI7DGjv2YPrS2ImJVIpsOYUrImazAzQREVnCO0hlXMMj2dg9mwkYk48Qmm5CRiW3N4wcD38oWF05KQ68H/BqZhJ2t0RI0XcFwCIL2JDUlAyTyVTK6QmpiEmeDi1ShQDKz56gYYMZstGwtxV6c4Fevn8zMGQ10vldJutAAp4ndruN1pokbdioLwxS7owxGPHSl/Cz0baE5U0SpLYKesOEtSDCtpJMPGupQHTppj0KRM4YhZN4ITwJgvKeHlYU1eGuSmELixbdmM33edvqUEiZ5u3i7byzT8jrQqjJ41znomBJgik/hhMoN++07zsLi/wKWuLWw2I8oDgNFMYmZKeoq+2iMFBDr9mLPT/HcwEwaIoXUVXu5aOtBzC1qJmmoTJjQzmalgqLKMH1dATxymqrafgL2JJlwKe2pIJGMC9mrYTpkxGYvWkJCPXCQ3oQPl6qxra0EtduO7jepcoYY7eihMVrAPG8DDVoRkdYASlyGgIGUlhD2bMQPduYWqtlpV10BzSdAkzAdJlqPi7DdyaqUnaJAjBO2Hcu/Vb7Nk/2zKbTHmF76MfeER7PAvY2LtpyH155GCxoYSTlbpGZKmDaRjXYKCUNTiCUdSDvzV0d5BwhrLnRTxjBkppR3subD0eRNSvDL9hPpSfqIph34HGniGTtPP7WAwoO7eLt7LAMxNw5Vx9TlbFGZKrLXKK6SSaiQVuiWfbl2mYwNjyuN6tLojvvpHvQjup04R0U4eswWXt04ibqpA8Q0By6HhiEkMu0ebBkJpUjkPF0xJZR0dsocAXogG/VWhhQyhSaYkOjykgpmECbYXRq6rtAZC/CHriNJ6Ha8app7qhdzfedxHBRooNofIry2kMGMzGpPFbopI+en8dnSJCIuTH8MFIGsgX1QRvML5HQ2NcFQgZSMkgK3P4XmyqZbGG6TPG+S0IZCGgoLkTSJoagbp6yhOAyMnT694/y9RFJOYsVpJKAhUoBpB8NrYgYyZMLZfE4hZR9SZA3sfQqyBnHNjuTRIWxHL9KQVQOnS0MIiaGt+RgHZaDXS8xM0dMbQFZN1ofL6ezOQ2gySkThzsDhVFQM0mEUUGXTiZQLDK+BPWJD1rIiX0mDPSIjJDDydMb6e2mtyiOTsZHSbeiGgqRJGCVpptR2sq2niEJ/nJ5BP0F/gkjMycbtlUiqiSjWCGdc9Ea9VAQijC7sZ4enkJ4PaojWgSRENhVCFgiPASmZTJeHyvE9rO8sB5vAVR7DoepIkkA3FFY21VBWGCGmOdD7nDTkFTK+vD/7ABsbi21QxcyTGOPpZblch67ZQJPQhcy6SAUbmsupLA2xLF1LasDFwpodtMTyKZrcy7aBIoQM9284CO8SN2vOkLA5NdIF2cj7K2Iyi0o27f8vOwuLfyBWWoKFxX4k4I+j6woXNx9PU0chac3GlImtuJ0Z3towHs2UeSnhpP+tctoSebzWMIG5+c3klQ0xr6QZySZ4fGAOtf4BmsL5IMGqzio6QgH8viQOT4ZMvonmERhCom/IS/eQD1uHA61QRw5mSBh22rR84hk7FbYQy6JjIKChRiWkjJwVtoCclpG17BSsllSzU+ouE1MFV0GSktrBrB+u00DXFKIpBz0xH4/2zmPZG5M5yr+BO8NVPNUxg9+0H8Ng3E1Db1ZECXWneJbAlshajylxGRG2k+pz0dcTYCDspTFWwPrebIR5TGE/dtnAWRelJ+NndUclLT0FxFN2NENhfkkj04/ZTH/Uw/SCdhIhF2nNhtBkjLgNW1xGGDJSWkYZUJGTWTeIxJCTUEeAdMxBIuXA4dSIphwcVr+dikk9RLt8eJQ0Tm8aVTJwKhr5ngTRXm82v9RlEu73IicUkET2GtkAKTtNLtw63qI4SlUCPDqSkFBDMkYmK7pLg1GEIdHTFeSDTaPpS3pY9tE4fth+OEX2GC/3TaF1KA8taFBVNUA45aLEHWV8eQ/vNo7Gu8lOOOFCGVRxDghsiWxk0XSIbMqACfZBBdOenX43XNlqfzkvQyjiQRIQjrsw7SaSbPJM2zSUZid9vX6EkGhN5BFLOjCHVNyeNP0hH65eEzkpIcuCdKHIRvpl0L0C3SuwJSVscegK+bMPLiZIMQVhyGiZrN+w4TMgqWDvs3H61jMQSRtGwkbXkB8iKnklQ4ye2UZbKMiYYB/OvBTt24sxbRAsHyKTZ2bzqF2CdDB7PykZsPWrtMbzKQsOEfAl6OkN0N+WtTsTWragzTRkQnEXRib7MGXoCvYeG/KAiurN8FFrNfqaIE19BciSSUpXcQ2YqLFsCo2QQLhMPMEkal4aZ5/M7MIWtG43WlUGt0NjdH4/88uaCA25URuddLQW0Bf34uhXiLxTypuJsWxIVvFy80QMp0liwM07vWMwNRkjqqIO2oikXWztLkZRTRTZJNwSxJ6XwqukaeguosoXRtcV9EINo9tFrAaaegswutxZK78dPnasr2T1UPU/6BvPwuIfgyVuLSz2I0NRNx5nhnJXhLFVPUTCbgaSbsL9XtBl8pxJfrzyLFJTkgym3Wg9LjrTASIRN2+1juXy2W8SymQtroY2FyAnFPRNftLt2QIk05TAp5EpNMhkbBT5Y8QG3Gj5BpIja2LflQ7wbPs0ensDPBGazfpQOSKtYB/KTptjSMgpCSX1SQU8ERUR2RnxC+rkexMcWb6V0sm9/OCAt7lq5mIem34/vxz3Igld5cenPU+zVkRI9zA1v4O1q7IrL2Viduyh7NK+cjorFJJlBrpbIKdBSchZUR2xYfQ72NxcRrTNj2YqXFn1Gvn2BIdXb6M76WNU0QA2VScxmL0eJwbXsDBvG8ZWH7XOAZyBNJqmgC4hx5WsIElnq9DNogzCJhCKoKIsRFF1CHcgSSpmJxZys6CikRPzPyaWtmMLZBjMeFBtBhuGymkO51PiioIuMeyNL0ds2ZzTtIKQd0aidTk7bW4zKfTGmVTWxfRRrdSM7UYaG0NxGNhUg3JPhEunv8+U0e3ILp3v1b2LrSjFW+sn8F53PVu6ikmksxFQh00noyvICDqH/CAkYuMzhDv92MMSulvCtIGsS8iahKkKMkGBkpSQNTA63SgpKZuyIEBP2tDys9dQScjovS7CHxWhRiWUQRUEbGovQ2v0gdMkmXBgZBQkAb5mGdpcGI5sIZnuE+hugalmxZ+pgtbpgSEV021gDylIgyp62I46YEOJyzj6bAgFtm0tR/ZoIMFQyJ21xgJaBvJJDjkxhESq34WUkXAOSOimjKRL2T5KM2jFGqkyg0xQIGdgXUsFfTEPQkhIITuOvqzlnNqr0raxFEOXSTf7IGpDb/BiphUyJTqmKhAtHvReF4EdJlqfizdbxtLeH0R3Zh/CJH3n34kkkGUTh1MjXWjSlQrgrIhRXBxhYMBLysjmTBtphUzQRB20kdYVxOQoZUe1ccv6IyhUoyQb/dnZkUEbzQ0lCF3KCnEFuqK+bPQ3rTCUyuZYq6qBgYyetLGquZpCXxwpqSAUge41MfRs8aSzT8JWH8MeklnVUbW/vuIsLP5PYKUlWFjsR0xDYkxeHz8sfIfnHFPZtr6KHtWPHLVh+nT89hTOlR6i4zR6Y17kggwtsXzMhI1Ur4P8iTECagq/LYleqEFGRu22gQSxuBNJNhGajOzVKMsbYmygl7b2AtRgCqPTjVSWpDmaTyThAlnw9NqZFJVEsnmoTlDSUi7SZqog71xbQNaAjIxQBKbbzK54JpmcWLGeK/Mbd56dmxpbmIdlk+8GO3gq5ufSQCe3h2pQyhK47RpRl47usaGksyug6R4ToQqktITpAD2gIzkNhClBUkHtzhZotfUHGazxcqB/B4O6l1L7ECVqhJeUKfT6fcQzKquTtTzeOhNGx9mRLM76uva7kLWdBWsuE0mXEbLA5U2TMCUm1HZxUslanLLGoO7l0eYDGNyRT9q08czALGaXtrKso472eJD6/H4iGReRiJsmNR/sJs4+G7HabJW+FJdR4vIn1ftJCYSM4TBJaio+u8IYby/13n5aXPl0xAIEHCkypsKp/jVMdrXRXRzkbG8fN9hMNGAw4mHBqAbW9ZWRsdto7CzETNn4MObCHHBkK/1L44gNfmxJSJQLJCMbRTUc2Siq6dXRfTL2kIKrR0bsDGmkYypSRgIF1LCce9hQ49nP3h6WSXoVhEdHTUhUV/fSuL0UWyBDstCRXcGuVyJemY30C7JOCcIm0D2g+cHZI5MJCAwvZPINHAMKZjzbjyxl848lXWLapBY6ooHs6m4JO7JLZyjmQmp34YxJbCstRvLomIqCs19ioNWPIyGRLjKQbSZCkhGSge7RsTl01EY30bz/z96fR1mW3fWd6GfvfaY737gxDznPWVnzIKmqNCChAQnEIAa7hQEjGzw0NrbbQ7uxMc+YXtimjbEx2DTdfmAQCGNASGiWSiWpVFWqubIyK+eMyIw54s73zGfv98e+mSWW/d7yeu9R0K34rhUrM6Z7zzn3xLnf893f3/froBoZOtBkWqLLGhVakltkCuGAM5K2AMMvkNJg+gHlDcHgkKZ3VCFyTbReRaSCaFqQzOS4nXE2sxYMtqsIv8AJBV89d5TSRES7V8FZ97lam+TKziT+io85acsUtJbUyglLlS6Xr8xxT7CM9qy1Ip/IcXcdshltj2EjZ9gtU2lEpMrQ3mjARE6rEuKKggdPXOP5J45z5sQ6N9wpqgsjtBZkmULvixh5Ad999GU+0n4Q2q+14+1hD98I2FNu97CH1xHfcvIcJ6qblAW8oXwZU8s5s7jOnfdeY2J6wFPnjjA4lXH86DqdrRpnltb44aUvU54KKZo59wQ3eV/rRQok33X3czxy10VG+3PyAzF3LNopereSsTjT5c8vfY3L/Wnefser7JvqomsFh2d3uLu1yumZDbtBieRdi68i/YL43pD0QEI+laGdsadS3fJRWiuBzO2UeLRV5lOrp7g4mr29b50i5PG4xh21dQA+UO0DcGdwgwPTHe6aXKNcTiiqBUVJk9f0uNrXJgvk9YKgFTM/22VqekB9YUA2lVs1KlP81LlvZVr1eWGwj1BbFfn9My/yIwcfZ7424HI0Q8nNePTAVZ7Z2kerPsIoSxy0r6GRYZRBDZVtcgMWyz32ebvsc3d5a+VVZqsDdLngbHuOL189wgdaz1ANEqLcJVC5zSkeuWy361QnQ0b3RphqjjsRo6dT8maOkeZ2RJUwQCrZ2qlzbnWOS8MZ2mmFXEsO1dtMBUNWhw2mpeB95Zg3lq7xSpailEb4Bf/4vo/xLa2X8JyCRw5dRecS4RfoVHHo1DpomKiG3P3OV4lnjCW0FesJLUrGWg08jajmZE1tlUdjyasoBG5PooaSrGooyoa0qYmnDeG8RrsGkUmbsXpyyM6wwuKhHR49fIX+sYJ4Gvxv2kGXbbayLCy5RQvymiav2zsjJ7RpBsYxFONjYlybsICnCeZGvGPqVZJccdfiGm86cYVmY4RSmskz28i7e/RGJf7W/Z/j7XedJ5oW+G1L0lUo0QMXBrZJTHoF+6Y7aAfcvkLveojUxqEhDVlLowNLxiePtKndsYu8s4fRgv0zbbwDQ0YPhrz/kWd557d9DdNKCeZGTJ7YZXQmQY0kKh2T81DhbTmoNR+VCkrLVqnNej4ih1GnRDT0Mcow1RjyrUfPoqQmyRVPLB/i9975bxnogKXjWywc30aUCvTBiPrUCLcZI0oFC3MdHppfodEIuffEdb773mf5wf1f5ZPLp/jhuS9z+P4bPFS7yrvuOcsXHvgVvv3wy9yztMoDB1b4lkefRxvB2+5+lX/5Tb/9J3pd28Me/qxhT7ndwx5eR/zbxafITMFHhgf4YG2Xf/noRzjpbXKHVyLUKd9+4QPc0Vzn708/xofk9/KvDv4uh9wq3PkxriUz3OUF3OUNOeZ+iZOujxKS/9GNqDsRPzP7Eo/HMDgYcMzd5bhb4alem1/d/2X+Y3+G5ekpTpVW+d5qj61ixE8Hb6OdVvjpmZfpnwp4d/NlPtG5mxd2F1ktJsHVFIWL0Hap27iG3NeoUIKn2Vxr2sKDsZ2vrTX/9PL7+H8c+wM+Hbq8q2wTFt5W0rzp5H/BFy7/W2mL/9O80ebxGvCDnFgCoQK/QGtBzUuIpWa2mkCzy05YYbdbpRYkdHUZRxasxk3OlG7y52odAH6g/glu5kOWFquEOuX3Jub59soqPzHzKH94/k5cp6AUZAxlgE4FRegiIsXZ9hzaPECiHe6rr9D0Iibm+mxuNZiZ7vNMeJiJIOLRySu8tXqeT/TvhhPgyYJ/duD36Wqf1XyCi/E8n904yVa/Spo6eF5OljrkoQO5xBSCIvS44k9y023Q65eZm+px9+Qas+Uh7jhL9w6vxH/oLfC3Tn2OJ/tH+GBti9Ui5D0L5/nJ6XP8i+oax/xNApHxnnLCRw+U2c7rfKixwXdrybMXDhI0EuLtEjK1Fg8tx5f5oKAoSQoPdGAQ9ZQ88W1bXDOhWomJEo9mNeThmWsk2iUqXP7dvi/w1QM+v7zxNn5h/x9SFS6fnnye//nXf4B/ceo/87eK7yXcnrBWBN8qx7fsGmnD+m/zhi3uyKQdIixNh0T9gNZ0nw8eeoYfm1jmi5PHeP/0C/xAfYdnF1JaMuWQWyUzBV+IAns+TSzz0FvmUVKzeXkKf1fZkF0BzlCQyIBR0yOvFQSbDiKXFL5dkcgEOJMRrXrIfdM3OV7e4O2VV9kuKjw+PMl31p/jw903cMjf5q80VwE4XV4jMw4/NrHMv+kc4Bc+/l6KwO6jCu3AnkpsXB4CAi8jq6eknsOBpR3uaq1yfmmON0xe54PNp/i25gv8yNe+n7ceusI9vs9fW32QXzj+Wyw4Of9h4X7OlG7yic6dXOzNcHN7gvcuvMJfb73Ajxbv452tc3yoYW9K/7C1y3vKCe859TGeTVI+uLiOKyr8zOxLAAx1TFUGPBZJTrh95p3qn/i1bQ97+LMEYYwxf9obsYc9fKNAbxwD4PdHVb6jMvyvvl8YzX/sL/ChxgaZKXCF+u963PNpyCmv/P/2+5+LFIedniXKX4dbcV238IvdfXxi6wznVuwQlxk6yNQu5QOIiRSdKiamB/R6ZYJyylv3X+HHpj/Pl6KjfHL7Dj585I/4xc6Jr7Mr/PHt+KnL72d3WCZNXOq1kCjxiNql2+kMc/vbhInHVHXE0fo2J8qbvDJc4HumvsaryTxlmfLScB8/Mv1F7vL+Py+3fjwM+OlL7yPNFUoauoMSeepgEgUaUAanbGuLJ2sjql7Cnc01lsMW+0odLg1nuKuxyrfUX+SRQPJr/Sk0krJM+N5q748913svvJeNsUdSCkhyRRy7ZCMPpEEIKNVi2wKnbUPZA/tXOF1b58dbL3Ahk9zve1zMRhx3K7yUxhx15H+zEOO/hd8d1vnX196BFIaVS7O2yWtcgYswFFWNv6VIGwYTWJU8Sx0QhiDIuGt2DY3gbRMXOOZvsKAG1KRmaUyMejqiIV9rujr0Bz/CU9/6r/je8x9k9bn520NlQt8iuXbY7tZ547gFxgBG0GqMSHPFg3MrfGfrOd5TTtgpRpxNa3+sDOS/hb+zfh8PVq/xP3/xu/G2HbQCpFWIAeK5HDRUrzoUPuQVS0bThYyp2T73zdzg78x+lkAYXPjvJn4XsxHf9uRfJW0HBJsOhW/bymT6moXHOdlHSsNUdcRbZi7zpsplXoz2c8Db4d3lVSZUmR9Yfgs/u/hHzDtV/v7mPfzs7At/7Hl+YutOzvXnWB/V+auHvsgP1HfYKUZ/rLTk/xvIuUv/P/3+HvbwfyXs2RL2sIfXEUMdM9QxW3mdx2NLSr8eX0sMH9++k2eTlPUi4nORJbe/NZigU4T0dMRP75wELNlYyYes50N+o/sGtooRL6UxzyYpHxk2eDK2y8KfDl3+7ivfza91H+J8GnItG/KRYYOL2YiL2Qxg37hfSBK+0jnK9XYLM3IwQwcVSkRuG8pUJDFaUJscsb/RpVqLiQYBn754in904/380dadXOtMcjXLKG5Jd+NtL4xmJR/ye+0H2BlUSGKPfOgSxj5p6tjBq0hBIdjaqTPollnZanGhO0tVxfzwzOPc7e3ydPcQF8I5MiNR/Lfvy9fz124aPrz1RrrDMv1BmW6/TBZ6lvAV42GwTCKkJssUm+06VzammXKH/M2Fz3B3ZYWXry5SUzGxcXk6yXh6cITz0QLXEnvcQp0C8JVYc21nkv6gzCjy6Q0DwlFAkSur7u26GAOO0hgDSmmyns/yYIIJZ8Rybvj19sMURnPcrfD7oyqvprP8h95xPh4GXMuGfDp0eSySPB5bAgTwXZffyUo+ZKcY8Rsbb6A9KnNja8Iun4d2iMwdCGQucNsKZ2SX6GWoiPv+7cn80UaFS51prnSmWEkm+cLgNJ8dneKL0QESk7GSD3k+qbCeD3kljfh0aNMmfnbrzay168gMVGqb0JxI4PYlbl8gYwnGloukA49s6JGFLls7dXr9Mp20zG/vPATAcu7yN17+Pi5mIxKT/bHjez4NeTIuuJINeaGzxOP9EzhdB7RNSBC5tc8AVK45OH2FLCzh9Pq2XEKMFJ1ehee29vG1eD+fGR3lR699Ny8kCf+mc4BPhj6vpNEfO5deSSN2ihHn05Cf2/xmsshFpPL2sKVNaLDHWRQQrVUZblYZpR7Pd/fxR927+ML2cT6y+QA/vfUo59OQR5uXOZc1uJkP+ezN43w6dPnV3hxXsiGhTnlq9yA7UZUkc3h6cITHIkk81qB+d1inpyOeTjJeSmMAfr5z8L/6G7i1Hzvja8K17L++kd7DHv7vjD3ldg97eB3x8Kf/PmuXpzlyao0rryxgygWff+fP8/nwKB9Ze4CtYZV7Zle5OWoiMVy8Mo/fjDEXqjTu22F7o4G75XL64avEhcOFC4ssHtph98k5kqkCZyqiFGSErzbJmwWP3HWRr7xyDFnKMV2PqUNtuoMSWc/Hn4iZaw74nqVn+VfPfzNFpBDjqlpRvOa1FQbrldSCrK4pH+xzpLXLZlhlc6vBO05e4B/MfYqf2/pmksLhrc1XaaqQdlElNQ7/6xe/lfrcgP5uBREqZDqe6M+swoexsWMqhbxk0JViXAZgh5PuOHmDH1h4ghk14O+9+gFmKkPePHmZG3ELgBPlDf5a8xqfjMrs5lV+8vPfxbc99DxbSY2vXTuAHlhrhRqOB+I8A9Lm9+Jqpud6xJnD/maX5c4Eh1pt/ubSZ3g53se/fvKbOXpwkw8tfZl//Nz7EVfLVO5sM1kJebC1zO9fuYu3H7jEYzeOEl+tIVNBXtWo2Gau6rJGZAI06HqOX0/QhSSLXJRfcGRum1PNDfb7bT66dhf/6Mgfcp834JGnfoT9rQ7H61s8vXWAN89d4RPXTxMOfeSmj55NaDwV0L07496T1zn7xFEqNwRpwx7Xwrf/GmWVRaMg2LWRXeGsTRmwHljwemPFc1rj9SXxgcSerIlC1VOmmkOEMOx0agSllFGvBD2X6WcE3eOAtI9h5DhZYxzxJgooPCgC+zXjglbmtWHCsiGdLmyVsJfz0OIK59uzFNpqLvUg5vrZBb77rU/y0T94GDTEB1JU28XrCvwe5CX7XIVn91cl4I4MWcWeY8pyY7KK/V5egaxqkAdHZLGDSRWylFN+qcTwcE51dkijFLO+00AI8F4tER+LqdYjeHyCwgftgRPaY2wk+F2QqRkPYdrSk9HiWLE21r6gPajeEPTfGHH3/ptshjXWN5s4fk6eOIi2R+NIh16/jNj0MbMJpuNhXMPCwR0enF5BG8HHv3Q/ppUipMG9WuLt732Op/73e2nfXSCM4MyZZW72GnR2anzLnWd57KP3EU8XTB7u8Ox7/9nrdZnbwx7+1LFHbvewh9cRh37jZ3C8grsXV3lxdRHHKZishty4No03EZNtl/jRt36eX7/0EHHsIldKOCNBPFfgtGLu2XeTl9cXiDuBXepOFCKxBDTYksgcBkdy/B2FzAT56RHuSxXkQ13CkY+OFd6mizkckrcDjKepTIaMtioEkxHeV2oMjhY2kmusRgktKHzbeFUEhnQuo9KKUFIzHAb83qO/xF1ewE9u38Ffbz3NL7Yf4qemX+F7r76Dhyeu8Etn30JxswzzMcXIte/4Yz+ov2vTBVQsLNlpFZRmQiaqIWHikeaKaLXK7LEd7p1a5QvXj/Ho/qvM+n1e6C6xG5U51tym6UZcH01ydnkBEzo0X3bQLgzui21daawQuVVsndDuh67n1CdHHJjokOQOd02sciOa4KkXjzJ7sE2rFJJpxe6ozJnpdYaZz/OXDkAmqc8NmK/3uXBtnspExGijgttXZPXCqoa5JUHasZ5T7UIRaIyvkRV7o9HY1+OtS5fZSaqEucvfWfoUmXFYzSf49dU3sjWs8jeOf4GffvZ9HJnbJjeS6y8t4HUl3DlgqdVlvtxjK6qx9ZH91JdzRnMOaX1McvNxsYK2/y88cEOQCRjHEj7jgL8LySR4XcYE1aBde06ldUt6MXbZP68avI7EGUFlQ7N7p6C8bomtcexjO7EhL4sxcX6N9OUl+zNCg4rsc6UNiOdzyisO5Ud2mK/1eXV9Bq5Wbt/4FBM50itg20cUgsqa9breItPaHdtuizGRdyCtgTdgnGoASMiq9udHC4aiUlBac4j2ZThdh+nnDeG0ZHBIU12ReH1D7xho11C7Luk9FDPxFZ+0Jm7bL4xjSa47sHnCpXbOcM4hq1oy64zA72nSumBwEFuTbARFI4dCUFpzOPyOawxTn7V23SZ7xAKMQE+nBNUEKQ3VIKHipSS5w/Yzs0y8ahjNSaJZAwsxZstHpgJ3KGhe0mw9aAs6vLY95/27Owx6Ja7/hf/5T/fit4c9vI7YsyXsYQ+vI8RGwP6pDhUnJd0NCDslbl6aQeSCU3ObGMdwOZwhjjzMVoAREC3kiEYKy2WudSetT1LZwRyqmVVWmznhgiaaNlYFjQQTFzRZ3yOZ1OQvNPEulnB2Xfy2wPNzTFBAIUgv1hGZIB56GMXtKDD0OK/UeW0KHwEiUYQ3q/S3quihS1PmAEw4I8pC8YWN4wD87YVP8/mdk2Sxg8gE5XICjka4GjwbAWbUmASOCQquoeSnHGns8ObFK3zoxFd575teoDeyXs+7F1bZjqusRBO8e/oc37XvBR6sLzPn9TlY2cWM7PCUExniNw0xqY0HEIVVT3EMRWDVQ7RAG8Eg9dkJy6xGTU5UN7nj9A3C1OX89XkmgxFKGr50/jhVN8Ep5bhtxaBfwlP2+MWRh8jkOPsUGwU2VkyFAa0s6XP7EtV30EObH5tryXsaL3N3/QbTwZBHAsn1bIp/d+2tHK7t8uPHP0dLDTkyt82VjWl8lSMKexOglObKjRm6aZkrG9MIA+4wxw0NXt+gUmyRBF9HbkuGtGa/ppKxh3q8lO/2IWhrVGJQid3uZMJ+zyiD8QzpTI7I7X6lTcNgv7Qkqme9pxj7GpqxI8WSV0FeEaR1yKvj7xmroNrUBoPXVuRlQ5IrXr6wj2zk2XiuwFCUNaVrHmLLR2YC/3Cf2kphbxZ8q9waCc7I5tvKwlD4kNUN7sCglVWO87LdV2dkW9zcrs2eVX2HyTu3WX+bJmmBmUzpH88pfGhctH8LvZMFpUpCWrNNaHI8PHbrOBpln1e7gmh2bHcx9ryOZiRZRVBUNUVV4/UE7o7DiROrlNdtVnE/9nHHDYBFK7c3rY5GKU2rEnKw0QZgfbtBXrHHPVzQVqW+UKJxUZC3crKqYfMNUD/WYe7gLtqFZF9KoxQjOv99vu097OH/Ltgjt3vYw+uI5gXYHFS5PmghqjkisZ5M0UxJtfXXfu6ZMyAMxjVUbgpEOafZGKEdw87NJrrt4ZRy0AIhDTowqI5jo672xehaTtKy6k7lqgvzCU5oiUT1hqC0bdBaIP2C2tzA+gZHEmLFaNEuoxtpyZBdXrbv5HnVtpOpiQQxLkYA+KPhCQAyo/jFzp0URvB0knElm+Hl8/sRHY/SlmDYL0GiMIlCRHagS6Y2j/UWIRCJpD8osx42iAqP08Eqb2m8yunZDd5Sv8BDjeuc35hFCcOPTSzzzso5LkUzaASLftd6PD3N7v12WViVc0zkjOOgJDIW6JJGpkAhGO5UWF6don2zydPLB9hOa0hhOD65DZFiM6zR7lZAQ64VjlsQ7AhM6NCOyrj1hGLgYiq2AEDG9pJq1Hh/xmH8xoEisPm3SPtvFHmMtM8xfxM9Dp9dTqbYeHWGtbDBD9R3eCnaz8HaLkWkSAoHPWuj2uLIo3LW59WvHqL2pRJaCTrHA5KGVYlhTGoLuzSvlS120L4hr0LStK+xzCGrWaLZPySpbGkQkDQZk1CDKRd2u7X17gK3rSWlNUVeEtbmIRmTzvHPZPbztP7a/oMlpVnFMFqwqjZYVVhrW3pBZlcgTFAgY0l0MKV0uI9KoBKkJHVpXz9hCaRK7X7c2gYj7ffS8bG49VqoGIrAKq+1ZatuGmVoBhGlqZB4NofeuHjBFwwOCvRUSmVxQBJ7OBG27teMb/4MpDV7HLKKICtLisBYIq1BxYa0DsmkwRnY0olg1xDsCpLCofAFnfU63WsTREMfGUlIJCIT6Ewy3KnQCUukhaIbBejQQQeatGnQExkqEiQzBdGswG/EuH2Bv2/I3TNrKGGQB0ZMzfTpRYEtTtnDHr6BsHfG72EPryOSpmB0rcH2oIrjFni79k3P9Dw2BjVwNUufNtSrEVQzhvsNou2htUQsxHjbimBTkce24Skop7gdideRSFdTq0a4lez2sAtv6OG4ORjwBvbNfrgoiEcerpezv9kla+XIAoKpCN3IkckfX3o1js23RVhCUK3EVA/3mDu1hSjnfHrnNC+lMb28zFfaR/BUwa/tPMq/vvx2kDZrdXhAQ89FJBIZ3vL12upUo8xttU8NJcV2wJUbMzx+/Qif6d1Bt6igjWDa6RNrlyxycYQlr/987T18/NUznBvM858uP0hpU1Kqx0zs75D2fQQgIzkmPcYWFWhrtRBlO1WvNj2cvoL1gC+vHuJau0XDjfEmY7JCIcaNY2Hu4bq59XEqQz/2WWj1CTasRKo9m/MqtCU3xh3bOsYKpS5ZBfT4kXWm9nWpVyOeGBxlNZvgmY19/Fp/ise2jlE+0Ccfk90n24dYHrYglQwSn0otxqulFEMHoWHiFUvYRvsM4bwgLwniqbH/dew31c5rPlEVCwp3rJS7VvnMyxDNGOLZgt1TivaZcdRVbMkt2BsckQq0Y20GtmIXvD4kLazKr+zjMm4nk7ndhluE04jXfsYSfkNWt88VHspwVcHxY2uoekpWNZQaMbpub+Lunl3DCNjZrWGU3eYisIqxdiCrCrIqGGXPUxUJ4kmr4t4qtbAE234vL1lPty5rLlybJ+oHCDPOcq5lDI4WpAdjlKtJUwfd9uzNirHH7JZlJ6/Y43/rRkEmwq52eJBXbEOcEVBZsZnC7siS++W1SXoPJshIEWxLTKwoGjlOX9mkCWGPaTj0eeH6PrpXWrj1lGAqIq/b4op4ocDtSYIt2DfZReZQL8e8sLnI2laTVn1EfxTQ367id16nC9we9vBnBHvkdg97eB0RzWncxRF3za6Rb5VuD9t4u5Le1QncSsrND+TcP3vTkoSZBATEqXv7MeKZAmKr8Mw1BhgF0ZGUei3k1NQm0xMDivmEwRHN9xx5nnSzzPBojnYgmjaEBzPKtYSSn7ETVlADhVZwanYDbKkWeU2jK8XtalWhuT3gNQp93rp0mV86+Zuc3r/OIAt4IV4ikBlvm7yIIzWXB1O0exVEImnt6zJxuI2YSK0iJw1FTduBI98+blEylnzUNKaSY2JFtlXiv7x0L7954yGud1tUREpiHJCGG6MmP7F1J09ePsR0a8DLW/PEFxvEd0aU/JR7ptcot0LyxNaSmmpOMZmhfYNMJVnFMDU5oDQZkTdzirItXRis1xhuV0i0w9sOXeJtc5eoVyMOH9hiOhhSCxLiKSzLAZJCkVUMcuiQN/KxpcMyde3aKlrtWK+lUQZTznn37Dn+ycmP8t7959hOqzRVSLMccTOdpOYlLDZ63NVY5ec7BzlV3+Da9iQ4hp3tOlIYWvWRPREEbL8zscvzZUO0kDN8MCKaK+zXAuuzteTPEkF3aH8vLxviuZxkurAKvbEENlrKEbMJ2V0jhkdznPnQKrYTCc2DXYqKJqsZ8omccF7TO10QT2uMMyat0hLIW5YIS6gZWxbsa6x9aw2RuSCfT0j3p5w4ukajFHOkvoNSmnwxYX+rw7fcfZYDB7c5XV0nncsRwtD9ppjwUEYRWIJ5iywXwdhP679GzG95cYuSPdeSCfu6jRbtv9XZIdVXPUhtqoPbTHjfqbMcOrlOc2JErRqx0OohMkE4b26rwoX/dWq8grwsEIX13srcEuCsMlaya9byIHLBcMkmK5hEcebQKrqak50O7QBlahVp4xqE0shyjlQG94aPCgWOWxAPfGQoYde3ynYqSJswGYxI7x0ySjx6yw2q9YgHp1dsukMkCRf2Rmv28I2FvRKHPezhdcTDj5zj4cYVXo3mMfWMO4+scHZ1gVxLxJqNjgrKKX955jEOlHb5+OodxE2XY5PbXOtO0j4ouGv/GpthlTDxeMPkdUpvynCE5kxjjXvLy3zSuRNXaoJ9GYf8LUzFekODN+1QRD7/05nHeK5/gFHhcb3XwswmBJWU6WCICnKKmsRtJPbN1PfJY4VIJEi7pJ5FLlHhcYfrUXUT9lc6rKRTzLtdAJTQhJnHodldLoezuErzwPQNzvrzLA9nEKUcoQyEgV0adg1aGmQp59jCNicamzy9dYDOoEzaCVi+OUV1IqQsM17uLVCtR3TjEh+9fgbpGJTUGCO4802XeaC5wkuDRe6orjGY9XkhWyQrBKpkfcFFWVmbhYGp8ogsV6TVnCK1toxbQ2c3h00enr7Kktem261wemqTljditjxg81gDYkWzFBNlLofuu8lqp4Hv5nRFDdVXlvzUM4Q0mFjh7TiYWOJM2Pimw06bUXmFfm5zer9/6SkeLl3lZjLBVlxlWPj84cWH+cW7f5NPeqeYWAoptOSuqTWm/CGXKn3ahyr8zX1P8vO1tyOGPp6f830nnuPD5+8nFSWb0jD2Txf1giJQ+LuWxBUlg6qn6FxSCBcnVOhaxtGDmyih+Y65F/ha/xBT/pArwylmgiHXhy2qh1PKJ1L2Vbqcbc9x/9RNPr98jCSqIbCtY9q1xQZFADqHrGYsoW3kgGMHpho5OpHUGhG1IOGB1gqfXj3J+e4sRa54z+lzVFTCX578Ml+r7+egu80zJ/bzvbPPcD5eoJOV+eRnH7A3RakYJzMY8qrGKIljrCqrI4FxBHnJWLI/n2BcjesWpInD3bNrPFtu4jZjquWEM9PrfF/rKV4oH+C5/gGOVzZ5a+VV/hfxnVy9MQ3CQ8WvKdO3VOmsAqN5O0gYLmiCQwOEMCS9En4lhVlDcaWGSgRp03D0yAY/vPBl/oN+Cx+Ye45fvvIWdpcnSKcLcDRSGaTUtOohW4uKSiNiuFumNjUiDHw8L2e2MaB2NOHlK0ssBl3+h/uf5De33oicWeeDs19lWg3gDLywu0Sm93SsPXxjYY/c7mEPryO+b/pp5lSf31u/lzsOrfG9s89wrHYAbQSfqpwkyxz2tzooDD8x9SrL0SQrwwm+b+ZrfDE4wdXqFO+cPsdqMkFmFPNej26lzPHyBqf9VZTQSKHZX2vT8kKeHBylNd3HcwrunVqlm5b4680bPF26ykbe4GxtH+ea85RUxnrUYLbVZy1sIZUdaHH8HIKMbOghPI1ShiKVPL2+n19vzDHMfIaZz7nOHH9h35Ps5DXW+3UMsNToUZsaMYx9Siql7KaIUk6lHpPnikzaalwaGRiYm+7x9pkLfFP1HIt+l6c6B9ls1OhHAY1SzNeig7y4vES9HtHwY2p+wj37X0UbwXZa5b76Ct9ePUvDCVFoFko9LpWmGWqJ4xYkIw9Zy9ChA0IyTH2GowCdC4QA42soGUykWL45hRCGlUoLk0uGmc8qTRZKfcL5La5uTuE7OUpq7mquMh0MWRs16JdLFGPlVnkaP0iJTGCHjhJBkSse2z3OetrAlzkXerOMcp+Ssrmuz20vETg5Ye5R8VMGOmCx0eNkY5M7yzeZdIbcSCc5Mr2FJ3JO+6v80zMf5T9tvJHduEJZpiy0+qwkDmboQmGVUreakrsOUVnh9BVmIrOZu1pgKjlJAXcfvcF7Z17mpL+GNpKiLpl2+ryl9iqrWYvCCN6xeI5XoiV+avoVPmQe5Uemv8jzu4usVyrWhy3GtozQqsXBtiBrFXgTMb5TEFJCdewqhNNM8Z2CmpfQcGw6hpKa6VafR+qXuJZMUxaGOafLaTfmSHWH76xucdLbwBWaP5y+G9V18FJxWzUWuR3eCratHzyra2SqyGsFeJpmM6RRism0RNRg1u+jTw9R0nC0tcPDjSs0ZUJNRry5eZGD7g73+/Bvj/4W/8h/P+cvHSdtGpura6wdIW0avI64PazHfMyZ2XXC3GPVqVPzU/bX2nxl5TTJpKEo2XPmtLfJB+ae49urV8gOK36/fA/tyOYxayMoBRlT5RFpS1HyMoZpldnakGOL16iohO+ZeJpL6RzrgzoPVq/x5mAHNfsECsN7ygngcu/8k/ykupf1pPE6X+n2sIc/XeyR2z3s4XXE9XSaC3qBSzdmuevQTZ4YHOVLq0eIEhd9uQqHQvZVuvyPr/55vnr373K2PcfmZpPRop12PlzdAeCl3iJNL+LCYJZ+EjDr9flUfCfn+3Ocvz6PG+RUKzGdmw2Q8F0PPsOFwSzX2y04BAsqYS2XaF5TKZ9cO8BMbWgHitol8npKkdhiheb0kH3NLmmhuHhzluH1Bj8TfQuNWkReSEaRx5ONI2gjiCKPrOdzvl1hcaHN+vkZnigfoh8FmJFDVlKkoYdpWgX3+NImK207mt/OK2wXNQojSbVDw48RQJI7/Purb8Z0PYbKMFMdkuQO10aT5FrZIbMDhqYKWU+bXB5N04nLDEYBGEGWKUyscBo5lHN05LDRqZF3PUQhbg96yVpOkQvESLF8fo7rpRkoBJd2pjBGsL/VIcw8jBFc25xEKU3NS9iNyuz2KzYJQRnIhR0Cw7aTZZM5cqQwbY+z2SKvdA/SONwhSjyubbcocsUT9YOkucNOXMX3MyYqEf9+9W3shhWeSg5Qnkt5Mj3C+c4spyY20UbwH/sP85cPfImX1xbQ1yv87hlLEE0mUaFEJValzTwXr5YyNdehMyxTdXPC2ENHDqqco4FB5vO7a/fx9pkKz/f30U1KGCN4eOoqT+wcpubFVGTCZ9dP8Lcnn2E9qvNEeIRh7FuDm7AfKrHk3jgw2q8RpZypxpDtTg1yiS5pvHWXdEoy8nKapYgbcYv4Wo14zqNSiXm8d5yvrh3k4uwMrtB0Wy/x1a1DnDp7L7//ln9HV/sIV+MMpY2pC20UlswF4b6C4bGM6aUuYeIx8svIco4eOfQHJbJCkcQuR+a22U6rnJjb4uzZA6zVGjzv7ef54X6uDya5p3WT31h9Aw+2lnlX/Sxh7hEeS3C2bZoD0qaUaL+g8D0qq5LB4QIzchlmPuuDGqPIxxjBjlu1cXc1jb+jeHZ3P39v+F3UvYgr8QyXR9N0Y3u8s8iFVBIrTT8JGIY+/aGtU75ydpHBMZ9CSxb9Dr28zM7NJh+duIfPOadZCLq82F1id+4ZvrVyk3ZR8OWtI7iqeP0vdnvYw58i9nJu97CH1xEPfOIfkuWKwcUJm1GpwfQ8TLkAAxPTA462dnj+y8f5Z9/1m/yDz/w5Gks9muWI3VGZ7zz0EplW/NbjD+PMRNQeKxO/q89Ss8fFCwvUrjhEs3ZIp7wm8HuG+Q9dZToY8tnn70Dkgqvf9e/p6Yi/uvxeVgYTrK62+KEHnuBmPMGF7gxrO030roczHVMqpQxu1pk/us2js1fpZiW+fOMw2aU6WaO4rbyaRFGZDJmtD7i6MoO75SJySGdzRCQxtbEVoePZ/48UajKhXgv53oPP8xtXHiAKfYJSyqFWm/VBnU6vQqs5JHByVrea+BdKJC1rY/BmQ5KdEiiDt+WgfcjrBaKcU6nFhNfrtgyiELfTHmRs80NL1YRo5CN2PGQ6Hp4b3+YXMza/y+SSyiWP0f6cYMshq2lkJsjqBaJiExicnqKoaoynkUNradCeATUeXMPGgqnJhKCUEl6rYzyDM7Stb+lkYZXkcXyZSKS1kOS3srQE/qZD1tAEm5LoREJQTTAv1UmOxpihQ2nVIXjDLp2NOqqaUavEjCIPcbkCYlzCUVgVtZhPePjoVepuzFrY4Ea/QXurjlvOKDZKiJkEKTVcK+P1BeFigTOSZJM53paDe6rP2/df5FOffIDGvTtsrzaRoYLJBD1yQYPTVzjhuBEsh/yeIQen2myPKnSXm7hdSTqTg2tQbYeirDl6Yp2GF3Hlt48TT0E2js2SoUSXbcaurGUYLfjhe57gQ81n+Jsr387Xzh7B6SuKskakthnt1v4efsc1vnvuWf79tTfTHZbRWpAOPURoPdj+jmLqoU2izKFZill5bhHn0JCiEDivVNEO5MdCiq4HvubEoXUu3pjljUev8dTXTuBvS9KmQe4b0ajG7GzUEYmisjAge6lJ6Z423fU6IpGIVoLpewTrauzXtW+5Xl8wPJxTu+iQtGzUnrc0ItkqIxJrq1C1jKLnIgo7kOZ3BHkZ9J0D0q0yxjG0nlf0joLfFkTzBeU1xehAzuKhHUpuxvLXligWY6598B++vhe7PezhTxF7Rpw97OF1xO6FSbqbNYQG17MDSEdOrTE336HcjJiujHh+ZR/GMfza2sOYoCBOXdafWCS81GQ7rXGuP09pU5INPdr3Wy/pjU4TUbURYNozFPtieqdy2nfAe6bP8uTaAXA0S8e2AAh1wVcvHmZ1tQWFYDOt88b6FdJCUYQOJtCUSinfceglTp9ZoTMs82JnkfWoYXNdC3AGCrcncW764GhGvYCNXg13yy47axeqF1xMtYBMYoaOzdZNx0kJuSTNHTKjGHbL5Ili2C7z8vn97F6dQLc9trfqpIWiXo+IlnJMK8PrSJIdq2RhBFnDDoOVbjhMfsEnvtCgdk3ir7u4PYUzlBhnnFaQKopCsjDTxUymFBX7u9q1Oan0x0TT1URzGpELkskCFQpKG4Jgy0Fu2dimfDrDuJryVZfKDdvqZuqZtTcYbg9p6bFNwbgG42ryqh3KcjsKnSpULaM0GWECjbPrgqcRiaRy3QFhUJHA7xiCyz5ZalMSGLgQ2EGu0UstSq2IUimld7NBvlUinbYDhHnJkFVtAYd/OaCblnikfom3TV3gQKODCgo8P0fXc4qRw4/d9Rh5TZM0bRRdXjKUr7kYCY1yxJfXDtvmr9+YpPmCi67nNoO2koGnkQVkDY1R4MRQ5ArfyUky53Y6AlogHI0u2dY7icGRGiMhnssJtiXlZceS5FTg9BWV50qgBTtZFVcILn34BKVVO8RnPI1u5GSLKcnBBAxU3YR97i6bl6fIUgddSFQpR2Q2JcFvCzqjEv3zk1y9NmuLPQqBWa4gcvB64J0vM7HUQziaq1uTHN+3yYnqJjK2pSpFM6fIFcPIx9t0qS72uWNmw56PxjbiuUOBaftUli2xzWqW2FZuwuiOGJEKhocK0pkcXS1Ib1YwwjboobGpGIWwN7+CcZ0yTNVHVK8p3Laif8SWU2R1Q2VFkTRtusfoY3NcvjyH2R/ZFYU97OEbCHvkdg97eB1Ruy5RPYe8UXBoapdyJeGu5iqDyBY6bI8qyCslnJHklfP7kH5B3A1wIijqOWfb87y0vIg7BOEVoAV5roiHPvRdKjfBGQmkNOBrmnfsci2ZZrRWozXbpxWE/OT2Hfz24AzOlmcVVr/g+Z1Fnh0epDu0amh5MqTsp3xT9Tw/sf9j1Msxl1ZnuLw9hVKabCkhb+Rk+xKbXxopnC2PaOhTLNqhKe0Z0obN4A3WXLxdhVPLkFXrsTUjh+FmlS/vHKExMcINcpvzmcjb9bvBNZ/t3RplP6U6O0R5BclShgptWoSMJG5fEmxKsoZ9U1epjYrSrlVQndG40covEIkkjVxmygMOLOxSWhhSTGYY1yYG+G2bwzs/08VfGtpoqFTY6lh33MAVWoXQLac41YzypiFtGvJGgeMXdvBuvP+6UmB6HsNuyRKUcZmEqeVkUzmq49CohVSCFFnOKXyDUNaLLHL7nNo1JC2B1wdulsbpBJpaa0T9miGvGhqViPcePEd1sY/QgubcAL0Yk8+kyIMjitND0qZmc1gjM4o3lq5wpLpDqzmk5GWISOF0HKTQmGqOXoyRlcwupVcMeV3jqYLObhUnFOzcJeid0Ci/wN+R+KUMCmF9xfWCeDEjbYDZ9tmNyrz30DkOHt3EmYlsFnDPxZRsE97GoEaYezZb19EkE4Z0wlC5CeVV65cdLWlMIvmp2S8xpSrwrjbu/R3cRmLzljNJqRZzZN8W0ZGEi7vTfLp/JzIRqOsB+dClGLjITKBCSdA2hD1bDFI7P862zRXO4SHxrGZwKqO8Zuh2KsjxANr3zD/LT06fg/0R5cUhMsjRqSJbqZBOFPyFo0+zGHTRtZxWJURFgrRVILRNafB6drivsgpB1zAz3ae0oTClgur0iHIrxNyqhh6L93aQE9xNF2doz4msZgtARouarFkQbNvzMS/b4yYMljQvGfyJmGPzW8hk761+D99Y2Dvj97CH1xFpw8Z7qXrKzV6D4U6FSHsUhUSVCvqDsm0xGkH9om2zcmsJ8ZTG6Tms7TRxb/jI1C6dux2FEAYzjunqH4Z0JiePHUglBxptPr96HONoPKfg5ZUFfuPsQ1wM5yjmE9y+wKSKdr/Cuc4c+nKVqZk+c40BdS8B4I2BHc45trhF1CndVpz3HdxhojW0ZC+xAfYYYSe9U9vIBeB1raqZtbTN9vWtSqVGEjWSXNmYphYkHJrZxZuMkdMxxrdRYXnZoFYDNrYbHGq1KTJJvTVCpgIV28e+5fEsyhrt2PgrlUBpW9yOalKhhNwmBZhYcaM/QcVNmayGOH6BkQbtjwnxSNl83HG+rdexNgLtQHnTkhSZQNbzMUDnFKQNgyjnaC0QoRrbHYQtbHA1InRAC9y+ssTc0VSnR7aAQxp6gxI6sUTH5BIVi3HLmSUuWdUQzhnc3muWhcDNbbzXwojtTg2F5i8cfRqmEo5NbjM31aNUS5huDHnXkQvUj3RJcsVH1h+gq8vMeH0Wqn3CxKWyosgnM3p5mdJVn3I1wQtyW/LQ0Jig4Ob2BGLg4A1g/t4NfvibHuP00jrBwzukqYMaKDvAFeSUWyHxUooONOsbE5RVyk8c/hjfdvxlKod6mHKBcDReVxCdb3JudY74UGItHYdGiMJWBacNg9NM0fUcNVTosYvuX575HR6Yu0EpyCwhBLJMMVsa8OaTl+iuNPmj66d54E0XMUdGuLUUkUmKiqayJugfFlSa0e1MWq3s39OJmS3UXEhlMqR7yqDWfaTUxKHHncENAJRT4DmW2Mq+g/YM3/bQ8/zd1hVOlDf422/8DDUvwQkFBAV33Hcd/2SP4T77d9G5N2frfsHR5g7h/hxySZo6NCsRasIeAxyDMOI2yy2vC5vO4FhbQ5orvL5EaEFegXhfimglZHWNyMEZSnRgyBKHspOiQvF6XN72sIc/M9gjt3vYw+uI+EjCkaVtpLCZqtWpEdeHLZLQ5ej8FkVsiWRaM/gd698E0CWDOxCI1YB0oiBt2DerbC7FdQtk3wFH4xwYMjHbx92wPr1cK3Y26qAFm9sNgnMl/LMlzndnCcop2gdv0yFPFVUvodgX0+mXaY/KTAYjAmGn+N+9eJ6TjU1UOSfsB4gdj7KbcqK1Tev+Ldv6lYNJJHnPQ0WC0iYgIZ4rSCY0RhiSrTJJZAm7O5S2MSty6EUBC5UeS5NdWo2RVWn3hTbQvgDT8ai7MQxcfDcHCXltHOLvGqL54rXYq5q26qi0n+flcbtWJDGBRkaKnZUm19stBrFPHjmoSGKUofAsmd1s18lzaZeWR+MhKQHhnCCaM7hDgbftoNs+ejq1NwlaoEe2XANhCxNIbOuWKeeIUCFy7FJ16OA5tlZ5FHscn9+y7Vyu3XYVC4qSzYmVmf3cHIxu57aiDO1ehWhK0KxG6B2fYeHzd1tXODy/Q82xNyZx6NEZlag7ET91+qN8y4Hz1L2YS8kcN+IWnrK2luGJlL/yhi9ywN+h9NAOUeSx1OpSv3uXxr4eZBJ1uWSPewnmKn1+YupVTtQ2+fsnPgWMM25bOXrkkmWKA/t3uPf0NU4fXOPl3gIP+EO+r/UU09UR9ckRjlsQzRdo18B6QKUR4wY5WeRiFPQP2n12vZxSM0Z7hrq00WnvKBVkRiKFgUoOnibr+1zvt3i4cYV3PHiWNy9d5T2TZ/nzp57lb9/9We656yqVxQGjBUO8mHHf/A10WeN3bOauX0lxZEGrHhKNPIpagR77Y03P45c23w5A0vcJYw/hasoH+jx8/wW+ufGK/Xs0ir/SvErTC9E+iJHDtD/kPQfOUz/RtrXAtRSxGBHmLria8rJDOvSouinKseq+Gav/xrctatGcLc3QDiCg5NnVD9VKiPelvOnUFTvQV89IJwvyikGFAv9iia2wdttTvoc9fKNgj9zuYQ+vI771zEtM+CFZaL2Vb1xYttP3hWRfpQuptJWl8xlpTdxe4nanItJTIe5AoJopacMwMT2g2owYblbxehKUwfdy0tyh2B8jJ1JeWl5EBgVOXyG3PeIZTXgkpeYllPyUeD7DHQrEpo82gkYjRKyU6G7VWBs1eCnZxytpxDdVz3Nf5TrKKVA7NmHg8sY0K4MJ3rf4CrW5gSWisUJoYdWwcWOXEQYxmyDKBRTAuOc+H9exogXDYcDKcIJuFJBk9p24Ukrw9w3Jywbja1ZHDahlxJlD1srRtdx6aV0QEylGGQaHQA0kRQlG90S3a1IZq7AikojpBK+jCNeqdFfryIFVVdG2oSovG/KRS9ILLKGdtdFPMn/tdSxKljQbZXBL42PYd1FDe3OiXUvKZSxBw8TkEBxjj4sL3q6i169QqcZkqVXXrGVhXGWr7PHJy7aMQOZgjEDe3YPpBFXJbIrEA0P21zsECyP+6dzjADw8dZXVsEF7UEHsekQbVT6xcpp7/C1+dvYFfuvQ55l1u7zSnWc3rvDW/VeotkLm3Q4fXn+ID9/1f1KMXO6ZuMmBRpsjrR3cZkzhAbUMI+DZa/sB+Bdzz3OHt8FEPcRZDFlYaCMyQb5douol/IN9f8THjn+CXz30ByznwkaMaYnvWhI7e3QHuRjBfEwceSxM9mDoUJQ08VJGHjmkiYvWgmOnV1HitbesupPQqoQszbept0YIv2B1ZZJryTS/su8r/LvFJ2nnVY4HG/zFxnUeaK4gha2r9uoJVScFA4O3hXj3dmhUIjZGdUaJh2n7HDi0jXENWd9HxoIXtxYAOHxwC6U0pUrC9x/9Gt89/Qx/2L6Xv795D+dHC7hCsRR0iQ8kGE/TSUt8R/NZGqXY2go6PvnQJVC5rRougEJwrL5NsxqBLd/DCFvnrIbSNroJiGbtDV0vLBEvZdSqEc62S8VJYce3g47NFONpVCwobRraozJ5dS8tYQ/fWNi7n9vDHl5H/M3pL/DPN9+Js+tSOt5FG8H9kyvU/ZiSSpG1DHfoMDEzwHyzQF5r8k13vsLl/jQTfkg47zFbGvCUd4D7Z2/yuQsnELkgndC0pgbMVodEucvs7IC0UDx/9hAP3X2Zl0vz7Jvosj2q8Mj8NX5w8iv8bvcBvlY+gHu84PylRfZVOuyEFdtYpWGQeFyKZnmsfYJ7Gyuc8NfxvJyRr3F7kmzXZy1rsjHZYKnR41LoI6Qm3ywTH0hJRgpnJJGJ5J79NxikAVc2p2A9IE8dTCu30+R+QaUac211CpMqcDTkEuEVNJohUTODTLK8PglGMOyVCCZi8kxRHMrRmaRcSaGSImYNo35AeqDgjoVNzhaLiI6L9jUytdsipUYrMK7G23HQymbBitx6cwUgYmn9o1WNKITNRdVWOcunU3ItKDVi5pt9AK4eCsDV6JHC1IpxI5eyKqtraJRi+hMJecmhGDj4bUnaczHlBG0EnaTMwsEdOsMyUS+wqQsSkrkMHEPkK0wquffQKqujBje3J7j/wAqezPm+6af5bfUQzycV3lbSNFREOyojhEHNh2TdgN7NBn9w9A5+bGIZgHeXN3h2coWyTPmRiacJZ+CIW2XG+TzH3Qr/+m2/wR3eFj+w9QM0/JgP3fFVfrn9TQgB8YkYE7721vGz6+8GoF6JmSyFZIfbtF+d5Ea3iTpgb2CkEPwfu4+yFdfohCUG3TIiVBxp7OJKzf5ahycuHuEDi8/zOf8kZSelpDIGuU+gMr70wkn+4t0f47cGE/y52mtdsvPlPtoIjjRyKospH//a3Xxy+RQ/O/sCYKPlZt0evnBZjlsM+iVMoDk1twnA0rEtBrHPXzjyNJ/YvIN2WCLLFEfOrPJPDv0Bf7H9QzRrEd3dKb7twFkAFitddoYVqkGCFJrH+if53IUTfOcdL3C4tM1Lacx3NJ9l6sEhm1mdWbfPI4HEkwVzZ7ZYuzLNocMb/PjCpwlzj/ykZL7U5y9NPU5UvIPtdg2dKnsOlQukV+CXUsIDLtWyVeSFMGT1hOOT21y9U3Nj1ESXC3AMf+eez/Dbqw+QHbI3Wi03o+tlfzIXtD3s4c8o9sjtHvbwOqImBYdLO3y6kTPslXjFm+OHDn6VOb/HVlqnXEko/BKnJ7fYjSv0ZIN/vvB5/mr2XsLc410z53BFweZkjdxIjixuUzqQcXZ5gTumNlDCMOMPUGikMEw/MKTuxJw4ukmsXbrVEifKG9zve7xaXqVAcqq0xseclO9sPceF7iymluOWMowR3Igm2BjVWRvdSTLn0ijFVI8lbL06janmoAWfuXqC+Yk+pXJC2cvYDD3m5jvs9ipkbgB+wcnaJt2szDDzWEuU9b+6GvyCctX+3mBUs5Ph7ji+K5X0RBkhDfgFom0VXyYTXDe3GbOlmN6oRJ5LDk61CVTOkf3bnO/P4YiCWjOkryuQjhMTygU6U5ZYBwVZVaEiq9jeIrd5ySYFmExQmxswvFEnX0gxoUJUcxZnbN7vXHXAfKlHLyvRX+oSJi5JyUUpTTry0CWbtiBczTDxMYXALWVkBvLYBdcQjnyMFvTigEYQU57ocWW1ihHjCtkG1CdHJOOJ/2OVLe6srfL/7L2Be+s3+Er7CPucLofKu/yz6+/j7uO/zUrSwlUF33zwAlWV8ImV0zwwd4PfXHmAv9a8hhKShizxLfWXOOz2mXeqt8/P95QTVvIh768AVDlQ61BzY476m1ZRTiVzix0enF4B4GI2Yj1sUHIzdgYV1qnzlvnL/EG3ShR5vBDv535/g0+Fc7zSnWd5q0WeOBgtwNfsxBWWql3e1TrLhakZ7i4t05soMSgCPjjxJLFRhNrny+WjlGXC+yshzyYp/27z7fSygE5SBizJ/f6ZJ+jeU+KV7bnb+7MaN5l1+/yHns/1wSSun1NvDXlk8jKng1UeqV/i5y58M1UVc7DapuJUicou759/kTNewg+dfoqWM+RfXPg21uImPR2hjeRIawdPFXxu6yRXNqZh4PJz889xPg35qdVv5bcOfZ6mfJlZJcmMBiocqe/wSP0S/0Z/Ez95+KM85Lv8k/0fpatLbOQN7vAc7qzd5LnaEr2ePe8nJ6wyD7AV1qj7MW+evMyL/SX7upS3OFNb43ev3UNlKuT41BZvLl/m9+S9vGP2AhPOiJVkElfsKbd7+MbCHrndwx5eR/z8zpvYTms05wb0lhtsFk3aS1VC7XG+P0eSOGRHckoq48rmFCbQNGSJ3EiudVoMsrvwVc713RaXLh/g/jdfoJuUCC4EXJmZIkpdHKWJM4f9zS77Kx3+83P384ZTV9mOqhystvnPq/ex6Hb42vAQK6MJptwBG6M6q9kEg8SDXFCrRoSxz81BEykMNzcn+KQ+zSjxmK/32WhmiL6L8TVF22W1sMvF4ShAugVbu3V0onC6irwBj28epTCCMPGQrkZs+HaptZWSxC55LhHlAjPOeDVI23i15VFUNHgaxokGUsJoGNh2LQNJ7GLaHrvlhCRX7K+0KbTkUneaJHHsMq8Go+zvm8iu8Qph0KWCQtpBM7B2AOPbfFGd+LYlzDUoV1NIO7y306+QDH06vQrXSi3qpRghjF0+z8ZJD5GykU7jOZ52p4Lpe2Ql66ksKhqkQQ9dRFAwij0GYcBkbYTftp5drwtGOphZSCMXoQzXo0kabkR+uUb7SIXlzgR/I/lzLFW7zJd7/EL7ATbiOlU35UenHiczku20xq/s+wr3bX4fP7l9Nz898zIAUmj+YHAHUmj+etMOS93Mh/zy7sP8+NRX+ZGr38XqoMG7l87zfHjA5tjuuHQbZfbtawNw3K3wrtlz/Jcb91AUkjBxqToJ33nqBXbSKqH2+UqsuZbMsFTpslWqMtISz8+IBj7Xd1ocPrSLJwo6vQpPhUc4O1jgSmeKN1Uv8/PXvpn9tTai7fHTF9/H++/9Hf78U3+Jh/avEBcuriwYpj4X2jNsTdf4S7OPs9Jq8VgkeTWZ51p/ksWgy1e2D9OPffZPdThYbXPM32RR9bieTtPtVPjdtfuYDEas9JooabgQzvHT8RSZUdxMJhAGHr9+hJ92Q+v9BrQRrPYaOG7B/FEbsZchiXObvtDVHkvKUJU+AAt+F1fkvH/pZZoyZj3P+aXtd+LLnJc7C1yevcCrwzlyLTGhg9HQVWUmgohrW5NkHZ/K3IjF8hQX2tMcmdjlmphmmHv0VhrU9vVxpOaXtt/G5ReX0HcLGl6EIzUHyu0/0evaHvbwZw175HYPe3gd8TufeoRiLsXEitp1RdKS3Ewm2IhqvHJ1ESfIEZWc++rLXJmaYnkwzWOR5Hh1i/Pbs6xstRArJeThIXox5mtPHadyuEcRGNZWJqnPDOls15ia7bM5rHF5awqApy4eQjoauWBYeWWef9j7DgIvo7PaYOdwlbVL0/yKfpT2Zh0ERIlHlinawzJFITGRYvX6FBgojED5BYWvEOP4p7zt20zS0LZExTO5LTUIDDKRbD05j1GGrKkxpQLhWz+hjhzyTJMXLpXpkCxTZImDySUyFhgH3K7CCEXeLBCZQO/4dqo+FiR4GBcqNyW7cgIZCx7jKAcnOoTX6iBBuNZmYRyDSC1pNhK0cKwa6RjU0Ib7owwikehAIiYTeqMSuJqi56JGCp0JsiZ4qy5B2yOZKLF51KOIbDoFBrQWr/kkHYN2JCJ0cSKBGUr73IG2fstQoh1NuFNGhoqNGQflGYIdWymrIsHwZh01lGjP8Fh0EqeSUZQMH7t6B/mrdVZVk+XpKQ7s2+FIeYdh5lPzYlyhWc3rJNouT3/o6BOcHy3wZFzQUjEvxye5EM7x/ZNP8Hc3HuBfzD3Pc8kMH5x4ikc+/D9RVDTNfV2Ghc/KaAK3FeNfrTKcDLgRt4ArACTapR8GVEoJSebw+NZRfnDfV3l48hrH3Qq/MZhmUATsJhX0ePr/fYdf4bM3TiCl5vqwxbS3QJFKfvPKg/SvNDGe4WfVuym05IXfOYM5WNB9cYpfPTzHQqvPfzr4GD968024QnOhP8Mo8fiD3fv4tskX+IH6Dm95+Tu5cXWafYe3uR5Ocn15GhEp7ntolVHuURYJv9e/j5d7C8htj0v9RS43U+RqQFHRfHIYkG/ZATpqGdUjPZKzTS7NzbDcnWBfs0vTC9nX7PJga/n23/dHug9S9yKeTVJ+p/MGsuazLKiQF9M5BkXAWjbBrNsjEAW/2n2AL37yHnueSPg/qnM4UzFFLhFBASMHc6PMxaGH6iloFETXa3xm/S4AntmtIbc9xGIE9YxGKebsxjxCGJhJWHlyiaxqoJlycWIa7n7dLnN72MOfOvbI7R728DpC+4byeatapk0b0P/i7gLrF2bw+oLK3QP6F1pcimbJtaT5ssvfnv8eGqWYiXLEzX6AmU0RkYvJJFQLBu0KznjFvt+uUJ8ccWZqnSeWDyHPVymd6eM6BaPQZ2tQRQeaqB8QKw88zWa3htuX7JyfQo6JV9QNEJEi8lxwrAIpQ0sMhyt1mwvraihrMlfhdB07XDUUNuS/kWG2fJyRIJvQpBMFlZsK40hygyWVrpVLRWJVTiEMZlx+cPt4BRqv6+CEEAZjH2zJVpiqGNK6AWEQGvxtRVY1DHYqVKc3qF2TFD4MD+fIsbIschutpV2D6toYJ1FYC0BRtkM7MhWw41K0cqJEIWKFv6mQOWhPEbsuKhHIbDy9bgSVSx7RrLZEeWSfS2bY5XejbPZwLpAp5FUDQkAqbGRYz8EIm6KQ+C5K26GzrAKlTZCFwgjI6lC/6jLc50BZEw199n85Z/l7NZVXfdgHrwzmWevXaZRifnb93dwcNbm23YIDj1t1tnmDD628lS9dO8JDB5b5q3Of542Bomg+y4+vP8TnVo7zj+74OPN3b/Btiy8xLAIyrbi0O41SBpUAynC+Nwd2vopnOgeYro2YKQ+40rFE8ou1E/xQ3aqZ06rPTdUC4M1LVxnmHj8z+wzf0XyW/33rrTzzX+7Ee1/B4X3brHUaMJPgOAUbqxNMz/cYnMpAGAglL4dLKGknrkoqYy1qsFTpcldzlcwofvbyu3nXnR/mfQtnWZ9q8Kmrp7hn8iZ3HF3lcHWHh2uX+cfPvZ8fmSv4ta+9yd4kqXFsXT9ARQKkRK+WkVow9YKhfcbH1GMal2HngQqO0iyVu5RkyvHKFh+oP8f3v/xDuKLgt87dzzuOXuBfrb+LvzT7OI8Ekk+Gk/zr6+9ACsOj0xlPDI4A8LnNExgJXlcwPJpRmQ4pConWEmPssKIzFDhDl6xhW/CMYyjdVLaJ7LzP6ECOf6nMqbddpR2VibbLuD0Fi7Ft1UskuudSPD8J3/ondlnbwx7+zGGP3O5hD68jSgcGTH6+wu5ph3R/Cj2XtRuTltgpQT1I6CnDH37pAYxj4HhB6clJrh9J2be0S+lCQHgoQwwUKheUjndJXmlav2jXwe0LRn7Bq50Z0t2AUgF5ZpfTi9ChnyirTjoaBq5NXuj7VHuC6FAEWwFuR5FXLfEqSsbGWY2X13VZ43akDaif0JjZxDZTZZAFNkpL5lCMHEptOY6yUiQzBXkZaysYx2qJTKADUCOJdgyjXgkzjs4StypoNSStApkogi1JXjEU2FzSfMJaDWRmSaNMbb6tThQaQbho0I5BFAIVCbQzrtqVNh/XZt6K24kKJrM3Hwj7mGLLpajZalevD2kdShsGtGPbtCZtUUORSiprhnDJ2h6EtvaG21m14zIGMBgpLIHO7DblFVvHm1dtQ5czUBgFhWtV33ja5vmqDMxQ4Hc0gwO2sWpxtktWm2Furk3y9AzaCJ65fBATKjp+jWV3EpPaFI3vvfoOPnL4cwA83LjM9ekW3zL5MsfcCKjwSCA5PfM4X7x5lP+4+gh3tdb4u60r/MTWnXxm9STDnQrkAl+AcDTrvfrtc3ptWGeuOmDGH5LWHe6aXufszjyPTUveVtLMqCFnSjc4s3gDlwIlNK5QPBLAX9tYwn10l4vb0zywuMLVlRnqrREA+W6JYeQj/AK15uPvCD726p3otscvLuzj8dUj/PnDz/DOyjkWnJyyULx1/Qf46GiWvz95CYC/nPt8X+spbtQmOext8cXRSU4vbHDA6ePsuDaL9s4ByWYZpy+JlnJEKUe0PUygGRxQBDsw6JTJDglKiceBpvXAVp2EsPBYK2q0V5v8TnEvlXKCEoaXt+Z55EDGVhHz2ztvRgrD9fVJBonP7oVJnpvdTxE6lCKbX4syNMsRq8uTiKDAjBy7suGNa3k7chyrl5PVbHqIihWynuFdcci1ZKtTs1YXha1DLhd2cFIa4smvu2Pcwx6+AbAXBbaHPbyOKPspK++1SqG5VatZCEzJtg0lhYKZhImzAm9XUd3fJzya4pRyVreb6HsHVsUS4Bwa4kgbhJ8dthFCecUgbgZsXpmCQJNVDMYIwp0y1Ytjv6tf4LgFxi8oBi7lay7xlOHo3DbaG+cQSRC3CwmkLR7QNp5IaKs+eh2J6XmYSFny9nVXE2/LobpiSCaMzWkdSbKqtg1cWtga1HGTksgt2RNtF9V3cLsKZ2CLDEQuMIG+nWGLtj8rC0HezK13FciqkE7YmtnSTbsMP3n3FsVEjkytUiuMJcAIS3q1Z79mpM2OFblVdo0CBBQlgxrY/ZYpFGVDNGsJKUBWtzWzxIrBfoEZHzuZ28cESyyM4LWbA9++dmac0HBLpZaZtUqohLGqDSq0NxBFYIspjAPRlKSoFtQnRxRG0P2+Ae9aeJV4SrB6bhb/mo8zVDZTVxpmF7p45Yxnr+3nZ3ZOAPDt1StM+CHdosznwyV+azDBC0nChCrzr858hHuaN/n+yScAUELTG5QQXkGw7tC7MwMtSFN1+7V2VcFSuUtmJKPc41tbL7JY6/HE6BgAsyrjQrzAPqeLRnIuXuLfdA7wMzsn6HfKVP2U5EaVzbBO6ZrHoF9iOAyggIlqaI+jsq9vMXAxnubnvvZOOrt2EM4XBQ3pUZUBb5hb4VOdM2TGDlDdUV21x1dovjw6wWoyQd2LiI1k8q5tirLhjrl1jGPIqxpZyTC5xOvYCK5osWBwJIdYksxluE5BL7VZu64o+OSNU/zi6tsJJiP+l9N/xEQ54gvXj9HfrvLhwSy/1H6Qp24eYMIPkcpQ/MEUulpQfq6EcG1dsTMyiERRcjOcjoNJ7N+cEwmyurYpCHKc1wy4AwGFIJ4xVJ8tEU8ZNgY1sp6P6jsUzZzZ/W3mFi0JDzYd0vm9tIQ9fGNhj9zuYQ+vI7aXJzh8bINk0iAihbfp4O0qZJDjNFP6YYAeOew+mJMejFHCUG5EmNUStadLZKn1dqrIDlNNVkLSpqFcTWwj0UQB+yKo5tRaI/yOQCo7jDU8kVIqpzhuQdaxvlV/07FK4ZgkilyQ1zQyEWjPYBz7IfLXMljzss3aRILblTh961dVQ4nM7HK80LbwQEVW9TTKoEv2sW7leAK4PYnMLV+3pG9sVTBYP28qIBfE05q0aTCutQ6kDbtPspaRTWVEiwV5zYbXCwM1J+HhmWtIv7DbKhirquPWJ2HJaTJV2P1x7c+ocJyYMD4ewY79PKtbwpo2NEVgl+dvKbAykcQzNobpFowytzN4GZPn29tQYMm1GnNeYXN0hbHZwM5QUPgGv2efwxmBLKxqF81Zr3I1SGj3K7zjwEXuKt0gnrU1r+X1MZmu5TQbIx6ZvcqjB66iY4ffvPwAv9qbIzSGYebz++v38L9d/mb+yYvfSleXCHXKGW+AL3MOOBEAH2g8y4fOPME7T52HOwccPLhlizrS1xb9Tja3WPI73BhNsLzVIpApP770GXazCmee/CAf7t/FY7vHeSFe4guDU/z++t2spw3+8/V7IFbcvDRDeVWyvDtB2tSYYlyX7BqyQrE026GoFaRTOU5PoQaK0qsBQTXlD1fv4rd6D/ILnZMAHC9vcK0/yXdesmvwv3n9Qf7j9pv5/e37+E9XHyQqXM7vzvG7/fto+DHOUNBLbeW0qRaw7ROseBgF9dO7GL9A1jN73jiG3rDE9eVp1sIGz3QO0F1u8sr6PMdmtjno7nBzewL9ahVVzvn11TcBduWk5iY06yGLH7yGquQMjmeYTOK3DVlNoCYSXFmQz6bIUo4ObFwdzQxcQ1bVaM/g9JX9Wxn/nYQPhkychwfnVmgtdgl2BU7boeYn7Kt1kZHACcFf9f7/cwHbwx7+L4I9cruHPbyO8HYV/TggmcspzQ8JznTJlhIqtRjXywl7JWSkmJjv418N6O5UCXslvL7AGRnrYx0qisAgpWFlZwKtII48S7YiiR9kuKWMOLZT29VyjPQKRKQIBz5aS9y+gtiS0rxkcAaSC9fnbVOXO1Y1c0sGjTK2RQpA27Y07Rq7DWMFVmYCJxKoBNyhQTuWrMkcRovWGiAjSwRvk1ljFcpbFgTj2mxXIywBlJltBvM6Ch1Y1RfAiSzplX0HIUA4BpkI/C2HdLIgXCzwZU43K2NyGwEG3CbPYqz+IrhN3vWYdLtDgUoExtc4kR3qMhK0eo20CzO2HYwrgFVsST+5jTAzCpBQ+OOnzblth1CJJfwwfm7BHyPfZlzgYKS1QahY4A7NrRZWstmMYEsSZw5pJ+Ar64c4Hy8gJ1L7mAq71C4M9SAhM4p7aje4/+Q1PCfnp7/6rfzy7sN4qmB5q8X2RoOkXeIT/bv4RDhFW0MnL/Op8DCfDH3W8ganglWUMMw2BsS5Y+uJ2x4/vv4AW8UIjeBKOM1ye4LpiQHn4kUeCTK+snmYWinml156C6PM44vdk0TjhIOLwxmOtnYQmV2hCBc0+UqFol7AuKVP1TN221XmKn1EZm9KWmfB37U2GdfNUVLz+NZRfuXlR/nRm28iM4o4d7j6uUN8x6V3s73W5LMvnOapqwfpbNe40J1l50aTX336UW50mqgULl+ct1adUKGrBfF8blvvEg8ZFOjMDjeiBVnk4uy4XNia4dzaHNRyKqWEN05c4+P9e1iY6hK0BbrtcXV9iqfaBzFGEBUuhRacqa8hbgSIXOKvO+RlQVYFP8jItEL0XXsuSDPOmxbInoPXk7h9u8oxOpQhR4qspglKKVuP5pyqrLNY71N4dkVgmHpc605SXpcULsw9tafc7uEbC3ue2z3s4XVEcSSifbGFnE6Yro1o+hEbXs22NjkFxYUaxaGIzkYdX0Kw7BEvZURLGUa5lNcFbt/QPW1IIhfneoDSgqTnoVJhFR8tyBIHZ9UnXCyoOQU6Vbh9iej65BVLaEUuSKdz6uddRkua0hWPtGVLC0y5gMSxb7RjFVLmlpzeUlfzisFh7KG9tX8+FIElVyqyn2vPUNqQaMcuvRelW2vx4yYv35JZ4xjb0iXtoJbQ9usqEmQ1gfEMqmN9iCoWiAKygYuM7DKy14P8aIbuetwMm1zencJECpVaJVA7Boy4bRlwBpKiZKw6LKxSbKQdKBOxRGTYClVjlVNC65c1ORSBwW8LkuZ4qbgn0a5VrtGWoGvXWCKeC4qxBUJkt0i/vWm4RWplbvdHaENW1zgjYW86xkRVe3ZgTh+PEcaj26tQXnYI16b4XX0PuhDUViRg8HqQRA4b3TrdsMRo1qfspNw9s8Yrao6PLd+BqwrydgCO9RT/l/P38NXJQ3zH4ovcDJs8s72fB6ZtyUM3L/PJc6eROx5FWVPZkqQNw0dfuYu/PPklCiOYCQb83N3/GVfk/OSlb+fh8iXevXieP1w+g1QabQTXhy3eMXOBpOrw1bWDgH3Nk9kcGUuCTUk4k+Ju+OSRpGjkkAu2whpeW5FXNELbYyILGEUeVEIKLSlyyWfOneaZyX1MV0boN25zdnUeEUtK64pwSYCnWb4+TbDh4HdgcNhBH85pnHMI5w0qEaR1gS5pin0x5moNM5vg3fQI2oKhAn9fRNSS5N0AVcnYv7CLkpq1pMkr3TkenbnCh49PIwqBe6XEBWap1yLObc8Shj4fvXYn7I8ovVwmu2vEcL2EcQ1loBcH1ueejSubPY0YOLfPEe1CXtNMLfbonZ1EG4iu1BEzKZ/YOMNqr0EyZS0MG9cmEVpQHQ9vdo+4f9KXtj3s4c8U9pTbPezhdUTR9/C6EiFhbbfBi1eX2FydYOdmk93dKjIVeF5O9bKLE0LQBhEUiFhhpEGmUGobVCSRqwF51aBiO4jkRLaG1ndzTOhQ2hSYasFut4rsOWRTOdqB6rLEGY1tBq5BxYaiqtG+TW9QQwmFVS1vJxc0M4qytoNQsRwrlIa0VZDVrZypXfNa3S3gRPZzFduBL2Gsp9So8TI9VrXVzmv/l9nY/2qg8A2Fb/29KrQDYEXZ2IEax6q83o7C60qSKetNNQacnuTSzhTJxTpqqKzqB68puGNVTKUCty+tz1Uz3gdLqv1dRVG2x1tmlng68WsKtTuwy71GQTaTkdW0JeNjFfqWOq0dS4RvKbJ/jLjnArRVgIvAKuW3XhdnZGPQZApG2WPktwVZOyCtG0zXo7pqSFua0SsTmFyivVs3FnaFIN4t0bvR4POvnOSr1w5zsLTL/3DwazhS0+lUkaFEDRRqKqFIFe1RmV/87LvYCmusXpsi1Q4T7ojndxZx1n1Km7bhLdgdK+huwR/076HqpDxSvch7ygnvKBU4UvM7nYc4Fazxy3f+JxynoOHFnGhscS2a4nJ/mjD0GV1t4DRT3I5NkzAS23wmrPocLHs4XYfllSnyskH7hrRuVwriln1+KQxzlT5HF7YB6FyfoJcE/MKp3+LQ7C4iE4T7crzJmImZAWhBciRmuG9cjxxKsgrj5x9XNKcSnSmKisYkiqAtqN4sCLYkjUpEbWaILNkSEV/lbPRqfPbacRypuTyyxFbkgnSqoF6LGIwCht0y3rky+dk6dy6tklcNjVoEAsqritFmhe3NxthXLmxts2NXVHQ9t5XQiwn+bEg9iKmc6iCy8SpB1+XS2SXCGzVEK8U4Bn/bwRlI0oa1EQ337w2U7eEbC3vkdg97eD2h7fJ2MXDJdwPcTQ9318HfdCifD9CuIQ6txcAoiGYMpYqt3NSuXeIfzkuKiqa2/NrgkkwhL4Hr5ZT9FJQhq4FfTXDOVShtSoSnyRs2tUB7BjmVIHsO8aRdTs8rloQJA6qvUIklXyKTSEcjminasQNiwoAztE+uG7klltJ6RuG1pfisbpXQvGJVXONw2+IginGSgGcs4U1tTJczEqjQWg+0Z8iqVvV0e5KsXmC8cbLASBDsjhXPTNihq57dgGgQ4A5vqZ7m9pCYtTsIDJCN/blGjT++zrbgDridwiByu50qAXdkH0fmEE3bbZiYGsDYSmBtDmP1N7dEzO6stTYUvrltyRAF1oYhoRhPxWvPPo+K7XnihPZn/a4lxV5b4XfsQJ4Zx6kFO3bwL22YsZ/XPqVTT5GtBHfTpej4nB/O8WDpKocndjGZpGjmYASOW1Cux0QrNWQiSAuFGkmu9Kd4ebCIrwpEBuG8RszEt1Xp6YkBn9k8yTNb+5hRAwB2ihH/8PDH2Umq/K/n34PC8NDiCuc3ZulnAS/uLLDabqBziUwF1UqM37avezphqF1y7DnigDewr0dww2a5GteQNgTxlCE5auuXAdLCYbbc58i+LUQzZWN1gjcGinfNnkPMxbSWugR+xkK9z/Fja5SrCV7fnlu1a/amIG3YGzu/LXGHAjFSiHqK8AuiaUNesisDg8gOk7WaIxynYLXXIFqtkmcOD09d5eX1Beu3nkgpzw9tSknsMDPTs35wLTi/OYdzss/OzaZ9bTuGYN1BDBV5K0f6Ns8ZMT5XtLUaOG5hS0tyh4fml8lnMnS1INi2SSJC279//IJ0oqDwDcEuZK0c79DgT+Bitoc9/NnFHrndwx5eR8haRjphqFx3EOMpfsbL74U3VvkKQWXdEO7PSRYyoqGPqeTo/THIMSFzDNq1RLC0ZZdU9WxCljoMYx85UjgjmKqPcIdY8lnYoZi8ZJXaucmeLVaoGfxNRVHW5OOBKcZzV8YzGGljxITgtoqEseqaM1AgDEVZYxxImxrtgt8RZBW7jI95jcSmdauOas9+/Zbn1NxKQxjDKr5jr6qnyWvaWhH0uJrXjInfOBO2smaJpL+lbKxWIsmqVu0z7ngwTo0H4fR4ewJ9O8HhVnKC0JZopk2Dv2tJuVXiLDlNa4akVZA2xq+VY3CUpnLdqo+3tz8fE+nkNdVaFON9VpYcGmU/L0rm9qBeVrH+ZLBT8dqHaNaM7RzjG4WyVX27x8H4BdGcwQQFhQ+V9QJ3BOlkwZ1Lq7z18GWy2YzS3JCvXTvAq8kC75o6R1BPqEyG6LIm7gakqUI3MhbvXUcbgViI2QnLbEU1lNTkVYM7EBgtcGLACA7UOqy8Ms/h5i59HfDxMOBHrn0HD/o97qytMrhZ5wef/4s8UL9OOvBYGUzQ7lUwRuB4OUVN0+vZ+ty0rvGO9NEuuD0xJvb2XMkrhqCUokaSpGlI5nNmpvpkQ4+NXo2zNxd4cXORhhexf66NiBVfiTUNFeH7GbPVIUpqyk7KUqXLqFMiqxlK6wqZW3VejT8Kz+6nKARBOaXWiMimcqIpgd/XjHbLjIYBJ1pbOEoz2qpAM+OnHvgod5VuUA4SvFbM/GyXPJd021W8SkpnUKZ19zZ52RDvlNBa0npeoUuawQFIJjXG14hQWZ+4ayCXaAfcbRevK9FrJfyv1NjqVjla3sKrpHhbDl53HBXnGLS2SQrUc4xr8LsGWc6JusHrcn3bwx7+rGCP3O5hD68ndsfFBjWDO7BtVVbxNCTTBUUzx93w2L7fICsZcugQXAxQ5RzHza2/1UD1ikO4YElRMiFIGxqTS9jx6W/UcPt2yTLXkrhliGdz26A19rSKQuCMw/DLG8JaGio5zkDetgxoX4NfIErWFlEMXKRfoBt24Ebk1g+r2q5dXo+5rThbomtLCETBbVJblMxrloTxkJXMxscgsCQzqxnyqkH7Y0tDIjGlgrSprRo6VniNgHTCqqG3CLRMwQklTtexA27RrUyu8fG/ZQ8Y/18Hr6m62htvhw/ppCarWsKpYntzoH3IGpaEFIGhvG7V7u31BsGOPR7A7eEvYV4jsdbWYIfV4NYxsiq4tS2MUynGv6hSu8FJy5CXbaRaPj52yeEYlVo7RKUVkdcLqpMhOtCEs4q8ZK0sk35IyxuxsNjmHQcuwrbP723eS0UmNCrReAjR4G05aC05vG+bMHPpDUtIpem0q2wOaqxstZCZoLQpEOsBMjNoX3OmtoaRhhl/wNl4Hx/v3MPZtXku5S7fXX+e2lKfsB9wIZzDq6WkhaIIHYpcsdDqU5ob4vo54bxGN3KmayPiaWsvQcJwCUwtx0hDmjoEW9YjLVzNG2evo8o5Uhp012Ow3ODCzgx3Tqzx0L2X+Nkb7+Wp3mHiyOP6bos4ddFG8Gp3BuFo9EKM3zGE8/Z1LQJ7jLOmtsq0r8kyhRQG4WnSBiQNa42ZnBhysLzLoYk2opTzgTPP88HaLh/efIg3zK1wam6Tk80tTs9tMDXdp1Ufoa9XcKSmeXqXuYO7+I/XSGtWgS9KBiZSRKmw/vbCeuetDUfj9u0KijOUhIsGzys4N1yw9qUVGBzSFB40z0my0INMorwCmQiyMujIoX52Ly1hD99Y2CO3e9jD64jqdYkTQX4gxkhjl/TnE9JWganmzC128HqC8r4B05MDyqvjoSepydYqdoiqZlXLrF6QVzXDozkyF7ibLkwleDsKkQuiOU1nUCbbnyDKOZVlh/qrjh3eKudsDyoEWwpRQLioKVUSnJFVk2UqbsdmSc9m8Tp9hY4dhDQYz4ytCGM11NgUABULOyTUtBP+KjHUboyX3F07CGbzay2Z1N5rQ1MmKCgqmqKqrcewbJeK3Z6ExOa7ikygUqvsIezzq3GBQ+FBMqVRofXEFr5NQTCuVUOFtkvRjG0BMrYqlxyTZT22FNhsWuvLFWOFuPDG6nJuf6fwDMMDNp6p/rKHN7LpEXnp6yLAGJPlrx/bNdzO9b21Hcaxy9UytRaLIoCsMvYia5sOoF3I69YXPTU1sEkVfYdGOaK87DDsljDlgrgFyYQBaTjbnuOZ3f0I4HR5jfrhLhc3pvn4zl30RiXU1eC259lsBixvTtLuVUhDl7TrU3shoHi8hVkLqNywinF5QzBcktDMmHIHiFbKHz59LytJi6YTsm+qy69svY2RcfjBo08xO9vlU1dO4Xk5niqQfkGlEqONoBKkKKXR9RxVytnqV22G7mRhP5ZS6q0R7kCSbZWI5rS9ORg6vKfxMp5vK2dri30aB7sMO2XWogY/PPslLn3+MF+9eRAdOWSXa0Q7ZS7uTrN2swV9Fz10rTo8ElRXbLpHOp2PrQ8GPE2+VaLfL2FSSTKdMzikUdWMdrfK1dEUR6rbfNOJi3zPxNMAPPvKYaLCvvC9LMCRmsDJUcLg9gWrNyaZrQ7wVUHvTMbwaI6/o+wqhaNpNkeYih2iQxnbAFjLyepjj3gMeSMnGnl88cIxSl7G4CCIudgq+764/bt5opC5oHfSoHoOWeX1usLtYQ9/NrBHbvewh9cR7sAQT9kYr7zyWoi/qOa4pQwlDHkJwhs1Aicfpw1A1vNtaYJrVdDBYY3IJG5XgjTjmtuCVnM0rne1qqRSmqmpAaaQZBXD8IEIdUcfr5yRXK3jhOPc1UDjKE08V6AiicgtybMETGBcbf22QwUDx+bhVq0VwevYwgX7Bixu59jKHLK6YLhk/ae3KmsZZ+RqZT2jRn5d/ixgxHgZ3rdk0x1BsOXYAbK+wO3bYbe0bgfOhBZ4Q6v6Fo3cksUCsrkMM5mCa4e9GC/3i7GlQkUCr2cHxGyJw7jsQQucobIq8EDctivc8vkKM06lqOeIQjDar2mflpbsO6/l9H79v7etCO44Riy2CQmIW9YFO9xmhFXrsrq9eVCxoLRjbqdJZFVDoQWzd2xhFHSGZbQHlVd9Fhbbt4f6TCbZPjfN9cuzrG1M8OzgII8sXCPrBHz13FHinm+PQWiVeicUyOUAdaUEqUSkdlsGp1PMXEIRQDRrm+iiWY10NOtpk8XpLggY5T53lW/wg0tP8Lmnz/CPl7+dN5Qv877FV3CfryKEQUmN0YJCS25uTrC92bC+2UJQDF3S5SqlbYFopNaqowxJ6hDvS1GRRDdy/F17Lroi5/TsBku1Lu85cJ7vOfQ8AC/eWCI2LtnxiHjo4+w6qNT6uQdrNchthXP9VYfBAXvj0jsGxtdQ2FiyvFEgRorKDYXpeKi+ojI3oqhqXLeg1RxyprZG3Ym5o7rGF4an+YmtOxFBwWNnT/DK6jzPvXSEZ6/v58Zai14UYBRMPu1wcWOalYuzLB7YReSC+jWDXIgwRlDyMoJrPt6WA5m9iXKCjKJkb5zCAzmHj2wiJLgrPoW2mdRGC9wh1qrTdRBBgWq7GAGto21kAdHBvSiwPXxjYY/c7mEPryO8ke2LZ6WEzAX+TQ/3ho+JFJVSyvpOg7yiMdWc9U6dIjAUFU2w7lplsKLtMuZ8fDsv1dt0bLFALSMv7HR1Ml2AhqgbkGQOYqTI6oZjC1ssNXukI49g1+a0uiOD21FEsYtx9WvqamEHlYpYQalAl60twO3atAXtGbJGgfYM7lDcthh4fYETCrRnFVXtWvJkVedxtuutA2Je89+KUKGG0iZBpLYW1/pQIdgBEcvXcmHh9vBZVtOM5u32yqCwA0oFkEhMrGAcrSRTO6imEkHWMLc9vqLAkinGSQa5JZ9+2+b22u23VguZCURivcvupju2TQjiuRx3KHBCu+0qETaEn3Eu7tiuocfxXzIde3GLsdqtzO28YBv9ZKf3tW+Ipu3jOV0b4N+72KLQEm9+RNQpoWKorBvWbrbwu/aYiKGD9o0dTBo4fO78SRLtMLHYw911cNquVca/LsZNpYLaCnjbDqIQJC3D1GwfOVbni4b1GmvPUHQ9nmoftK9DJFkNG6xlEwDsP7HJixf38+XRCd5UuUR4MiGOXUvycknYD/CuBTjb7rjAQuLuOLaOuAzs+DRedZBbHvLFGv6qRzGTIvuOHWaMFX/v3AcIc4+WFzLvdTkabHB4/xZ51+PXNh5mYaoLPRd3KEimCuRUAr6+nUPcvzMla2mGBzV5XaNG0lpeCsC1qSB+x4xLRgTTtSEylMR9n29auMSj1QtMuQMe2z3OL3/1bfz+1bswuc1eNkZAMR5ujBThyCdtacIZgfNKlemnJbuDCm5Hsv1GTamUIoRhGPv2b6qpkYlEZJIiVxhn/Do5mpqboHOBOxL0BmWcgbUilbYNTmSYfNEghMHfkTihoOKl9oYn2Xur38M3FvZybvewh9cR4bSdam5cht1HUryLPkZ+nWpZCHQzBy0obpYJBoJ0vsDtK0wTgg1F2jToTOLHllShQRir9PT7JchsCYEcKkpXPIYDB1wDwnCz26QoJN6aVXaMA6MFQeOSYbdSQoy5zi1vrIolOXaoyyqgClkIRAJ5Sdz2sIocCCx5DXYE7gjCWUsgncgS33BB2zfqWI3TA4yNFcvtdqjIPp4zbgnT7q3cXEPSFOO0BG1VzoFtPhOFoSgLigC8PsSRvaTJzJKuW6UQtwoYbuXdamdsVSgY2ycEhRxHl419zXnJDhmJApsw4dpsYK8rScYlFuU1iTs0dOY02jW4PbsthW/90Ogxkb+VkHBLyZV2f7VvFWy0uO09lpHAHdhl5rxi7Rl+x6rf2hNMni1YK7dwJ2K8DQf/0R2Kj05SvmJ9leGxFHKB23bIZjJIJN4Nj8e8Y8xP9ghTqwgXvk0jkPl4OHAEhfv/Yu/PYi7d8jQ/6LeGd9rzN8YcZ8yTmZWVNVdXl93dlo0xBlm0kQVqWUK0jLhpCQmLC5C5RCBfcMWFQQgQCDeTZOTZLYPb7i67xxq68lRmVp48Y4xfxDfv6R3XWlz81/vuOPYFbisryPLZfykUX3yx937Hvfeznv/zfx7F5Glgc1/8jDun6bYW98BhRh3NXKzXfAo/eS4erulS88XFEf9688tktmOWVWA9/6c//rPo73ru3b3m9Q/ucD3NxbHiVqQ2buTFS5l4j0Rtcnqr2dwP5Od6cI3oRinZlaJZBCZPNOqPjvjxb84p30t4sjngJF/zeHLNV/Mjfu/j97n//gWoQH3oIfWkaUdZij1Weq3YzMVGLmgBsNMngfPf8rTvVbAWacH2nmJ0Bqv3PcsqY/RCw1nK6+9N+bW04sum5EfP7oEX8Lt9MRGddScDXegAa0uI6Wahd7EoPXw8ZfFl4OqfrtlsZNhrdTMiIbL/fcDI1mLXGrNVjD5P+eHV+2gTSG8Dm02C0jB6rtnch+o4kF1p/Eb2327gq2fHGB+nOve1r29Q7cHtvvb1Fmv9OKAfbrk5KNBWsuU3d+UL2BrP4mDDcjUi+6OC7Uc16lU2OCS008DkWrSjTcioHjXyf/GP3ySQO5JLi/pgg78a000Cs880N78mgKf5ZEbQMLpUlCeBdiZAtjqF6eeG7X1xFejGoqsNNvrPVlY0rzE61nQxGrd9g4YN4MaBbiQesD4PVMcau4H6VNr9AWFudWyzm5UklrXjgHZivdvbZNlGobzsS30oA3im2ll3uVz2zUhSLNVxIH+aUB31sgyPbvTO/svuYoNBWFqRC8d9i4xqV+yAKRsFlUzs62jtlazAJ5rw4Rb1bMz2PuTTGh8SXCFgtPfGVV6A+wBu42v4JOBVfIyDpFQDk5xdaboxZNfikNCNZYK/OhVZQDvWZOfQdAXhxJEYz+WHYN9fUW5SlAoEFSUW1hM8mNqiPxlx9u2AH4XBZi1oSWUDQMHkzHHzvkG3kNwolqsCe5Xg7tS4VQJTx+LHlqu/UGOf5jz47TP+eLJgmrY8fXoETvHhh2eMZhXdj2f8b+u/wL3jW4ozhbu2bN/pMFVvOxdQq0Tum8j+V6cet+hQlaFWmvRWUR17QhpI1iZay8HVn6tJso7nl3MIih9W9zk8XnH/+IaXz+7y8vVC/HuvMnmtKsHcWMxWsfmgRW0MozOxFssvAuuHcg5OjlacXxyLDd/7NT5JcYuO68spJ69EMvTTmxP+7smY312/R140VMBJseZJq8jPNVubEjJPelDRXaT4TIMRV4bto47lVkIkuhy8V/jaQKOxK4PLQNfSfcGJfjZZyaKv/u4Wf50x+cxACCxOVxy+t+XpxYIkcYyMpypT1FVOO5PFafZMGPqDd67/5D/c9rWvn6Pa9yr2ta+3WOFexenBSojay4zsKhAyTzGr+ODggnlRkRcN9reuKaa1DBX1ffyTmuW3O7KbQHqtmB5t0LcJoTIY60kvDaGVdqQxHv+gwlSK1TuBB/evZHgJ0DWkN4Fu5kVWUDjs/S0QWc0+vOENllE5MGszWFa5TBi/ZL2L3dUxwEA5qE7CACa7sXht9klgfZCBeMNGM33HIMHoChmg6SY9uyoa13buRf6ghBntcnltUwNKnm8raO61oj9cmsGY32VhB1qRc9p73KqADLTZnfdsN3ODTEEYzkiue2gnAqxt4ugKaA48SdKJ9MKrAXz3Ot0+iUy9wdwq38sPouNExTD0E1S0BwtyTv3E0c5kot4dii1Vc+AJuUdPWl69mvPt3/qSv/TR73F8siS00RXDK7hNQItFm3KgPh+hvIRGuCIMNmz99a6nmvJOGLbvKxl4Ck5TPLeozGPrwNHRmvxCsaxziQi2jnTagILXqwnjvKE98Ez+fsGrqxn1URzQi1ptFg1knlCIdYYsCsCNPdm0Jhi5F6pTjx87Hn/0ClfA6KUsAoJXHM62TMeVyAAqw9WzBWWboN7ZYF5mdJUlFA6z1vhlIt7JLZhxR3KjWb0D2weO6ijKcw4qlttcWPW7Wx7cu6Y59OSzmuAV9YGinSjObyf8q+f/CD+5vcPheMt0UvLl7SHBBDbvdmSXGlVrmsuc9EZjbmwchATi++v2FzrW74iTwbuPzzGzlvRaDZptnTrsuMVkkjjWFYG//It/h4cfvqa8E7j5buDPP/iMO8WKX3v0jF+//5TDUcnJwYqQObHr+9aGZi4M+aKo/iQ+zva1r5/b2oPbfe3rLdZ4UnG9KSQooZJ2vepkcnzbpazrjI+OX1OWKeXrkfx/aQRotBp7Y/BWvqQ3q1z0uzbgvWTPjz5PCBZhqqyjfNiSLhXvzy9QjZZ2ZwLNXGQMqrcGUyGmYUWP2UaSynQlINBNvIDIwGCbpVtxPeiZVt2AXcuXuMsCupTWdjMLEIe8VGQ0gSE5jKg17YGgT6NtWPoGsC41PvP4CEb7tC95roBku5FWe7Go8CnkF1ED28YwBbUDcsoLqNTNbpgtKHmMbuWaJLcirxiAqhFbr3YqKLVc5uRXAbvRbLcZIIsD3aivbadnfHX95rHL+dIxIKIfoOsH7kwpmuWgJDErWSn0eUpylpBdC/AcfZHgNxZ9K23o627EOBWAqUpJrEtuNWotyFx1kL9WZJcqJqSJl266IqbHBdqpIrtSO5cHBe3cQaVFd9xorr+rWG5yXAovfnAXgFHScjJfgw4sL8Zc344p7q6pD8Gf5XgjMhNdCePfA3CViFTFp4FkBWatqW9y7I1BVwo/dqTnlvPVmOowkC6jx/LrlE2dMs0aZtMt+XEJOnDxbMHJYo2pofhCbLFsqVCtfNUFA26ZyKIhk8WTLcGW0G5T6meSEui9PD4/M1TLTPyU4/loNin/yZfvcVWKR++2Sjn/6kBS9IiyAh3Iz6ww1AaSlThe2GuL3YK9NbRTj72yaBVI0g5TM3glB6cw1uEaLQEtM0+iHL95/BXFt28A+Hx9zN/+yQdcVmMy7aid4ex8LoNoG0WetSRLRfHc8tXrw5/tB9m+9vVzXntwu699veVqPp0NLeFmIdPfq23GT1+fcHk14SjbUvzdMdmFoT6UYZfqJKC2lvxC4QoBTfbLnPZRLYxsEIZx9CqgWvDrhO6y4MMPz3B54Kc3J/KlGwRU1Qdw8CNF8cKgSk19UWDqXcKVt8LMmgbRjabijNC37nuw5wphmoKR1x29EGBnGkV2HQGaCQLQFWRXZmi/98C5L1MpzNoMDDBaWtemVBQvdx9VphY7sJ6xbccCRvNzAWXVOsON/ZA61WtudQTTw/Zbhv/vB7qUB7NVZOfSmtc1Q1SubnuGWvbBXiS4XFG8VPAyx0cnBN0KEy3gPw54xVCHwQPXv/HHyXEodkEP6S3DfqWXmmQJ0881+aXCFYriTMBrfliR3mh++MV9rpoR8zQGfbTR4stAfh5TzYLIHLIbaXUnSz3ofF3CALzzqzjApEDfWpQXv+DqOGCvLOH9LdnfnRAsEvFsYZQ0BCCZNKjS4M9ytA60H5SkNxJK0C4culPYjUavLWZp0OepSEu2GtPA4scKe2PJbhTJSpM/FyDa/HSGrRTVoaKZCwjcbjIy0/FgtuRwuoGgSC8Mt9uC5shjtwKWjQT8iX+ugtETO9iAJUtFfQi6DVBp/LSTjsRPRjz/6ohmHtArS3qWYMsgEhgVaNcpVzdjnr44xH8xZvTUDkx8V8hCBqBbdPhpR7IUTXOylgXO9Kvo0BDgxfWc6lYWR9mVDBeGraXrRK4g0pbAv/X8+6xdxrsHIjH44U8eolaWo3zD73z1PqsyJ9ykZGeJLA69Jl1GH93nxc/gk2tf+/rTU3twu699vcVa3xa4uzX2pMQVAsBU5umejGmejTEvMq6bYgBeqN3fdilv1+xKNKjpUqGM+Fj6yuBGgepI0U0DWC+T1Ah4Of/RibSji0B+riheR8bTQnptKF5ayjuRNYoDLT6RP31cbO+MoLwwtH0AhXLytzw24Aqx0EpvI5tbKuY/MtiVDEoR2/Uq7NgwbwSIDtGzTWRzkx1LqystDGj0tcVHsKgFDIJIE8xZyuiZie4DDPKIXt/aB2F4yxAH3PvS2o3CtL2uVn5nymgfVsrvsysBRcrD5n4gWQfGT2RIqgeU/TEO246AWnx0488qDpOpnp1WA9C1ZfTY3Qho70bib9zMA/WBDM/ZbSD9W1OyS0hfpPy5xac8Hl9Bq1FODbIDHVliAjSLQFeoQY7hM6iORJLhU7AbSbUCOT92I5P/ZqvoZl6u5bRk+tRJVPSp2L9pFbjZFLRlIkNqjWL9asJ4Usk94xSkkXl3cn/oTpwm0ivD/DMBmC6Te7Adyz1oKjmXo5cipQAJtnBFwFeG66rg+XLGxe0EM2sA2D6boGYN1bE83qVyDnwhQ38mMub5pdjBtVNPN5IOxuRwC0rOb3phUQ9KYbwvFaNzj2kDNnOMD0v8OsFcJfI+9NAdduJNqwLptd7Zz3lFOwnYKuDSQDuBdBVkaPRuQ9ca1EbAcTuRhaRqFa6U1WQ3kuHIF5+d8IPL+zTOoI9rCVcJUJiW9sWYqkyZPFrKtcs8XaepjgLqo7WEQuxrX9+g2oPbfe3rLdb4hzkfPXrFZFQTRg6XQv5ZxviZpJVl14pVk+8GpjzUd1vaSaA96tg8dpSnivZhI1/8F2IfRPS8rA8DZquGdvLz67kEA0wc2bkhWYtHbLoUIGYqKM4FyFSnPgYqRAAW2/TKKVSjUYUbImNBwGcvJwABSt7KQFZ2I4+TqfwgMbYhBgzEUk6A4BBy0Ft8NcJ22o0iIBrfLof8PA6HdRGwdWAryM9l290Y8nORbLSTMFh49YCRIEAb5Lk+6cMlwMeUM4j+u7ofeovsdQTKKNH4quiCEN4AS3JQYXBFCEbOce+dG5IoeYj70y8O5FxGwFoysLwuFYuvfl+auYBEeQ0ZhtreC5SngXbmeZxccpRshLl1xOhkAbQoGUzzVsBxL/mAuMC5keCI6khRLxT1kRP5BcC8lWS21NMsPEXSsnxPfM5c7tENXJYjtssce56KM4eG5NqwWeU0h2JLZ26sWLTFhU03kqQ35WD1GLqRop0xJMK1Yxk+nH0ZKC487cIJqB6JVlyvLBcXU24+O4RPxgIEx3FYrrK0CwkF6cNDVKck6OMgkN4Ejn7YMP88um9sAnhYX4yxayVe1I0izdoYUiJ/ggIf/ZL1VhLLmpnENeMZqHlbiY44WUpnpBsH6rm898q7nnYs0dXqJqG7SeUcTxCP6uj7rNbyxvCJMOnpheHs2SFPrxdo4whri64VqzZj+rnGX6f89v0vad6tYNFSZC3qnS0PDm85eHc/ULavb1bt3RL2ta+3WC6F57dzym3G7GjDUo1pQ0J113P63iWvskPujJZ88v2W4qBklrYcjbd8+eqIYlTz4eEFP3j2gIdHtzz95SMIitFhHAbzmvRBx2aTk1rHZFRRNQnpjcJ+d0u9npK/tyKowPmTGWHWsjjccPN6ikod+bih++lU2KyFoBDVybBN0Ao3EYxoavGRdYmwmq4AH7/8u1FszXfCIjfzgJs71iMvAM8G7K0Ao17a0I2FWVQtKCVgmH47HXSpRPGilWhVY7qZS3dDW/WBxN+GuYDhMHLovKNy+W4gzwiz+6Yrkk/CAFp6SYBPdnKBehEGa7CgY8u5FUBTnEtLe/mBAHrdgm0Eub2ZTNYPbQW7A6cAPn9DqhDZXifdaeqFohsFtndFNmFLYVFnX3qW72i6kWJ732PulLSvC+5965w/LB/z7zz7HgenK1YXh9BFRnHsyV8bfBItz4oYnVwrGS5sxJLMZVDe77ArA7OWTifgQCcSWEFl8GPHrxw946+re9JROILtw47meoq+TeS8NZpu5sjPLOF5jl84lIfZJwKcfSrgNYwcodG4kdxv3ViTXWkJLolM4/adgGnEd9dMa9pRTlCO5LAi/3sT1laYYuU1/iITYOgguRBwq7yKQDpKbmIwyPJDRXWUUt3xBOup54bkxpB+Z0k1SplNt2z/4IimTjD3SrZ3FS4XDbxfJWy2lvxW08w9fuxJrwzJlfhN+zRG+T6sZRGztoQ0UN5R+MJz+v4lV5sTlIeDjxX1P7NmXlQ8DwckeYfuNKHWqEaJHMgY/KOKo8MllzcTlIIib2l1zuSp4qPJa+b/fMWX60N+e/YZxS+2PNkc8HB0w6bLsNrxjz/6Y+B/8Sf2ubavff281R7c7mtfb7HKhx3jv7vg4M9dAJAULckHJQ8XtygV4PEV3xm/4uPT+3xweMFRtqF0CVfTgqpJ+P78BbdNwTSpeT2b8OBQ+vHbNkGrwL3xEo7gj17eY1FUZJM1P/5wzMx4tvOOX7v3lIlt+I/ch9yZr/j+wQs+nx/z9GaBVoHysENlHmppq2oXJ/YdUBlpQbcCTnwS0LWEDXSFsLTeCrPZ5T2IEYmESkQXTFD4VECzy+O/M0GXysdWeSKa3z7UQDcCFLuxJ73SqFZeN8SWfh+WEIqAn3SoWlKvkqyjmYYYkiCP6318dRuBXi5gude/ogScNwuJTA1GBr1s1Ob2QNxnO/1xc+DxqY/hEzvJRQ9mhQGX/XVpGMB20MK49wyu3criAESCEIww0MpFtv1WgFs7DzQHAZ96ThdrvvPe57Te8F72mn/20Q/4v33264CAYZFjiD9s/7t2Jmy17gL1oTClKkjXoBp1cGvEWs4EzKIVCzAXU+aOG35x/Jy/Nv8Npl9CdUcRJg71pMB4aA8d6bmhOXIELdIZn4rf8Oa+3CvJWqGtgkbLMKSR4UKfe3yicWOPPhSHAms81ZHBNIoQ9axmY/jwuxf85PFIHCEiUz3/RJweBjmFMvhEkt7cyKNLGS50I0/IHN4a8kcrqjJl865of6dFxa/cfU6iHb/zrQKCDHZ9dOecj28eM3pqmXxphUWPbL0pNeMXcn43DxT1saedefJxw3xcclYegg24KZhpy/3JLa9ODhgfbbmaTvhgtqLzmvG8YlpUXN5MaDNP0AplPO2B43i+4bdOv8KfKJ5sDnm+mvPovXOejxd8kL/mLx38Pf7G5tskyvGt4hUGz7eKV2x9xsrl/Gb+9E/yY21f+/q5qz243de+3mYpcQ9InObmckL6IqGaBJajirOXB2STmst2zHJZ8CxZULmE66ogBMX29Zh/N/seAKs6o3k1gsNbXt7MqEsRiCogsx3NyzFnxrMYiwnsepVjbi2/9+IRSkH1asyF8fz11UcY7VktC1gmYKWnrrdmSEDzqQyX6VImz3tfUruNSWAxjKBP88quo6azhfRG05AIIB5JDJgMZyEsG+BslABEsEcEmd5CUoJFRRcFafdCHA5rZd+wMfa3UbTKkt7G1LB6PLC/g+61t70iyhvcG8C2Z3A9g52X3e7CBXpZgu4gvRFXCLEwU5jSSLpZ/zrRBUP36WdOPH51dHpQnfy/8rvXJe6jaaQ9rXzUANc7TXN5rMEHkq3GjTxHxZZ/bPET/s9Pf5v2yDK3W9ZXI2wE6T6JIL13lmggWQorrKKpsM9kcM5lYJ9nzD6Hy0WCqjV+pLC3FrtRVHc67hwu+Wl5RxhQI5pVgkV10C48REeJ5FY8W7MrSKNWvGe3gxYJBsrQHHjSW4V5bWRoMso5QBwD3EVB1od61IagJVjhi4sjfO5JrmU7Pgk0s5iqp6NN3a2iPhYQqkvZhz6NTm8M2bWmPMoIrUZNOvSrlLOnh5IU5uOQ4HFDXWZ8kRxi10a6BHMZ2pQFgYSQbO/C5EmUP8Q0vPJ8RJZ0Eokb5TS1DqzanHxRUVUJIfV88QcPZBgx85STFN/qyLorQgwluboZ87fUe4SguPzygJB63nn3nPl8y9+4+Ygv6hN+//oRuWlpvOWnr054ePSQ3zh6wstqxv/B/yP8y49+5p9m+9rXz23twe2+9vUWa/JZQnUcuH0yRx80BJsw+VJzlh6Rn1nqU8PfHH2I/TLnVWU5Xx9LS7jVmK3m8vMDwki8L5OV5osXx2Sf5djIdD5f7UBuUye8OB8z/tLSzA3d2FM9maJbxeJzWJYzileaLgF16pl8pVl+q0Ndp9GzVUBZr4uEqP8rRWvbg0HtILhoJxX1qQr5efwisL2rya8CmweGbhw1qnUMVVCgtZIBtejGYDuF+5qLAqCECU5vA9Wh2DeJLlUNILF4FagPJD3LjSThSkBhGIa2+gGrYViuY6cjTuQ4eu9Z5UX+4E1AJRJMgRd21ZZinZWuAi7TpLeB7T3RSgYdmdFGgdoloRFZ495OrZcniP43gsutDJO1Y3nO+EXUDpeBdqLockV6q2gOAqbU3FQFf/36O3z50zt8enqH37t5zGhRUi1tBM7iWtHl0S1A76Qc3UhYVG/FU7g5ccx/ZCUg4SxF14quyUivFckamg9bDost/8ZPfgldK9aPBeSLp7G4X4TGSHjAjaI6CoPjRNAQpgF7K6EdwUTnAG/IrqG48HQjCfwwU41TKboUC7R2Fph/AuW7co9kVwH1H09pH3sBrj0dD4P1Wn4lqXYq6sK7qR9inbPKoDooLgLlPUt6aWgetOgW8hcJ5uMFfgJqHm/CTlP/eM78C9jck4Wdn3m4NpitwlbQGtjeFc2vasURQnlF1SQEzRB1reuEo+9t+HR1h/RlgrvX4g466BSjLxPKuxoyH230wG5kBaiuDLdf5phakQfoxprLkxFlmfI7rz/Cjjr8mSTA+XkHleaLV/d4989c8cn1Kf/xF9/lX/7lP4lPtH3t6+ez9gNl+9rXW6yT368xpWLyhSFJO7qpp51C8cLGlnjg6qeHjF4pknPL8e8r7GVCfmZxi46Qe+xlAp2ivdOS/1SiO11OtMyyzH5qKc40ISiKZ9JCza4V6qARwDJx+FQxeqkp73iK8zeGvIISFpSdEwJE54CIIbqxsLshkZ/bsbCs7UTAYv84l8kXvvLQTmSYx418HJaT9rEEOsTksChLMFX0y63U4C7QM4/eRrazEc0tREcEE9g8FBur+r1aInuPY3BBkO2EyBT3cgaXh52LgYFu4mlmMuSkmx48hyF1rGeO25mnPgh4q9ie6kEna0pZCPhoqzUkosVhrn7AjOhpC7IwgGi/1scYe2E2kw2i04yMrbdqeE530hBOa5ZVxu98/G2K55Yfr+/y8ecPKDeZsJ9xoK8r5NhNZL37kAhvA+1U2HQ/cWSHJbe/0InG1gayKyjigJ5PIR813FQFyQ/GEgt8v5ZrOXfRVkuT3mp0JxIOFXr5SjzfEyduDePd0F56C9t7AZeK1tqn0R3E+rjAEFnK5W/IUBpAfShsvNnK+TC1BImo0LtOQHUk4NqNPPXDhjDphJ3OZfgOIns+7iKDzbAQ6q32uiPRHdgbkUV4E6UmPl7DFLppv/iQfWtn/g3pjsd1WpL3jMT4ujzwL9z5HZKi5b/6T/0+2aTmv/Nrv8vkdBMXABLb63MvHYlavIh1Kx7OzcJLaMhKUZYp/jzHXiVo4/EThx87VGkwW016bfAojPZkr8w/3AfVvvb1p7z24HZf+3qLtb2TUD9oRE+qA3QS/2lLhvCAyRNNO5YvtYtfje3/BvAKXXRDe12nEodbvdOgHpQyYT4JArYUuNqQLqE9cKzf70AJW6ZrPbTGYTf4ZDcBs9F0Iz94tvbJXMFIpGxQEmLgUob2uwC6fiI/WmzFNno7C7JPKSQbtRvmigDYG3EcCDYO++jd83v7KiC21BXViQAYnzIAX5eL5rddiLfpaBZRXGzxqy6yzEkYJA+Dk0G6a9+HRNKwuomnWcgEvAzH7fx4e/aXCNy6aB96+62d528fbDGA6DSen3jcPiaWDS4Tb/TPupG4BojLgpwfl4qLQFfI/qpOtMOzWcn6tgAbKN9reFRckxQt3ET23gsIVE6umakF+AUr58LPO/xJQ3OnY3S4RSnQY9HY+kxYaW+hOZDzW9cJz88XEmwx6Xh874r2+xvsuB0WQb2NW7AC/lwKfaodJtDNO+oDj8/EDcGl0h2oDxTJWiyzdKvQudhcuTQMvsd6Y1g/kufI0J8aFkO63d0rw3lNJUJapw5lxIXATTw+C6Lz1sA6wX+0kXM/9TRHThw9FIw+T0ieZRSvBXi7PIJgI04JKoJWl4n7yPiFPC+/iEloW41/XkhXwsiQXPduxT81avnf/Zn/C//k4of8+Xc+56P8jKpM8VmIiWQBFVQclIta74nH36nxSZDUswpcaUlvRKMcvCKZNtgbS0hlwVI/rrltchTsnC/2ta9vSO3B7b729RbL1oHJ0Zbl9xqM8UNrfXs/et52ivkXHeltEMYn9yQrYfJmf5QQgqI9bdErg18l0ubPOybjKvqL7gBu+jLBVGFgvLjI6CYiK/AJVKcxcWuya5vrViykgCGsASJAZDcoNTCfTg0JU0StqkQGQ7Jm14pHPGJNqQfw0TOqQ+pZHCTzCV/3g9UMg18ulVa3j+4CEFnPzKMrRTNT1FWCTwKTrwQE9MCrd0QYYnEjUxei3Rk9g5d63FFLN/UDKLXrXRCD3QqT1szkNZI1mPvbAfArL+1plwoQG45F7fZFuR1bGIyAcBN1r73jRB/7W96R6OA+tc1UEEpD3Vp04iVoIfH8laPf4b/17R+Q3t0K8HO74xzCJTqxPwuJJ500FJOa8dGWxbhE/8EUdZaDCdi1FturhOgDGwivc3idsX4UBICpgH9RkKSd3AtxsaPdzlWiGwmD3B466FPCMk994MUe60AY4mYqkgyfymLIb6x4646FNS+eWZKV3um8iRrvuDDo/Zh1G4F8JXpvdMBXFryiOXAEJcdGkECI4pkhzTpGn4oMQ+VOwiZaSFfir5veyqIr2cQByrjQ67XaMpwY7/UoQdGtaM+nn4v/cTsLZK8s42lFGxx/5Q/+eSqf8F5xwY+293FXMqHob1IZiOwi9R1k0ecOOu6d3hBGjmYhln86laE9s9KEr0a0y5T0RqFSh5s4Tk6XrNqczHZk12+8Efe1r29A7cHtvvb1FisoJFlpVrPdZKLL1KJBdXnAF6IjbObSVrUr0QcGBdltINSGZNQyfiaaPvdeiW81ZZ2gW0V+Ka38du5jOxPGTyzZKxvBnjymywV4pDd60NZu7sdBo8h09nSlIrKeCJhQrtejhuG59A/3u1a7bmWoxw6DadIm7z1DicNXuu5RbDxJegfK3qyuiJP2fQJYPwwWBHxPv5CI0/Ayl3PqRBfba2qHQTEt2xBrBhnYEg2vxLSq5usb9jZE4CUgylTCpLtMjt9UkCRud40jSxj6TnA/sNY7IySy7RCBWT/w1mtw+6CK3k+XAYjLMbUzYQXLy4JwljP/iSJsLJ93c2pv0TGKWDeyvXYaBo3yMASmEPcKwDnNq8u5XJ8a7LjFbhTNXFGfOuxpSTf1JLciO+B+BbXhajNC3y/pWjnQXscrzKpcqz4kQ+VOQjhq8YYNqaxM3MhjagHc7TRqlpNA/iIhu4mOFiOP7mD6lWi/q6MwLIYGd41UFgW9j3Dv2qEyh94Yifu1YYjIlZQ5ubk3t7ns99gTql37fnM/UC/AVjIo1k52iz27Udit+trA3/qRMOXVScBuA8V5QPkg94kTCcbq9YT/6dlv8p3TV3w/e8GP1vf4u+fvktxKktr0U0Ny3b8fdu8V+zrh1eUcnTv8UYv+9hpjxZc6Xcp7bP7DhOrUM55VoGG5ybmtcpZVLlKist/BhAAA/YBJREFUfe3rG1R7cLuvfb3Faqaag/8wp/tqgn6RM3qpKM4FiE4/15B6lo8t1Yno84INNAvxki2PBSS2q5TiIqArxXy6JXSa+qogWUlqVXah8KkwwX0LPb+AZBUGJrM58OhW0pnsVpjX5sDhCy+RvEGYQ5eKNtOfNPg0SALYtm+zyvNUh0S5RkCmGwF82XX8gneRlesHt6I2kuhMYMs4mNaBjsyXimxuDxCzawa/WVkM7BhYEJYuu/HMnjiyC012bsCL9tIn0VasUUPqmC8cPoJTlwnbTZzUt2uNPU+wa03WAw0tj1OeQTfba0q7AspVvnNjUHI8phIApDvZdp8I1438LkQhRJuzIjK4tRyb7uRagmhLTR0XQS1s73nSa83kpwmzD25oZ4rxE8vT9oh76S3lxSie3zDECmeXcYERt2GWhvYmZ3tbUN1mpD8uqE+cBGasEpEVZBCyCNrnLdk1UaMbOPpdw93pil+4f0Z3IV7C/g1Gv5ew9IuhUGt0rcgujVhy1eK8kSw19YHsWzcOpNeK/LU4EFTHor+1Ky37Vcg5yD+6JbsKuwVQvETtxOOtyAK6ibxnTOLxmcdeWszKULyWB/cacd2AWiY0px0Ysa3TkzZ6CwtzXB1qeR9ORatsKj346aYxya4+EOlC8UrHoUPx9N3eF+Y1vZF7b/rHCf/Gf/Rn+M70Fd9LC/7g5QMulmNZvKSQX0p4BCagamF9dXTdcBuLMR7Wlvm4xD8vCBrKu47qXif30rQjBAld0R9POX+24OpmTPug+dl+kO1rXz/ntQe3+9rXW6zr7wVW70nLMrkVZquZirG+ywEVKO8G0luN3Shc4QlGMu19CrromPw0oTpUZFea6ycHIicoNbYM+FRcBcxW084dq/cBBdv7ge09RXXsWb/rCVaArpuITjUoUIeNeKJGq6M+ljYYGSbiuCYUDlOrGErgcdnX9bK6hXYsLNrth8JAi6aVYTCp/9R5c1gs6DDobHvNKrDT5troL5tIC9vlAtR8upMalMea9T3D+IWA1mYhmt9+gK1PERMXA9CHDW7icccN5v6WUDhIvCRLrRXpTRxyyiOwySUprRt7qhM3DI1VxwHzOpUBOLVzSYCoR05F69wD9ZBGzWcf9pDG1nPGwDiLvENYQd3JcJlyAkxDIaEIm8cOFxTqH7mm/dU1f3H8Jf+To58yu7uS82OFSbVrNZxzJ9atcvyVgHgaTXPgMRvN6KUmubS0U087C6jS0L0uSLJOPHjv1ahnBdffC/zX7/4Rt00ux4tok00t958KkcFXgW4iOck+Mpi6E8bzzU7DmzIUl4t7Q/WowRUyDBm03MPpNXzv9GwYkBtkJdFizDRy7rpREOlDadGTlmSjSFZamN0WmkNHcyD3PkD2MhG2eFZz7+RWIpWfyeJt/a6Xxy9kwdhNHM3MD0EiQROdIeS9o1tFeRrYPPLUJ26Q3SQbGXj0Jw1/49WH/LAp2V6McF9MJPjhyLG5rwb9Okh3xCey8FS1pl2mJNcaFZn/dhpYvHvD7O6KdiLP2b6cYG81B3/syJ8nhKsUZffxu/v6ZtUe3O5rX2+x/JFEmeoWRq8lOrU6VDQLT3Xq0bcJzcIz/9QPOs1kpSguPckagpOs+XYiwE2XAqR0q/BW0Uxh+6iT9nEqX8qmhPakpbrj8KcNPvXYlSa/UGSvDe1YQInWwga7sceNwjBQRoC6TJhMKlTqxffWERGxsJ29trSdISxnDs2xo5lFrWzeA5gwyAO8AVd4YYjzqDctxHd1YHajn6itiCllwp71QQkgYDIYqI9k8GlzXw2648EZIAkD+PGJyBGKUY1eNEwWJSeLNWbUgZcwAZcG6oUMVPWxs8EwBE6EkROv21La6MlKSURtBPg9gHaFx40FKBKidrfWg5crMGh5IU7gF/K7fv+VQyyySgH2KCjOA3aj+cWTMz46OufXHz7lwEgCxCgTlk55CFmguuO/FnWsncgBfIzOVU7OnykV6w86su/ewr0KlweSG83ohaG5zqmOPTbpmP8EsacDLv79B4xeaLlGZRwm6/XYneiT3djLNrR0DEDY6KCjB210plCdBFSIRzCoxOPvV2zv+yHIIhjovKY+VFQnMfXOyGLBVIp2HE9qgDBymNxhUwGYdgNdHocICyf7M5eHF68QwOo0r28EJWZLj+pkuC+5NXLMKkDmB/DZjXauHZOnu2sqPsABEo+p9LDYaKbyxH/pw3+X/9lX/yxomDwRQBsKR3US7xUALX/3oD+7NGSvLO2jhjujNSEJdAcdJ+MNgSg/uUwYfyHuDtWBMMx2q5lMqv9Cn1f72tef1tqD233t6y2WeZWSXguDtH4kzAxK2Lz0WjP5UmMqTXWgSW8VxckW3cH6vqY6DqjLVIaVskA39vgioDaW9FpF+ULYaVg7TXJrWL/jScYtwQTCxpLcGrHnGsPkiQDSYALdTSr7E4FIz74pD1xkVHWCMp7mfkOyFH/Z9Eaj2hhxOg4xEUr+2KXBp4HZF47sRkCP3ejBakwFIE6RBxNwU0c79zJFX8hAVg+umykDm6yie0Gy3E3Km1oO2W6jrtYEJk/FUxdE19trZruxDMLVtSVJpY3bdCKA1Wsj4DMBN/WMXyjsjR200H2wg9qaCPDlTx1BWw9S7UYLG50GQuppDzp8LsNRdqOGAb3hPNfil6pclIMUApx8AtlNwJaB7FbuFbU11HNFslL8wvQlf3x+h6t6xO/VDX9tm3G1HAuIdgqcSDCq4yBWba5nxxUkMtSFFrB5/LFDj1smeY1WAhbzC9GZpheG7EpTLzOahWL6o5RctRz8ky+pjuW4epcO04icpZ1C8Vph1hpd7SzmdNs7bOyGwLLr6J0MTL+E8XNgmRCcDPKJ5EZR/saW5+u5MN5jJ++DSaCdRimEkfOWXSlUqSlGNV1jZJ8ySZ5zEz8MD4Lc36sPPH7qaDcJ46Lh9juBm28ZkqXi8GOJff7uBy8II4daSyiDT3ZWcuNnkGwDoxciZcgutQyuNRpdi0OGT6E+APMy43/z7B/nj57f4+T+DZuHAeYtNDLEF1JP0DK8lqzi+0VDdb+VLkeruSjHjL806HHHZ6+OWb2cYmpFeh1T92poFop2HGjnjnuz5c/wU2xf+/r5rz243de+3mId/IhhYMsnAuz68smOpbn9rqOZB+7MV9LifOyoH7SMzmQArHnQElKPqsWovhvtYkenn+nITsLsU5i8f8t0UmK2onVsjzq6UaCZB2wVaMfyRYrtB6wiI2kCAXBTh8887esCmzru3Lll+7iDaTsMqvTso+oUzUlHO5fkKZ8Glu8a2okwtz4NdHk/iAaqUTDtxNA/d4Q04MZOvEijP6xsIGpyWwkUcJm8Xi81CCr+3ybqir3i6le8MMYmDOES3cyBDQTraZcZdZmwuSm4OJ/iO42pFdmllqCKUrF6X/xWzUYm9V0m8obswgzt/X7/sks9aJV9EoG59dAq0kWNOqnp5i76BMtOh95ZYiOgcxjGa4T9E0cAGWZqRyJTyC6FCdy+2/Kv/vFvUn0+5en1gn/l1T/B/+j/+i/Q3GTSzs5EH6oqI4zwJJCsI7NcaWGp5x3BBPJLxfW3DH6T8Or1nHaVyuPigJbuFMV5QK8tzQxW32n5TvYSHSf6XS6OCvUipnQFsa+y20B+oaNjg+hJvZV9kUWBbGP2hRN/45XCZYqb78kAm7pMMbUaBveOFmuazgwuCWHS4Wcd4UhWMeIk4CVA5JmhLFPCbSpSmXF0dEg9dHJ/V3eEbXcz8dFNzxKypCN9sGHzYUOw0glojhz/3N3f5y/+6j+I740YulEKmK8PFJt7Ig3qjlqSjdzrya3BbiXBrzoUDX3xSnH2V98l+3jEh4sL2rljNK3Rjdx/qlOgA8laoqa7kTDAKvU0d1tU6rjeFGx+seL0aMnod0ey4HOic29n0v3oJRfJQcUkqX/2H2b72tfPce3B7b729RZr+QFkN1AfElkxJV/0iaf9oBR95fsrivtrVIBNI2xqcqfk8HQptkonLe8+Ouf9D14xem8Z298yEe8yGcTpCsAE1o8U3z15xZ3JWqQLk45kVg+Sg+U7GjcSwHZ8/5aQeBkEim1VN/KYaYueteJH6xXjtGFyZ43NOtG9RhsouxGQrUcdzFu278pgTnUSqI497VQYvkF7qqRNr1NHfSyoTtUaFYSp8nHqHnbRvt4GmrmAv95jNr0ViYYMvzF4n44frOhmTlwlok0XcUFQHJUyub9KMFcWe56CV7QHbnAXyK6EcewmMsBV3fHD9L/dynaStbT1fSEsqLdRBpEGcZjoNGZjSBKH1p5kUcNcWHQJsti1sl3eA0kBfRLmEFBOgjLqQ2mBp7cCnKana7onMozUtoZfmT7l9LfOMNNWABEiNcgu9cCWhqhT1r2uOYhn62DP5hQ6nougxTpMEtvEyzdouYbf/fA5h2ZLblu6B/WQEofeDdMFA/VCfQ0g+yTQzWVw0W7EIaSZQT3TZNfCIldHkN3d0k7DIKVw0Rf37niF0XJ9ZnfWYpkFpHlLc+zk3tJ9lwBcZUVqU0SJCSJ3MFst74fMkz9Yk0waVGVIbxSvnhxSrVNGByX1B5XIiKYtC7Plf3D0O3QH3cC8u0T2qxvFa3Qg9259EPCF2O7ZLXQTR3faUp86Zk8cl7/ueO+/9gW/Mf8Ks2hEQxslSKbUoGR4r50G3N1a5BVnKZhAPm7QOpAWLR/ML8muA+mdLdWpeAP7+xXVOzXrR4HRmSJ4TeWSP5kPtH3t6+e09uB2X/t6i9UsPM1MvriUA7vUdFOPzhw2caJXdJrtbcHsczh/tiB/rfFO3qrlXc/ByYplldE6g1YBu5IWtOqgPnYEG0g2CrO0+CTwYj1n26a4NJDPa9oyGayMurEAsW4cuDNZoVqNz8TfVTnRk1rrKEYNZA5jPRfrMVoF2lUm0bGZTKn3wMJXRhjgSYtulLClQeFyP3iA9i1s3SpcaSHzhNKItdJGo7d6ZzX2xnCZtzLEpaLLgEuhPhJbLjcKO6kAoJRIGEwVdckOlA6ELOCcHgaheteEUBrI3OAAoTsZBHNjT/mog+Ma1fba0cDqA8f6HR9B3RsRxTYMjKxqFW7qaGpLW0of3qRu8BLu3RUkgCMypZ2wjPI7hcsV5T1pwfvofesyCEH2zR+0tGXCv332fVZVhtZ+l7xmQ1yo7EBi0JAsFem5xdxY8gtNOxGttqoVPhcf2/bAs34Em4ee8p4neWcj13Hq+Gj2mi/bQ/73H/4/hF2tFLpWkTWXhY5qlQzb1YgUp1YDm91LS/oks/JUEayiPpAhrCTpmL5zS/5gLZraFJp7Lf/de3+b3zh9SnlHzp+9tugbS73K0ItGAHlMZWvmDEN7kowX6BYOncgixVQKuzIcTLZo47Gloj6SQT/7OqWpEyazEn2/5N17l3w/e8m/vfolVCO2XX3im08EuAcT/X1vrehmp61Yom0ljIFWkR2WmFr2/Z84/gmVT3Bby/piLIy3jwN/XhhuFBJAoWLs9W1CYh1ta2hejVi3mWiDFYTC08wUk0mFScVtZfrE0d2kPL1Z/Ow/zPa1r5/j2oPbfe3rLVYoPOWjFp971o+lJRoyhzGe5iqX5KbaMvo0RXUw+ioR0/6XOVdnc9zMoVTg6sWcZ2cHlD9ekF+K3VQ/qZ1eK3QN6Y1i9FLx8g/u8tXTY/yiw3WaJO8koSzsLLfSG03tLNm1FqDc//GKphLWZzyveHh4Q1UntJ2BVtr0KGn3V3cFnKvSwNKiICZkqWFa3ZZqkBL0lmS0wlSZtRksltSgZxWHB5e94QMbk6GINlBdEf16naI8ia8fFJtVjq7UwP52IwFtwQSabYKbd4TUo49q2ln0YV0KAG0not2sTh1m2ooOt9Nikh/9eYMJhMNGwNyVRdeRpQzR/SEJhLE8v73NJDJ5k9JVFlWIHEC56DwR5Q3tWIbnkpUsLLztQzEU6a3CRHZet7A+m5AcVCQvU5KiZZzU/Lff+wNOFmsBWncb2kc12fduaE86kWNoGaoCdrpcZLE1vruRfwfQW0OImlw/EjutNOkEYE1aXpRz/nx+wUM7Yf7hdWTa47CdEXCuO3AjcZhQHurTToISNpbkRuNyuXfyy0B95IUhrhV2rVm9nnA43mKtk6GuNIAJXLoJ/8qDv0N3v8ZokR+YSqGXFt9qzEklzgMnnvrIYzIn0ovIkKuiw9WGsGiFVd0ozi7mNGcj0muR42QHFW7k4WnB+ragXaVsmpSFhn//1XcJNlriNUo6BjHKeJDmOAhJkIVULzu51oy+Sqg3KfVM7MJ+vLnH2mWo0pC9tKS3skDtA1F6v+NwleK2VkD/rWZ1W9C8HBNSz8dP77N8x1C/GKNXRgYqNzn+KiVZKa5+waBazeqr+Z/kx9q+9vVzV3twu699vc3SAbO0pFcyfd3NHHSa7ipn9MRiSjDWk94Kw5ZfxDZ8q7DXFpU6rl7NMJOO0bSOcbgRKB65YaocoLgQMDP/DPTKkk1q2tuMybjCFZ76SMCoXUlb+uXtDG9Ff6s6AVfBBNRVSrlNOZmu+dbsnMmokujgzDMkjCUeNWvE4H/Wkqw0rpVhmPTCoGthC3sgJwyutPPTg4p03OAzTzf2tHMnQz9KmEc3dTENrQ+OECcC1ckf3cowVnqtqA+jfZkO+NKSrPUAbn3h0UaAA53GjjrMuBXv0BhZaksFRkCZyyNY8zLMxG08sUEsrLJzQ6gNQUNx3vvQRpRqBEjZvKMY1ZB48oMKvbSolUUZaVsPcb7E5DEdAwgqOV+9/CG/0GQ3YWBGRy8Vk88s4ckYu1G0ZcK3puf8S8c/4c+efIkfOdJRQ5q3/MLJK47v3cK0pT4Sq7NgoD4UfWgzC4SjhsQ43KIjf20wWwVOMTrTjL+wpJeG1c2I/FLhW83f/+m7HJgR/0Fp+L//8v9R5CkJNAdCXzf3WtGPOqiPRd+dHFQEG+Qc9x64vg+sUGQ3nvFzRXal0GvD5WbE6uWU/EoAc/oiZWEkKvc/+sf/1/xXHn5Cfexojzs4qQmN5vRwic8FjLuxJ007knEDVtwhlA7YcxlUS5cxoOOrnPknRnTPHbjOMHqwlhCU85T8RcKqzDg1Y747f0V6WOEWHV0R6GaOkHnahSdENwc3d5iNxreabuypDxTj51C8CiRnKSZG8358eY+tTwkTSWlp5kFkKL2XcxwksxsZTKMPS9Gia777+Ipwk7J5KLrw9FZuJPNlPrynfRLABuaf7L/q9/XNqv0dv699vcVSazuwf6o0EKB4btFbTbqM0/KtZvMoRDZMiS2XitZOjWHyE2Fy3j+6xN2rqQ+8ANrMDzn2ditAaXtPrMb8yOG9gNbbTw9kWOegEXnCRlE9aticjSO7ibRzEx8tlBR+lXC5GWGVo3OGrtPopZVWakz08o1hNK4wibSdw1amykdn0dLIIG34aJeloubzzmLFuKjFZ3fRYOYtatHIsF1ABt2IPrkjL23/N7xyVRA2sriQx1XHUZYx7gh6p2kl9RgrGtzkwtJthe1r1hJ5qiKjTGyX+2iP5SOATVZq2F5vc6VKI3rLiWgv++cTogQiKJzTFPOKo+mGkEZJRWnjUGHYWZvF1LVmAd1Etu0iy2pKaGbRw7iByQuHK4Sdr+7KBP972TnXbsuPl3fR4462sdTrjGWTczJek2QdburQnSLZxEG7UUd30GGzjpuXM7J5JbG5cw9aLN5MA/mlgpWVa1gbzKUA/Rs35qNkjJs6urmkmbkikBQt9ZGTGF8tfsrB6yGVrR8UNFtFfajIzwXwZtd+CLRYvZqQn1mySwkOGb1UPLZXADy2E46TNbP7K04e3PDLj59hJi1GBZLDiuKFlSCEXtPiFKSe4IUBT14lEsAxDjuf3jbQLAKL2ZYsaSVhb6VxaWB7LQLvZZeRZS2mcHRTDyaIjKZRuCjvwXqSWwWVgSASiaAV3ViY2WYiQHS5zfn4+j7ZuMFnge64HWzQBhlNH3ynowa8gSTr8A8qDvISe1wSjsWvORiRgIyfMujoJcraky7feB/sa1/fgNqD233t6y1Wso5gpFPYjVh1BQPJu2vxhp0jwyQLCQnY3gvSMu8EZOqVAK30leWmKtDnKdm1tHjV2jI6C8PwVb0Q4/xuHNOOzkaoRcPoLE5lR2P5oGXIZvqplSGoEIGolS9uAmTnhvWTGZ8sT6kbS32bD6yj3SpUZbDnCavLMd1NSjCB5MYMQ0XNPMQgBiXMKcKaKae4LXPW20wYKetJ0o7xpCKZ1yQrmfb3KTQzIBG/WXFOEBAatLCsEgIhQ2GzL8WT1eXCpiov7fYQWd9u7LGXCeoqxV4m6CqGCajo4BCxQJ8M5gqRkKS3Aj6aRRxoU+JP2s7koMQeSvSmvrS4raVc5ljrJFxt0YAHcyMoT9wcdrZrMignVm99rGyfVOayuE9VoJ5rqm9VwrpG0/8/Lu/xb2zeZVnnaB3wywS1Nfz05Slnq6k8dyUsusvALzq09uAU7TIje22w1rN95LCHFSoX39XN/UB1KE4azUzkAfn7KwD+ucmSf30zkXjdiVyQ9rSla4X9dEUQ14XDmq60pDfylaM6ObfaETXo4grRzBTprSwkVCWWdd1Yrtn885Y7phzeS//h+Ufcmy2ZZjWPx9e8c3rFuk6ZTyrKdxrM0uCcpt2kJFdWBs06sdtKb8UT15YyBFnPY8pY4fEBrp4vxBXjWraVvhQw/48tPmF9W+BKM0QIJyvRE9tSyXDdxmJacQ4JmR+CPNoxTJ5BspH3ZPl6xNOLBa4zJLcKfWtxhViiqU6ipE2pYkhFlLx4qDcpi/mGH392H63F3q9fxEl3I3YPgkQXq1qj/B7c7uubVXtwu699vcVqJxLvOn4e8AaKM8X4aaAuE+qFtIvTvCW5MvJlmyIt+Ah80ltNeVeY2heXoqMrXkf5QAxHIAhzayuJxZ1/CqPnhuxcYxNHOxbDd9fIF2iyAW5SaXl3im7RCahDQLLLiGlOmk+e3KXIWlTmSG/18IVrthqfB9KzhMnnAtyKs9iWPpSUr15ri0J8ZIuAahWr5zPcyxFuK0NXTW3xXjMe1dSnHapRMQktiG9oowbP2nQZAYAWg/xkzTBEVF8Wu/CCRJ7brlNC7gi5x1Q72zNTRq1pHCLTLTECF0zeyfElDBZmohcV1s+s3mB2zRu2aKVBlRq1sqxvCy5uJ2jjhGkbOxkkG8uEv25koRBsXCz0A2EaXCog0DTiAECA6lAxmtTiEfvaULww/Js//CX+k9tvcVhs6dZRQjFrcRcZ6x8dykS+ERDdTgM27+ia6O+7NeTnirpKCLmja0Ry0Q/LtYc+etLKfbEY7UDmv/g3/5IMaXlFeDpierhBXaQY7Rl9dCOyjaJBWZHCqFbuY5+EyNKKP3I9F810N+rvE1lotWMB/NWh4Sft0bDdqkvYtikX6zGfr495PLlmvcm5Xo64//CKJLbps2lNe+AkpavRwta2slCZfin3oxuJRKR4abh6tiC5MnS5LCTsRmQoAP/9+Rn37tyAlzAOdKC6K8EXyRoODtbgoTz14noQh9dEnuFZP4TL7yse/vWW0VNLkji6yqI70b376CSiYnyxyyG7UXL/pYg2uTbcLsckFwlKweN/B5IbQ3apyG7knI1eaNJbwEvksdpj2319w2oPbve1r7dZEYSaFvxJg3aQlAH9KsNuFdMnAdcZTn/Pi+/nVpHcGnQtWtrRy4DPvAApL5Pr9YGKnqmBbiTgoD7sWVVYPRLm1BWBZpMKGzZ1qK1FR3P79EZT3olDRrlocYnMU0gkiMBlgezLjKpJUCq2YIOAumQl8oagxCi/N56XOFRJPrMlO9CmdgEWdiUDZWojetRwm7K5LthWKWbWCpPlYiDAVlqzfSkvIL5nPr2F5NqyeqSZfmqjJZXsp640emPQmQPfewPLeekmcl18IgNwdivA12ViJ5XexqG9aT/oo2LIgWb8RJMs44AUcs2CRfTVlXjmqquU9qKg3aYkWYeetTH8Yhcm0Msh8ksB7DpGyvpEQJaEVQSauTgNbFcZPpMAhNFZgFXC56sjyi4RF4FKM5mVZJeCmJptCic1LpHQCHeRwTKJvr+BzYNAd5uSPU8wZxnJpSW71OLfG8FWfgG0ipfnuwGlbFoLA7xMRGYyXRPSwPLVhAfzW9oDR1WmwpqOnLgUbHaWabpTZJcqdik8zYHcF8oLi2sacGNPvdCcdbLdHzYlT18dcHY9pSxT/vjlKefVhO4qx3xWMM8qmsPIrCbCKmsT0JWWgJAMpk8dq3fknsfLYFu6FJlQMDHwIVM767RY5zcTDu6KBd/iZM1H33rBe4dXIk1xhlB4/GmDrkXr3ruD+JOG5sRhvrPiyV/uKO968rRFbQ12A5NnwvCCgFthrWWYMon76E8aWUydZ/jHJaO85sWfM8M9t72jaOayoOwZf58Err+9/6rf1zer9nf8vvb1Fiu90rQTYazmBxvqA6gONW7sqI89+bUwOfXsjVZiYGi7mxrMxpDewnhSoUsx6CcCuG4E1f2OZuFxqXxB2xLa05b2YYPaGJI1pNcGe1TiU2HFdCfDW7pT6ERaqarW0qL3gBO9rssC1UVBuMpEEmB7X1Nhau1GwAAK2hFDqpc4COySxAgMxvN99KqpFclaYW816VlCezbCOxWH0TTNTIBnNw7YTYx7bYUBD3Gwrbzn0LWivONJVtGjdaPJzzXJaieJUK0abLJc4fGp3/nvmkCy2e27PU+GSOBuKlPxQe8iZntmLvTzZvGchFT0wW4kGmS71OgbKxpfLYNtehsTrCJDHox43LpoT6b8zpfWbgP1kcTOdrkkXXWHLS6Dq18KqHnDUb6hdWYA4FWVUD2OiXJXyXAv6VaCKIrnBlWJn69/WFE8s9z9O10Mi5Chq6Agf6XBBMavJPKWi2y4pz88vZAUsLjweHk7Y/7oluws4ZOXpwB0q4RiXqGsxMsqhywwJn7QGncLh4/ev2arhmFJl4JaNGzvBv6fL38DgI/r+2SfFHTnBV1taa9y/vj5XXQpi47zzYSQBOrbnHKb4SuDKw3JUqzu2lmgmWpZ1ASx8lq+B7oRdjtZyoKtH87c3t1Rn3/xo4/5xZOXoOF4suHd6SWfXRyJNnebofMOpXvbtoBdS/gGq4TJZ5Y8bTmYbSXxrU0Iiae8K7KdZiHJg6aK9mVadMH9e7QPDQk64FvN9ZMDso+WYuc3gvKdFpdJKll9oCToxSna6S4sZl/7+ibUHtzua19vsdJbRbJU+ETRdD2akr/8ScPmrmG8KLn6fuD6zzS7cIRpoD5xrB8pinPF+nFgdT5h8oWWYITcgYFm7jGzRkBqC+2h2H7p1GFSmU7ZPPS0U8/9wyWbX6yE0Z0F3HulsJmtJkw6sTNyogHUleTE+lTYr+xabL36pDWUgLA0pnx2hQDHZk6ME5X2cjvpWTlhfNMbTXMgbB7R4zOYHggrYQOjF6xPGFLBepDcFQoXwxzaKeijhvaDEj91bB6Kh61uJeShOfAykNZqYXGj9EI5ha71wPD2nrC9HGT0Ukl8agwBCBbauYDh+khSuXoWWMeI4B6IhEwieNGRPW4UyXmCWyUop2J8sMgqfBbPm92d06ChmUnLXjcyOOcmYu6frBWmcGy/U+MzT5a35KZl2ya0C3GcaK9zinlFfeSF/bvM8EkMvYhxwAD5uVidjV8GVg+txNlGTbXy0g7XBw1toUTfGWDtq+G+ns5LzLtrzHdXbJ9POJ5s8Ekg/bFoDMzSUm1SQmXwSaA5iAy3CegGVu8EsUfLRaaRbBE5xDRQPnCMpxXNaTeA5e+kZ1QnwsCHyqAbjXqe48ayMLt4PifogL0W3bPaGpKLhESkwigPm3sqLrKi//Rpx/oxtB+VZLcwfi6xx/X9dpDpANTeUpgWxh2rOuPH13dxfzTHp+Bqg3qdES4zsYrLfIymhuyVYfOLFdcv5lR/45jJk0BVSmBGfeooT2TgDB3vr8zLdr1o8Mt7YgPI/YowcbBOCCawGJUoL/eHmbS0CwmdaKeimc+uvp6EuK99fRNqD273ta+3WMoj+kUXKJ9NBSQ8jm4CtaE8UYyyBj92FNMauxYpgimFhWmngfxC2KbFP0ho5tDNHaoy6G10LbjKaA86eXcbAQjqdUZXG1BECYHm1e2U4DT5hUY5uHO4FBbrQr5wMTsgajfCiPlMgI03AV3Hae6YCDVoJREQHzS0M49dmuFx0vaXxwQDLhV3hiHSdCT6SxTgGXSTPQhSjkE+0BUSfKCcgF0XgxGMlShVl0aWsougwUdf19JgagFXptTYtcgQVCfSA2GoGYBu0Ih8YqtQINpoHdnFyEoPelsvwFi3Cr2RxUvvJeszAYzJrSK9sJgGtBMGubfE0k5FbesOWCovzKbLJdFLtWq4LuE8Iyla0kuD94pEec6fHAxgWnWKpk6GYb7sXMcEt3i+ixAH7kBdJYxfdbhMDSETy+90bN/pcBNxmuhLt4o/bKSH/mI5w3lNkbWM84ZgAmWb0E08zVyYw2SlUJcpemtIb+V+6z2WURLxrBNxH8DGtK6lDDMybek6g8ocdw+X/M0Kfq96h+nj5dCx8IUTcLfVNEcOe2uF5T/oBNguJcq2PpRgj/xcFoy6URQXQbTXK0Nz0vHw5JrVO4HqRLF5CGbUiZ9zrI+v7/PV+pCkaHl9PuPp5ye7uOSrhOKlZvw8ylEa6dS4XGQ4R0dr0IH1dxsufsvhKiNpZ5mA+vFz8fkNMQpbN9LNUEERCoffWgG4QVj/6d0VZ1cz6iNHsgK3TmQI9FwCVsbPxEIOsxfd7uubVfb/3zuwr319k6o+CIRRh/IpxStNdSp2V+mVIVkp2mng/NkCe2spk5x5IylVygdGXyZ048D1d2H6pQCm6n4n2sovtXh0pqK92zySaFB7mRAUFGeaTW5JrzSTr6CdKrZqQuoEPLtUsSxz0htJxAJiOz2Cx0qAXzdRMblMjsfUinYShlAFlwkbmV8GfCKxp8kyJi9pMDrqPbMg7gGNuBN0056+FjAYNCJH2KiByXR5H27A0C5WXuQJ3iqSCjbXKd6D3WpGZ4rNo8g2NxKAoFCDVVcwMUkrDp0ZTUw0i6/tgOhYoFtFfgVtI/ZcydqQXwW6Sa85DrTzHcA1dWRaRwzRtP3CwMVYVp9GkFxJ21oPcgewXgC2qaB4Jee+FcMDpp+JWb/u4PAPFZe6YHquWL9r+d7kBX89/Q5qbaWtnkI4y0jXWtjyNYRE9M9By/9LJ0Gspq4/0uQXAb3V4tzR+wI7Rfdit3pJbxRVSPgfv/xlHs9v+MPPH2JSj3cKNek4u5oRMo9eWzkXLaRLsdVKVnK+m3mAaDdnNhoXBCzrSgD+6LminUJ7aCm3Yu3VOMP/6uk/Tec1dWNFm9oKA9yNZPjLW5FH2K2hPom69bUMZ3apBH6MXnvqA03Qge1dRf4aglFsDSyrDF+IxteNPNyk+Ef1cOzjpOHHT+/iK0tybtGtorrjCElg9NRSHQfGLxSZE+rdJ5CsIK0VF69nJNMG/7zAF4EQRM9sXqXkV1Av4nvCK/SmX9hJkqFPJZDE1Rmm1qS3itX5BFVJp6UbG/LnCfm5vE/7ABDtAmba/kw/x/a1r5/32jO3+9rXWy61TESWMA/4SUd6q8kvFJPn0jqc/SihOFNQa0wtWrpeczd+LiyXLcUqKrkyTL7U5JeB4twzPhNAmr820e9W0R7ENnZMH+vGAryK16KRbWYCyjZPZgKaagGgqtHCQDa76X27VuJGEBk3iENPabQhSoQh7AoVfXsFbBevA6Z9Y9hKCRsbDMJUIWyl3UYW1UVWUwmIM7UwX6YWoEBkN5MNA6ObrALZuSG7MIxeKfIrYSUHt4QoM5BjICaERc3sG+lSpmbnAlETgyKIVmOQn0f5RWAAxt1YziXI8XsbnQkahY2uDLpR6E5F79EosQhqkFioTo7BVOJrq5s4ILeWeyAosa5KbwPZdbz+pViPmSaQfFYw0jXJuIlJcAq7VmQXWjScufjW2m1/ruVc9OEFySZePxeYfiX3iN4Y9NagvCK71BG8y/n7rLnDX/vyu3wwOYfa4G9S1JUMzIVXudw/XbT18nJf2W307lVy/mglyjZZaopnFrPRpFfiwmGaQLKG4pmleG5RpaFuLV9cHXJVjmifj0mWMvCWXcn9bhpFdqXxFuwakhtNspSFjW7l/GVXCpcqshtxIqgPPPVhoD4MJCvF7e2IkDv8wwpTiu5c2x3zeSdfwWVGeiYLiG7iMcc1qhFPX92JBMfUMuxnajnmrgB9Y+lag3KK7JUhvTTk55rJU0UzlYUPQboIpomuHFHO0jtVjJ5L56E+9GINGFnZzTtOrq2T96fdygKiXmgJKtnXvr5BtQe3+9rXW6xkKfICU0ormkaTXco0fHUoAy7dWPxuzbyhPFZsH3eENLB+v6MrFGrUcfVLgeVHnXi2FlCeCkitFjrKCOSLsrrXoRaNeK86AV3b+4H6SPw2TSXOCq4IjJ/JJDnsHAH69rF6k+mMg2A9uDO1gAa7FSZQxehQb5GhqQZQAi6+9nNsr5tK4nlNdCDoXSJ6ltNHqywTGT21645jqjBYdLUTJaxVjHzdnvbom0HX3B/bm//2RmQeyu/CJUwTwW21+7mZMQD6+gDWj+XfzTxISlxvxRYtt4YBNdWfJ4Vq46BafB3d9M4RwvKGyLb5VMB0N5KJ/XQZxGPXweo9AVDlA4etJI2rXijyC/g3X/0y7uUI1TGkuvWLiSSC+h7oqSCuHc1MzofIKcAbRXHuya6DhH04GTZsDjzVoex4edfxWXXKwbjkh7f3xD+3kuvXtUba6Td6CEjo7wmCDM4pJ0A0uTZy7jqRXhB28cwuk4WJ2LvJ/Vg3luqnc65ux3L+uuhk4EXaojqx+ELL/Z2sBLyDvH6yjOfuWFEdykCgz0WnK9KaQPCiZS5GDT4JhIM+cUTq2WaBTz26k+FGnwfcZcbsM40tYfyMIVgkGOks9AskP3HiMPLBSmQMlYqOIvGaGznXqhUJSjdzcj9PPD4J2I0sBpSHB997hZ91qJGEeITMUx9IaIuLNmb9gGJ7UfzDfVDta19/ymsPbve1r7dYpoZkUYOCyRNILw11tO6sD8GPHaaSKN0kcZQPOlSnmH1iSG6MuB8kTjS5p1v844rqxFOeBsoTAQPtGMo7gfa4Iz2o8JURPV4e6KaB9qiTIIkIxpoDL2xtK+xaF2UG0ioXiUBvSSXDXGJY33/J9qCtj/u0JcOgWS9HaMeRmcrj0JjeOST0ml2io0LvqtCHRAgjF1vqMea118F6K2b8PhPvVlOLhtflDGxnPxwGkV2OYizdqf8UABU/2aB2TO7wvE6m1tuxgMHevaJnsF22GzjzluH/RLMb2bdagKZuI0j3argG3sr+eqOG4TmfxWuRiK+tBEcE2llkoWcN5YHh6PfM4KrwyYs76FqOK6gIskZhl3yF2Imp7o39Z8cSqy5qmccqylHA5wEyFwNBBHyFkePvnr/L9w5f8tMXp7KwSURq4pcJLo8Db9G/t18M+ehX3Hv7Jis1/H57rx++CmzvyLY2D8RZpFl46UI8HzN6qeDLkTDwSDKcT4OwwkWIxycSnYFZH+2uZ5fLuWrutaITH9LuovbdacbjinKT4keCytO0429GuUph20E6EyzYW01yowUoWwhWYpPNGwu50esgi8lJS9ha6iqhnXrGz8OwcPJWjgOkSxEMoGUwE69kWC5GJ+fnisx26LUlHTXMf2LIXiS0R93QiQhW0S4czdwz+dz8bD7A9rWvPyW1B7f72tdbrG4MPiiqI/kC9AmoX1yyehfqAy/6RiUau+omFzC50ZSnu8n2rpEvqrpMcKVBt4rusKO862hmYlfVHXTYsejsRp+nrN9z0pr3oBJPGHXCXp0EfOHIL+XnZKPwfWJWpwYg2lfQOwa2ZxmFWQqRkYsT6E4kBMW5oj7ydCMBKN1YdKY9aPUmfM0hIRhEUxu/i3sg6FL5wh5sv5Btt9OoZQUIIrkYP92xdcl6p/cVNwQB0yqAijJEE2UXgwdv1A+jejYzDEClG0dPXCeRtLpVHPyQwSXBRna5d1548xjE7ktY4p7R7glBH2N5VQhD8loP9n0i7HCzCDHRLPqvbi0+gfzac/KHrbSiPxPHgL493ksjXCFgsS/dMQRHmApsFQa7NuWgy9XAZOtSQ6MHNhFAbQ1PXh7y3fFLuMgGz2KfB5Kl3ED94kL52CWI/sS6UcP17c/p9AsIMzmGZi4eys000J20NAdBkuqcMPrVYcB8uB6CF/okt75b0I4V6VLhM3bOE8QBw0y2+aasJrmSoS6RvShwcaizEq/g/JOcapvy++W71KHlbDOVITCkk5GsJCK7ncnrCVCVBVbvI91OFPVCEZz4VgenYNbRjRSzr2Sh2c49buwFIPda5LUhu4xsrRNmnACLT1s+/ewuky81bWNppgLOi6OSZu5JtpBfesxWVjBHf/SGOfS+9vUNqD243de+3mI184C/yCQhqhYQem+xJDwu4UB61Ov3JG43e2nJXlvGLxTtwpPc3Uqik1cCUG9TTv7jhPRGoVKHPamo7krMK53CtRrnNOMXAXssiVLpUhMCqJWkIukaCIr6QEBGdh0GNjboXbue/u8Iuny6YwJ9sgNyPUDKr8VGqToMw1R+L22QB74BZNMwuCAIQInT5Uncht8BlIFBjtUVwmza9Y4l1m0gWe40tqZSb1hrRYDv1dAmH2QOPQiO2+i30xWxtR51uN4K0LClPHf9SA3T8EQmVvkdiB7YYSuscs8698cjP0SNayv71Lfmk7WkTs2+gPT668llqjLoDqoDzfN/zNLOJASgj2oNRo5pSJ6LkpOukGGjfohtALEtuAJGFw7thGkUnbc4P5gYVWvWGrPVjKY1PmjxCFZgN2KvltwqTKVlaLBn4aPmVnXxvMVj7EbSSbj9FiQvUzlfiY9/Q/oiESu8XKzwzFbRTQJ/+Tt/BzdzQ3cALwsH3QmYHJ2FnaQmShdcIfd2upR7Um0M1Yln/Fz1lwNTKtJXltcXM1ABu1IcfOLQ5yl/7+Y9Pm9bLv/oZNC/Dgl4Vizb+kWMJMvF/1fRBm8eCDcp+blC6cD8YIPLYHMaB8fSMKx2xJ5OwGyw8T6N53bxWYfLNSd/y7J5EPCVoToVv+C6SghGfHlvPtIcfixA/+bD9D/fB9S+9vVfktqD233t6y2WywJh7ITNGSl0aSRfvrSMJjWq6CIoUyw+EU1sUJCfGfSPJwI8U48yEgxw/ltOzOIbw3hUE0YONOLb2mlGo5qLXw20txnZtbROlRHtnk+ittUEmiOxz1o/jIxsZFT7gAXt3gCa6Q6gSZCCTKP3YNlUsHpHU56KJrGPuE2voj1SZDbFLSCya5kwvUQg3QNrU4sutLeMCnYnCZCI3OjsUMi53TzyrN6H61/vqO524j1aBEIird2QRJAZQWovifCpgKm+ld/LGfp0qUawjiS4BTnGeiFsm7fgThthkJWwyz1IBTkWiUUW+UYPsvqhsl7bq1ux+/KZAKT8HMZPBYwGDcWFtN7xkkIVJh0Xf74h2QZ4dzvEEPdsLcgxif5SjlU38ZitSBf649veUUyfOJEATDTeCNO4eehp5qJLbY87WDRyzfLAtKhYuZzZ/ZUcQ6lIb0R3bUqRePQVlGzXNHKNQ5RetHNPMm2EuTzuJPBgY3AjT7twYiW3hQe/9lKYzAayS8295Bo6Fe9B0XvLwJ/8rl6ogZmGN5woMtHy2hJMqQlHDcsPhemefGkwUds9+zsFD/49Sf46+20BmtOk4m+V7w+2bcFKt2LoqExE80qQ90V+EUhXMhRnKkkb05UWiYSGbSWAs5mL44jeavIXSUwjEyZZgh0kwtePHeVdz9mfNbz6TU1x4Sg+vGV0UBLSIHHXZxm6Fgu0ZuG5+ba8h26+/0bE2r729Q2ovRXYvvb1FstuFPn7G+pnB+g2MH6qWasROoA58uTjhrIy2F9ZcX4ww66kves+KHE3KcorrHG0ZYpKAuM7G7btBL0y+BOFMpK4ZU9KQmM5Gm/ZHue4Kk5YHwTSvKUZpaj3N4zyBjrD9vWYMPa0qUyHmzKySbG9rQQz4/r2PmKtZN7QTYJ8qUv8r4QEhCTQjTx4Q3ajoBNv2l7u0LO+3u68ZXtWVTc7F4YeBA8g10ir25aK6lisxdpDx+hkg/eae7M1F6sx7XKKt2HQ0HoDyjCkjwUTMHGwrQe2ut2xuX1q2KBb9eIkEbSw8G7kOfgjRf0+4kM8kTCIoHfDeL28QdwYFF3aDzKBjsfZuzE00yhfKAJBKbqxuEPYUqHbMIDI8nGLMoF8UnPxKyldZZldBIJRuJMwsOEuC0MAgerEeSHY/tyrYYjKZ7B8RwIWymONaQLVsZyQ+kj03cZ4nNOUtQGveH0546/e/gZJ4jC1gDHdyt92owgRYHv7BvsdWfhgwVkIScAHRRgHDu/dUn92LMe8qDk5WHG7LajKGe/NLnnq7lL+6pbi90f8tcvvk16If7KNLg/BCGM9dAWi7tjtwtTwaaCdSFxxeSqLwlB4fAFNaanvtRzcXbKtUpa15fBgg+0My7Mpn6+O+X///V/CIgDYZcK0Bi3v62BFtmGi5nn9SG7X7FJ0zMEG3NhRjuHu4ZJXnx7j7waSW0U39ahWpErtNIAN+NxLZHHq8bPYHVk02AcN5TLn5oOU0+mabZuQP265mY1RJtAt06Ej0Z50zD6zpH/+5k/wU21f+/r5qz1zu699vcUavVQszydMvwqYJmBK8aBNlorNJqdtLLo0tK3BbKNWMwOtPaM7G/DQXuWkZxKlWpXC/tiNYrUsCI0WGyEjTGXVSUKTLbqBFfVO9ItaB1xQlOtMghYyYYN1swsWYNcpHfTAvXxAux3raKsI0mILeOcKEAFAsrMPU9Gcvn/d/u9e79nrQXW7+71+gz02lQDHdiyAKb3t/WolsABgVWWUyzy23GPKmuNrx/Q1uYV/43dehq767ff7pNgx0/0UfHJt2NxX6MtkOJhevmGanavEmxIP3QmbKgfHoO/tt9ezvi4XkJpfSbu9d5/IrpXs46uU8rKgmzmyJ5mwlZ04cvT6zN7f1zQiNelGAqB6+7T+/PchG3arBgu0YCC7EJutprGsr0eUlwWq0phZQ/aTguN/fcT21Zg3vYN1owaWVfc2ama3SBquaQu60ribFD92VE2C8tDNHK6Tr6btKqM77Pjh5V187lFIRO3vP38oLftoQ+dttDYrBewqx7D46u8v3QgDq6N3dLpU2EuL3oqeuJ167KRlvcnFOkuBUoGykmv71etD3vv2S7qJHxZhuhart+K1YvRc7OCCFsu1YGXArndASG6iPkXB2bND7FoPTHefZrd55IYhP9VocEj0tfXopSVsLM5p1MagHXz+5JSzp4csiorgNMHLgiS96DOgoTpWVM0bWp597esbUHvmdl/7eotVH8Lo8wSfBG4+lLSo7CqgX8NtltNNHelGoT+ekq13ur3mbEQ77SjODaYkOgIo1PMcHVuz4VlGN/HkrzXbvIDUc/biAJU6umU6gJj2Mkd7qC4K3K2huJVWeFdLrK5P5ctZ1ztA4i2D3lO+1KOG0gPxO9s0YMogQQ2Nopkr/ErTHHjSGz0ANHlNRfvG83rWFHYaSYjAsu0Br7CZyu0GiEAYXGnDG/z5iPrYES4N42h5VR/IA3WnwEe9ZQTKPUusAhB9bvtp876VrzpQQeHbnYZT7M8i41zA6LmmvKsGR4Q+xQ21k06EyBjbjRq0ov05xYMtA6iYpoY8RiQfYvXVzEXHm18F2qll+gVs7yeSQBeEHUzWYJVoY4MRW7V+0dBrXwFsHaUSuSK9lf3LrgPNVDF67cWn+FaOI9TgPy8YXanBw7WcGdIbuH1PM/5KixQhRsXamkHT24PZIc64A22ARq67v9X4RK7pthtzdB3YVhq1znmxTrArg08D1390TOLBb2TB0pQJRVyI9JWsib7QSnygU5Ef9AOSvcVadiOhJZMn0hWpjmRgq51APbcUX6RUx57sUrO0BUoHxhtF/UsNqzqThLgIzpONnKPiwpMtPTfK0hVynrNLjY7MsqlE1148t1T3HUd/27C9E6UbAXSlcBMv7yUd74e1JLT5LOB7cJoEupcj6VgcwewHKT6FFwdzik8y2llA611CYFdagoHy5eS/2AfWvvb1p7T2zO2+9vUWq5kLE+etpJH5BJqFYvWugB5da+xGvnjbSWQHV6L1zJ+k2A2kq0Az38WIaiehAulSYbea4lxYIrUxzH6QEpxGb7UwWbVi8rlMh9uVYfRc7JqUA10asqtegxokCtfuBmaGiqxtsLs2Pn173UkLOl0Lg1m8khZ18UqG1WzJwJLqCCb7wZmBxYTBPaFnQXuwZMsdoyrspvzoMxi/CIyfB8xGM3kqrPibQ3BBSxRv/2+J2mVwJuhZ1mFgzkf9bBeiz65sq/fBbSeifU1WgXQp7WXl1Y4NfmNwbMfgsvPTfSM4oj8mUwdUkHNlGsgvIWhFsokAvZXtmlpx+22YPBGJQzsO5FeQ3obBL9UnYdC99rZepo7XVIuVm6kD6U2gOJcBQIB0Kezh6JUXz+RtYP6pbLu48ORXAXWVYJrA4jNPfimsvG6jPtr390N8zSDb6Qf1gtoB357JnjyF5NbQzBSjl5p0qZh8YTGl6LXzS7lHRi/EOzds7TAEp+JQXDdiSOUaFidewiBMJfvS+yFrF2hmMqyXXwaSlSSnJa8SuolosrtxYP5ZYPRSYTfQLVNuf/948NPt7/vsVtL4dCvbyG7kHs2uA3YjA47prVigmVaCJa5/IVDecxLl3MttjOhuZfGloq1Y9IGObhEgnZ7ilThgtBMof2VL/XokA4KRmbZbee9NvxBZRna+twLb1zer9uB2X/t6ixXszllAdJTRS7Q3ti8V2XWgOopfoI0MlfXeqbYMlMdiP6SC6PPsRvSq7TSQXQnD5wqJGU3WQWycPGwfd5gKpk8dxbloBn0K9SJQvA4Do2gGrWQYhlrenPLvW/diairgQdjYncVXdRRTmUaSkiWm/QwAI2h5vkJA2CARcBE499uDnTRCia5yGG2Put16IV63uhOgh5KAhR5I9S3kQbMbX2u4Jj2IfgN89tUDmF6aYKPFmKTG9fsQfWXtDqwNPreanc9t1PL221B+J7VQXhY63qgIlGJ4AdE1IjKvovWNaWNZYPS6G5jZ8ZkjiwlnAtx38gAQgNn/3C9adidBXBfePK99FHB/zmwVWN/XdLn4HGe3gdmPbobBtN4nuT82Fe8N5cOQ+Na7JOzs3OTNEIyAuG4MfaAEQd4vPhV/YdGzCltaPLfDwkp3u6CNoHchELrfdtRXE+T6dcVOz725r+kKRTsVOUZ+KQvG0ZnG28D6gWL7ILB9EFBOCQhfqUEC0UtdxF0jJuo1cq7kmIVBdlkMcNFQnEXJSC3JhM3CD04bozONXaso4ZFFg6l2fsyqlvS2/FIGyHwacKUlOzfUh4Fu7KPLSKA8VWzvig5Y753A9vUNqz243de+3mKZWrF+DOUpLH7q0U0cNomazOxKPHC70e45KgTyS0V9r6UbKZoDSY/qp/wBypOA2SqSZRA2yAjQXb0vICdZadSoG9rhi8860QcaAdYuU+SvFV10HdCNGrSTg21VBAi9Gb6kXEVXBR+HmeJQWJczyAd0J+x0O5LtSEiBAL5ehxuGgSt2wBkGoIUXoOyTN6QNfjft7zKJGe0KRXotQDbZCHpWbodkvRGwM1iXRWZ38D3VPTAVsGOrQLC75/dDSr0jQn4hE/NBxajUfn/V7jxJOtwOzH6t3gDS3qph++1ERc/XyEoWci4lQjeyuI2iPLESqlEpsqsO3UpnwMSF0xCgECUB/TEPlmdxseBSAWi2CrQTAxrqmR4eXx8q7FY6Bi6X409v3eDLaxp2WuZ4Hb3deeWCMJg90yp2aaDjtelGagiS6O/BrujvNxVtysJwv0+ehmhxxs7Ro5H70dRhALz9tR7uly4Mx6QbWdi1U9muy+Q8TJ966ZBcS+JYNw6DR3S6DhJXPDDuIuEZNMd650Lx5kLQ5RKbPP3KR6syWaBKjHaUr2zMzsLNykIxiZHOLg+4ifjWVicC9hefdrK/P0wZP5f3rOoEzFbH8hmy/UCcKLaP9m4J+/pm1R7c7mtfb7GSpTBDQQeqA003lmn14rUmXUqLs1mIZ2VxLgxueSot5PTcikF8IW3Q4nXUckbsZStoZ/IPXUl7s50EdCXRrMELc1Qdam4+sAMQ8UmgXsDotY9JV2HQ2mq3c0Lov7QH9jFEJpUePAjAtVth2LIb6ONWu+LrA0XCKO5A3wCi1RuMZg9+tTCAPgLL3kLLmx2jabdKAizGDD69889b8e2NDODge+p2U/w9gzywmP3PKjLRPViNbg39oqNvsaerMLCWApDCwOAqH69PDK3o978HQjsNc/jPgF5XiP1YMBHYWgk+MKUMQulG4aaOm49EtpLeQjcypMtutzAY2G5hMf8zwFrtGON2qkhX0lKvZwqXRs1vLQC4mUfHgygRCTagXcCNU2Fne2120jO2u4VAv2gYJBgRaA5SiUq6FbD7//5e6QfcfBrwk04e5yFb+mEobRedHIZFiYpDgf295Y0wqy7qcE27810e/JpT6X7UM9GzmlokJ8EEkqUmvTKkKz9o0PvUN91Csg2YymFaufd9TNJTnWzLZVCdCCvfTWD6rItDb0r8gUtNfiEaW9FLi4zBrt+QV6wMxZmiG3s2D6EbiXyjOJeFYnaNDLa91HSjMERdi/2eYl/7+ibVHtzua19vsZqFmONncUo6aGFO24kwTr0ZvisCmweK8lFHO/XUC9Hd1icdqpEo23QVoh5RQEC9CFTHwqylt4ryNDB+pgUMW6AWH896rmjjfEl1IpZD7cyzfFe/YRMV0E7YtF5+0Ncu+lban727AUH+3RUCxoWRlgjZ6q5j+YEAtp7h8xFwDn66b/ifyobkLzHKVyTbMOhkdYsM1cVt6E5AbzMP1IfyxPNfSWmminbihWl1u8S1HugF88bPvRNED4iSnlUUJjpo0VGaWhYSyQbKE832fiBdBxnMiiywDC/tZBoodklqanf+RM6gBm1vdu2FpUyhnQXy80B1qIZP6h6AdaNA/kISyqrjQDOHzT1DM7M0c/W145JktKjhVEhAwzYMwDBoFVnCQLLx1IdRP1rJveoTqE47rr8n7GA3Dcw/UXirWH44ZvVID8c0LHr0DnT6mDjn0h7sy/XrRgza1L5cvFezazmG+tCTn0tHwRSO1WP5van918I2BkDbhgHU9/dTiBrj4bwnsL2jYxx0oD4WZ4TJU7leyw/l9+sPOjaPFOmVYf7Z7g3QD1e+GcbhUoXPNC6R7Zi44LG1pMm100B17HFJTOrLNdOnwrIDuEVHspbEPWGixfGiOpVkOVP1IF/u++Z+y/ZUUz5wXPxqYPUuFOceU0F6IxZ5yoO5SiR4Y7X/qt/XN6v2bgn72tdbrIe/+oIX78zxX0kWqht5gg10U2je7dDnKbOfws2fbSimFd89vObJ9QFKBbrO8Nv3n/GH//Z36X5lzfKLMfbDJZtOk2UddW3xrWGx2HD1bMHs3op1Omf6YMlqPEIbz/rbHmUDwSuSUUOWddwfb7ncjLDf8qw+ORC2deIH/04T5Qk9Y4UGop2V8grdhSFiFCXT9MEG2qlMf4fUszhdAXDzaoq9sRLiEMGeWUcnhWTXQu/b6MFAaOLPufpaclg7jkNviQzXcVoTnGI6L1mvcubzLTdfHBBGDtVofARXKgRUFH0OhFbUyLrY9lY+OlUERTMPw2Ork4CbSOAFSQDruXv3hotwSjdxKCc2asGEIYoYr9FxUn9o3cdW/ZDEFqT1vi3kGLtJoDtsWYUEN3X41Ih28t0Ns3FF3RnKbUb2gxHbR47iO0tWZkFXGKrjCFydGgBYGAEoTC2ODEFF9jpqvdNVYHNf441m88CzvQec1BKtO2t55+EFi6zkD3/6iOO7Sy7vT7D/n4z1Q0V5xzN+pgeta+/wIaldwlb2TOcQsxxjmwlgxor6joNOoY5qVOJYlwnZuOG9wxuePDogtIa/8MGnvLw347O/95j1raWdRoZYi0uHeCGrqC0Wph8dLeMig+0SaA48vpAY6N5P9/zulIv3UqYna+7Plnz++ohff/CCn9w9ZXNb8Oqexoxryi9yXAGmZJDIuFQcMwiWdgY+U4MVWa0V9aGksGE9l7+lyQ8qLn5pgqkV1b0OM2v49t1zfqLvMT4oaa8L8ArVGNTjDdVNjhp1TGYl203O9HcL6t/ecvtnPO/dv2CeljxbLbhpT6geibhWbQ3JnRI6Q5K1PDi4/Vl9hO1rX38qag9u97Wvt1j/vUd/m69Oj/nXsl/Gas/ReMur1QSrPe8fXPKD5AG3umBxuGaSNfy5o89YLzIu2zETU/PfWPwhf+VXHvHf/NbH/OD4AR/MLih0Q+lTWm+4bgru5it+mNd8/+AF/6B4SGY73jm45qYqOMy3/KNHnzI3JbVP+Kw6YW5Lfro+5UFxw7/25W8RMg+pxwO+E6Ft384PRrQCxoGPiU/Ki9bW5bF1P/G4kUdPW9Ksw3vFO4trJknNH3SGbRgJUswcOIVvFa4nNTsEaPZBCxpAbLh6trObCMPdTTzMOnQqFOWjk2uc1zyc3GDvOE7SNX+t/S7VNsUbQzB6Jwno1KDH9Oyihn0ig3oui63lLEigghav3vSw4mBc0TnNg/ktI9twv7jl331vAq3BVwZJ5AiERkMEuz17SRyeU9HSLCiGT2H1hsuBKzymcHR3Atm4oc4zTNHxF979jJktWXYFD/Nr/l+jX+bIOv7Re5/zbz75dezW0E08dq2/JgHp/WDRb6SYRb2yt1AfyBAiHlg0nJ7e8gsHr/jB4j4n4zW/snjGvfQWrTyPx9eYe57/4O//WepDT8gd3u5CP4IG20W226gdG98z2kmIOu9AyB1tUCzuLWmd4eHihgejWy7rMXeKJb84fsHFsbQZfnv8KR9XD/nk3h22q1ws0G5lAeHyyArH+6YthOFtx3Jv9sfcjQNu6sgOKozxnEw3/NLhc84mM3xQ3C9ueZRf8VtHOafJkqNsg7+vuaxHfHlzyPpBAYCJUhXo0/FEl+xiulzQkYU24A5aslkNwL2DJQBP37G8c/cCgNYZvjN/xehbDXeLFX8jfIBzmja3HM03bPKWO9M1R/mG7UHK89mMXz4+Y2IbHmbXtMHwG4sn/NXqN/jNO2eMbcOPr+7wj975HKs9qy7nMNn8DD/F9rWvn//ag9t97estVqIctbdUVULXWJrO0tSWxWzLRTmhvc7QQNNZnt+O+N3iMSf5mpflHKscPy3ukiSOm3bEpk35g4sH/OLhGc+3cyZJzarJqVzCzbagnluM9nz1+pBHJ9dsmgStCnzQGDwX3YRn2wUXZsKLzZx1JxG91V0PrbRFd+EG/VTZDhTqNwaTILZTdWyptgpfGZzxtOuUr/IDpnlNuZHpK+UUwSno9Nf0pwB9WARKtj24JXjBjbIx8YB1jcZFk/vz1YRR1vDF8pD3Zlf8g+uHtI3Flxb0G0zqG683eNy+6Xfr+/Z93JVWgZFz0NaWKrXUteUiGTPNLOtWIrBCG8FzPFeqk3CAfru9zlTa9tGWrD/uNwfc4jbdRva72abgFO425cn6gHmWc1kJ82+NINizaoby0d6r1F8P4PAM3r7DtuKglzeA3Q34JWuFv0hxx5rLekznNGWX8Kxa8LKe03jLi3JOqh22DCQrPVjCDcN07Fr3wM6tQMUBL9WnmSGg2MNqk0NQ3Bbi7bZuMlLT8WN1D4BCN/ztzYf8nYv3UDoMmuzBlk7/p+6VfqAv/r9XwpYrD6oyNGWCMoEr4/k8PWZZ5xS25cdNwaerE96dXPHx7X26YLDKcVFOuH42Jy1EfqI6udfjW2LQ2faRvyq+H2wDbqKp1xlKB27znKazuNowT0suqzEX6zE/NPcY24Yv14fUdYIxHqVhVeZ4ryjbhGftgsQ4TsYbnq4PeDC+5atwyA+v7vFbJ19SbjJeb6dkpuPqdswXkyNGtsUHxe++fsT/8pf+83xC7Wtf/+UoFUII/78ftq997etnUf/M7/wPeb2ZcPv3TkmvoT6K+fQHHarWLH4owQ433wkUrzTVscfHKXy91aTvrSivClTqMWcpyUZRfVATSoMqHGhhDO1VwuTb19y8nJG/sNQngmx0o+BeRZa1lOuMUFpU0cEqwa402aXo/KAf+FGDj+hgowXDhLxP5IsdGKy22pEADJcLY5ldS2u/KwLJWizC8Aw2T7pVZJcal0XwEz1iB1eEbmeLJU4C0tbWbXQoiNtWQbTLyoEfO/LniRjgJ3FIrlYD+NGN2iWQ+a/rbftBO/GUjduNQLudSviBKdWwbTf26CqKbXUcQrMBU+noDtCjdAYHipAIENLNTpsqGxKGVVhPeR1JXxNt6vJ96A479NrgRx5MAKfABIovE6ZPxSquK9jZbqmdXjgYhfKyL7aU1nkX2U3lYfzCU880y488PveYjcYVHj1r8ZVB1QamLVynvPPvOdqx5uZbZgB3vdtDn4Am94nosHUXBolCO3njPHcStJEsFdtHnSyOvILjGl8ZdO5kgaIC2fMUnwVmn0J5KsNh/UBYf38kmzDoXeuZMLgulUVZN2bQ6uKhOfSiL2+FYU5vhPEu321JX1uaIycAudTMf6poxzJ4520cuOuHtqK2ViQ6atD9JivRzve68G4chnugetxAI4Nqrgi4wxYqg2oVofAQPZlVowi5R9WaUDhU4jGvMrqpAwXpuaG53zL7OGX1npeh1SvF5oHHjaULU3ye8sf/83/xZ/IZtq99/WmoPXO7r329xfr404eoylDEwAOXCvBKrixmG0MB1uALRzcSP8yjP1Rs7wizuE4nqHkLG8voTAa+TJ3RzALeGtzdBjpNd9Bx83KGXRqCDYyeG+pFwG4VrEY0o4D10BUBvcpQHtIbFVPGogNC/OKGyH5F+6ZgGCbhB+uu+LOpA12uSJfAjUyG241oIe1G0Y3DwKjZlaadenwmwFd3apioD1qY4R5suiyyY2kEZTkxRjZaXlk5l9mVorwTmPwoEc9UpXAR2PaRsr0kYbDK8hAlqMOgUJ+yZcvdAFQ77t0KwFSBdqoYnQVuvq0xdWy/xxY4/b8NaB8XJzGpzLTgehAYz59uZdBLfFLVsF+yPRmy2jxUZNeQrBPaSaB4bdm835JeGHSnmH3pSdcel5rBcg0v+ySBDQKWeyAP8ZqVwmoHJcDQ28D4iaadatIb8Klm846C1JNca5rEMDrTMhwIJEuG4IjeYssnIk0wTQSahJgCJgDXNPG+SOJ1OI6BJUsjQQQdNF3G6FLTzAPj14rVRx3FK7mm9UKCS3r9rk+iX3QKbKMetk+6a+O6owvROUDcI1BybD3IT2/l+E0N7dSSXit0bYfhymDEwaSdqF1YRNQrA9jSx5AIub9NA9mtoytsjB8OTJ8EugzQULxOCFaudTNVcJ3RLOTCBB9BrpV718X7wmuDuUpIrxWmtCQrqI8Ds49T6gNABexWC1C/1XStPK642HNY+/pm1R7c7mtfb7O8Ij8zbN9vKLeGMHHoxNE2Bndr0Z2ivBc4fnhDdcdSVwnLZowbycAM85Z7d685yEs+vXhPWp8ltDOPrjXpqKFLLEoFkh+PCL+0olqnNFuL3mqq92q09fjGoFPHdFqxPJuickdNSh3A5+KZK+xoZBqHdvoOGL3Z6h50hlnUOk4EWGzvetJbTTsRytTnkUElmu+XSobqDKhorI+Pbg2xba9jDG4PoHtg3bsx2BKacWT/1opu6qiPjFiqdSq2q4UxVg5CEoQZ7IfJ1I7dNP0UvBfwYhphom3ogWs//a6oDzzKadqFo3UKu41uDCb6vkbXCaIswScBYlhBbznmDUN8sXaI00F00NANWAfbe4p2EmiOOvIzK7ZYaaBZgModukvo8sD0q4rybkY7VcO1CTHlynuGWOGQ7oAZIE4CyDarA007ljCFdhLecHQIzE7X1AtLGhTV9zrq1zndSJw3+oAJlIDM3nUjGPDxvnF5HL6K3scqQDuTc90tOvSXCd3Yo43E1hIXC27kWX1HHA3W70aQ5qE4l66Cj4Nivba4HakhfKN3UvCp6Kn7ATqXKppFoD7uaEaO4BTtVSKewjPH+M6G9WKMWWvcyEPhqA8SFj8Wyzm7jfuXxPtQKeZfdWyPbdQYiz7dJUZcHw7k+LMbTXUYGD+Xc1wdS+gCJmC2WphWZAHWBzn4DOxJSddYtPV0aYJ61NDVlu4ywS06dJ3SvFMTGk030tTHoi1GB9za4or+Zt/Xvr4ZtfcH2de+3maZIO1sIwNK+bQmK1poRSeZv1aEJHC7KnBOYxNHNwp0I4+uIWwNifakupP4zbkXpigCkLa2hADdSiwF2sZSTGuCjqxtq/GtgU6hTQQKiSd4hU9kn4ISD9pBSxv1m0PrfgBF8ZgiC9kDT1uycz8IMjikHMMX92B4H+25dPN1CzKfiZ2Zy8LABvbDV3YbdtuFaCkWgWmFgKutFvAaY0yVU5FxDl+LxR0CJPTutfq/Xc4w/T9oZSMYVxF8hzRQngbsWoscwezwch94sYvfVYMTRB/t25+D3hfXpWrYn6AlDrabRMbcKVSjh3Z/fq7pph51kdIVQbyANy0u3bG+g09wPC4Xrc1M9UbIwNf2Ubxsu3EM8ojXEC2OFs5rQlA4p0UvrWTf++rPl093r++tLJK8VYNNVu9j600PhEPUxgqD3EscVKeojxyh8CzurCieJIPnrULY1l57q7sdYA+WIayhPy7YAe7eX5egMBszDCQOspSxDEGqWuMmHuUV6Uh807pR77jBAKZ7f18Ja+h1xeCNohvFAT4bdvpnK1KkZhYBqJIFkE8CZm12jhuZbDskAe81odW4ZYqqNdNJSWg02YVGGYm1VsaTvpJQDzdzJNMGWg3HNebDNfva1zep9sztvvb1NqsVrWb2NCVZKdZKpq91qZl9KsCieGbw52PaUcDlHktkUBWMnlqeLxac2SmjF4r6QGEqSK40yVrRbnK6SSBdK0wJ5vOc8q5FNZpgAqMvktgehubAsCYnv9FDnOjmYfha5KyKw2NfA2tRI6qjs4HXO22simxZehNoZ6KlFdYsoGst4LDbAS+fBIkX1RF8dtGRQYXBeL4fTtJvbFc58ZqViFUEBFhJaGsWGlMKC5ou1aDd7cZR/xrCbmjtDUDbD1qpr21H2GDdBfTNTpua3ihcqkk2AsbsytBOxThfx32GCC77BYGKTGNsoes3NLE9SDcVJI0kuvXDeipIIIbdaorXouG0W0iuNdMvhNk1DbiJBCrYjWhCeya1j6gFBl1zMLJfAs5iahvib5tfQH4h0/+9N252rVja6XDepk80ug2ktwLCm1nUh0YLNVtCHxKhHAM7rbwcYx+6oIISMJZa6gNJycsvA80sShNmhmauaI8M3VhS97xRIt2Jtm3DwkrvYnj7iN8eSPdxu6aDdClBG9mNyH5qlZNt5D2QrKAqc+wmZ7ENNDMLCqpyzPiVIlmLPreP/u23b+qAK2SVlK534RFO5uREXrISOUs30eSXgfwK1k1CH83sMrkRQ6VpD4SpVh3oSsO2IK1ln1UHV9mc5ErkBq5IGZ0FmnnO7HO5z5sDQ+sy8peWZtJSb3vz6H3t65tRe+Z2X/t6i6VHHa7wHH3sSZeB6U8t+QtLSETLt37XDe33098NHPxQx2hRaWXbCtxFRnM+YvLCk13LF2iyjnGxG0V6LRpQ0akq0jNLeqNjsIB82ScbOPiRYvRcktF0I5pSu1bY9ZssY/gauzkY17/BXMmXc2QPa4lNbScSTDB+IWApGMgutbDHb7xOz3jpWoCnqeVYTaUE0Ps3vEzrN/Yl2pC5fGdurzoZMpp95dBOmOrs6uv6UpCFgq3eYKL7ga5+yt6Djb6pPbB3qcSZetv73wrgM5W0xPPLCIKbyI42AvZMrdBO7Sb4ww6wAoMrQ++366204tObOHTlRVuaLAOjs0B+68kvxC1g/qkkdSkvMcC6dWRX3SAR6KUifYtfhYArRFLRTNWgoU62u/vT1AJqm5n8f7KWe6WdyvnNzzX5a02Xw+i8Y/ZVM4Dn3t92CBsIO1ANUfMar6FyIQJd6RRMnim6kQz/NVMZiOuK3bUrv5rSHnU0c2Epk43E7/axwX3CXB+JK3IVCavobcgkOS0MPsm9bVd2qRk/D9GmjGghJlra7FpeK72VJDBbSkSxcnIc0rVQFDGMIbzxXlFe9tOWkK6EjW7miuxyd93mn/rheclGJCuiaQ+oRpEsNbZSkhQXGfFgIH8uuttmqph+CfVCkSwV1fEuoMXeGqr7Hb4xmLPsH+Zjal/7+lNfe+Z2X/t6i/XozjWv8innvzahPZBJ7OTGEEaO+lizeOeG9YnYZb2ejtAtNKcdqtEwaWkfw2Re4pzm7Len+LxjcX/J9gcHhG9tcJ3Bt/LtmhQt7U2O3mrCUY26TqmLQPNhTbhN0aXGLVqKgxKtA9sXE5JbTVcIm+ryMGhue4ujIZksDI5XsU0v4K8fGpNhLmFU1+94WPx/2TvvMLuqqv9/9z7ttrlTMpPeCAFCEIi00JEmCqioIIoFEbugiD8VUEBFARV7wfdVFF9ExQpICdIRgrTQIdT0PvXOraft3x9r73PukASSzNwyM/vzPHmS3Ln3nH3K3LP22t/1XS7CTTZYyBCaQgYF9DcvcVjleEmegh4WSQeqgxw/Id0WBPmIAkB5guzcFjCgxYdRcVCeKJCY14/BRCuNUS77MtXaNaQgIqzK+qlgnQeIquFVUAtGxXehLRCmQvAyZaHJa9dDqWLA7KPmFKR3FZF9WmCLOMBmFOGGBotkGyGDlJXEmT7uU5MKN9LOCjlmBqNIPx/YNYRZ5PAmuihNM1CekIHTT1nPIAGEjoA5SONnAeD0Uoc4JqRO1WEIQMG5n4qD+MI02WI2EYIJBuEEsNIe0kkXg11JJDMVOJYPd1k7CpMsuu5SZ+tmpf4WdD596T8b2oBwWRQ4gsUFb5XOMGp8gWQA0wlgWgGYEcIxfSQAFJ/oAJteRtlPAqGBSjuLWkH7SUEyGqbaPCsZCp3LIEETPQBASgbRNuC3BDAKHH42gNtmgM/Oo7wpCdbmojVbxIbpWbBEgEldAxgoJJFnWViDdC8oeUyQAGwPKHZypDYFCBIM5Xby16UMMhW/BSkBvyUEQsDuNSC4gdIUgdQajvIsF/AYzD6TmqcYAkgEECFDpTMgy7t0CJ7xMNCmUukBWp52UN6/gOKaJIJMAJ72wA0Bv2yipaMAk4c4dacl+NeaPeFP0XkszfhCB7caTR3ZpXUTeotJYG4eU1sH4YUcPbk0ZrTmsdZpw76TVmNTOYOU6eLlbCfyJQczWgoouBZmZAcwKZnDjEQfNroteKplGkLBsFfHWtztGzhw2goM+g7WF7JoS5SQMDw8a00GY8DcCd141poC0wqwU2cPujvIJ7UjWcSebWvBmcCS1hl4ecUksiDi5LIgoqIcFmU2VbESB6hoR3qlKrP80KLCMWEIhIYBa3IR0yf0Y32mBcXuFEVzXIl4BYQvbZUCFmk4BRdRoBuYoIpxR2ZPpS7YT0vbLTtAsovSj47lY2C2icTUAt45+xn8tfJmuH2J6PyzgAFlhkD5wHKA8fjYmPREVdX/foL2AwYEiRBo9dDeXkDZteB7BlqSLma09cNkIZ58cSYVj0nNBXPJ0oqL2ApKcBFlrENZ2KacGvyUgKBVajrOVAhkPDgpWv9mTCBheyhVbNiWD1MwmDyEaYSY0pLDs61TEDyfhLAgLdDooIKEGNL5DXLZPpRZTxbIf5tkrSYSAWUrsxW0txQxp7UHed/BBKeADa0t2D27HnOSm/DLnd6B4gwf5qAB1sdksR0i1ws/hch9orpDWZAU8vzSGEWLj0xbCaWSjc62PGZm+8CZwOREDtOcPqyvtOJWdz5mdvSh0mZidW4q/FYfVp8Bo8QgLMC3hJR/UFtrFlDwzj0KeJV2WHABtz2ESAewkh4yM8oQgmEwm8C+01ehtysFzgTmtmzC4MQEkoaHBZmVuKt3Hh7qSSLYaMIsko5bdZcLHLpP7EEuu5YxynQL2l9lYgCe8eA4PoQAKnYClSmA3VpBriWJ9s5BlF0LmekVTM4MYunaSQgCjjDl0wS1YMNKu+hqyyPooCB1cnoQT7Hp2G/Gaqxpb0XK8jA93Y+1hVZ0F1PYq2sd9mlZiTNaXwAAbHRbavWVptE0JTq41WjqSCmwMLgpg/ZJOeTKDkoVG17FRG8hBRECvuB4pXcC2lMlbNqYRSpbxkApgSAkM32DCXjCQMF3UPZNFCo2XrY64Vg+NpRb0F9OYrDsYGpmAP2VJEoFB5lsCW5oQAiGcs7By34XbMdHynHRX07ipcGJMHkAg4VAwMA81XqJmjGoQhsAsRSBVS3zK+suuWTKZYYOARXD+K6BXDmBMOSUgQYgLIBVuLQhGLpMr9wNIKvYlGxALd3zCgU0LKDMcsAZPJe+ysKQARyolC2sK8usrc+ioJLarrFIVqGC9iHFV1X6WyDO7HKXIfA4yq4FIQfjeibyroPOZL5qX4iWrKGCaJAcQjVLYCEF80POrdRYMjlE5jGEroHA8RH4BkTAUC7aEAFDx5QC1q7uQEtnAf3rWtGWLCGsGCQPMGSsLou+VDGgnyTrOFUgFziIjj1yF3AAXjQgbAG3L4Gi4yHnJbC8twOlVgsV30Svl0bWLFMQ6VGRGyCtqiy6kKrwi3uk22Uc8XF7lL1nggEmwAZNFC0HYdHEgJVEn1NBybMQCgY/NNDvJSEEw4bBFrQmy0hsYiikZeY2BJhH91O17ENJM5TsJCo4CxlNlCwOz7ORnTCA9f0tEAFDTzkNywiwqr8NKdOFzQMUfBt9iTRe7OkCL5DlGq9qhmGW5LlLkq9utNIhdeGhRb9DImTwPQOMCTCPU5BdtGCUGfr7aKKZSVbAIcC4QFgy4psyoAlQybWQLySQSLpY6bdBuByv9E2AbQYIBcPaQitW9LQjDDg2ZFrQm0zjrlIHiqGNVaX27fui0mhGObqJg0ZTR/a44WIEj7WhslsJbH0C1qDSZlIWyNy3D8FD7fDTAhMfC7HuUNKeMh/wZlbQki0haXvozyfhr0rDGuCoTAgh7BDMJa2t3+5j6owerNvYBnONA78lhEgGsNdaSHQzGBWB4hSGyjQXRp9FulrQQ5rcABgCR2poy1IL68aBpwoyVUdPFkJWgdMyLYBIvxhacaYSgmQLQYrakppFFv3cqDAwDwCPg+bqFrxWQUojpLZStTw1yjJzlqalf68lRHI9BXn5nT0YeQNGmUU6SxbSNg1pR6Y8d+k/iLqvWXnyY1USCDV+Py2i5hRcaqH9TAhrYgnBqhTtS2YlVfDMKzKbKbOl5Acs9+chakLgpxEFm6qILkiIyONXFSWVO4DyZB/tTxsodzIkuqm5Q+tLFGyVJjJU2sUQlwheYUj0UuGYl6J7QJhK6EtOBaFJgaifoiA30Q0UptLxptZzlCaSJzFro2g2+1AS3BOR/ZufoCYX1qAqBhNoWU73RWiwKHNMco84k2u4dA3NAp2DclcAo8Qpi9ziAx6D3W3CKDGUpvuYsQjIzTBlq2JEdmWhLSI3C7MoC9ZCILRZpIVl8j71k3Q/FfYsw1zngLvU0EGkAjirLcruZnywnAVzYgliRQoTnqFmFIEjpRYW/S7Yg6SXn/hIEX3zkjAqpK3lrjynDlDuJE1vkAyRXm3A6SP5SGpDiNwsjiAl4GUERIZuBlYywHyGMBHCzBnwOz2gzJFeYcJrEUhsonvTbSUZTJAJwYtcOlwI+n/ag53w4XkGkkkXz77rmyPwDabRjA505lajqSOlV7No3USVzfYALd/aOaDSQQ/3wfUtyBaBzBqgd56BzHJVwAIMGA5yRRP5jAd0O2h9iSG3S4jEJg4WcCS76YFZMA1s6s9A5E0ZQDIkV9gUgKSo8j65CQgcC+m1LPL8ZAFDciPgtspA1aRlbaVtZEDkPICqKXHUalU6LAhGBVblDvJ+pc5YpL/0spR5VX6y3GNSgiDA+Obd0Kotl3ggEEIGZgY5BoQmnbf0GvpMYaqB1HqBlpUukhttuC0MlQ4VJCt/WxFXusuCLkAGPzLQNCqQVe7xsj33AXuQIjQ/Sfu2c0BoGSgW0rCKTAZvImpEoPTJhmwKoTqSRVlF1cVLOgeoYiTO1c8Y7H66bgAi7WjbMybswRATHxlE94IWTHkwRPaxtSjvPBFu1qHlepMCW8EgG09QsZiyYGOBiCYMQYLBLAikciGKkwy4oMx4+1KgPIHD6aO2s4HNUZyaQGYlkF4fIL0yj4HdWlCcyElWYcSFbORgIfchpRGhSdlje4BstVRXM6MkGz74DE6vARYKhBZH4NhwegWcXIj+uQaSa0wAPiYuKaJnjyS8ljhoZj4dM5OZZCcnENgMTIgh95VZot8TKy/gpxJIbaCJjNNrwEsbsAeBzCqOwhQHLSsEShPTcLMUKGfW+BicYdLYVWCdp8K40mRH+veSgwSNISTLsxK5ebhZuj+5R/dgbjYHBGAUGdKrgcC2UZgZyomgasLA4LsciQ3UtMHKk+xBcCDRTcdvLuMoTKf7NLWOvG69jIFAAKlNDPk5uqBMM77QKnONpo4k13MEDoPdT61D7VxVMU8CMAqczPkDgUSPgD0oYBapyjzRzcCLHGHZgJlnCBIUDPkpATtHD22jAji9HF5fAixkMAtSKiC7NKmAkGycGLw07ZeFQGWqFy1hUxEZi2yPoqV6lYUF4qIdHv8MiHWcypJJ6S3V55RNk9IiCKtKlymn20w1jVDL6pyWeKNApqqzlzMQwssweBkKeFlAgXCyO6BtRNZi8T4jWYL6L0fkewvIrHEoqHVsJj6OwCb7MbOoglYKUpIbWaQvVUE+91ichZbnjQfxUnl0LELIQJ+us1ERMFyZyYXMNKYFvFYRBcP2oEBgMQzsmkGiL6TV686sPHm0D+U+oP54LVKzrLLfDpNaW8psBo6UgATkxiAM6ajgKwcD6UyhrpEQqHSloFoGe61hJAHw06S59hN0XZT/rroXVJCurMOECZQ7GIpTyeNYNZawc6TPdQYCeFmBzEoqxitNks0qGDWbKE+mEx3YIrJrCw0GP0HHS78nsWUZBB1vciPdAG5WXQv5b0FFcpU2Rn60CbrWoSUL1xKy0FFKVlgA+A7tL3KIkNliwVk0obH7ZTGfzWAVlauDvF5Jeo10w0JqsqVOG3KCZtA5cXqFLHCk7K0zQNfa7mPSuQORr67XArS8bGzL15NGM2bQwa1GU0eUtZDy+0xtCmlJNk8BiDXIIThQmMJhFQUqrQx+giE/g8NrAex+DlahbgFBAkhs5FFQVZrApeE/4GwyYBQ5jAqQWkOtUrkPskayKYtqFmMZgZUj03rVNCGSCvhxYFbtCxvpSaECORF7zsr3GGVIuQKLOjqpzCgFUSyq3I+7Hwz9W2U9o8ynL+IgWgZIXprJrlOUESx1MZQ7LBS7DNk9SkoqQkYdy0IW23HJAEBJLZQ9mMroqv1GSO0q5ETBkhMPqyCigF357gJSluDG9k4qy60y3LRPJn1pKXg0KogC5EAuaQfJKmsyk4IuYVLQV5rA4WY4Kl0pBEm6f0JbNs0QFBBVOgTcLAV/ym+VJg0sOs9eC+BmOFlSlWJHAHVNQ1v65HoUYFWyBtysQUvvstNa4NB2g0TcMCNIykkQkw4V0p82lG2clZeuOu9q0mSUKZgMTYZyuwmjzJAYCGBUBErtnIJig4rn0OJFT7PQFnEBm0krF5H9VwKotDKYZSEDXgq8/bSIWupyn65xap2AWYolO/ZgALeFQxgslkG4iP4POUEIDbonuS+i3yUvTfeck6OJWJAArMEAiW4gtSGE0y9g5ZUDA7lHKG9rs8Rg9RuRP7UwKPAOHbrfrTxDpY1s9JLdIrq3jCJZ6jk9sdRHoxkv6OBWo6kjlQ5apgeTjRQyMpMkfxNp2ZECp3I7R6UDqExgKMzy4acEkpsEeIlFuk9A2m+lpGa3TBnf1FrAGqQleWXarzJXfkp2jbJk5rOf/DitAU5BjBMHXgCiDBSTmdKoAAqgDG9QlYkU8c9ZSNpVsrYSkR+qqH6fKr6R9k1DqvoRv4/7ImokobanOkKFsrMXE/I8cgo4lI+pel1ZbKmgPGrkoArkRHysUQa3KhsdyRa4XBLuDaOMpNJhKqlF3IFMRDphFZhWZ7pDS55vI86CU4c4KeXICPBZBczcYx38bIDiNIHKhBCliTLrVwjgtlIGttRpwE/wKPAShpA+u/F+ldZYBegqox4kVNaSwXDjDDL3aeJi5QV1yDPpvkr0BQgsug5q4mPkuZTB0DlSWnHlpxtW6WwDm0X7NWVTh0Q3WdCp863uoyBJk73MSgE3w8EEBZVmScpFPAbhciAkHTdE7NQQqHMr9cWqNa5VkBrtrFwtkPtK9ABWjvZpeAJ+msEelNczpMBd/d6pSVGQoCDZSyupA6OixlYO32HRCgF53gp4GcpSg1Gwa1ZEtNIR2HIC5rOoc5tRBpLr6HyVJ4YodTGpUWYQjPTVgUP3YaVdehTbpGWm3zkRed9qNOMFrbnVaOpIflcXRsmWtlmkHRUccFsEFVqZDNllQHESQ2VCiDAhEDgcsEOEJofbSho9KgyjpdFyVwijwqKCo0RfiPw0A36StikYh1GmZepyJ31WPaDVUnGYYPCTIcqdDKEhhgR46uGsMnGqBDWSEMgMVWixyDXBl73svRbKqpY7OBn4g8EUtOQeqEI2lyQatBwdSxoARC19Q4vJYIVFmWFwytYCiDpuBbbcXzuL/E0piyqtycx4iViojGH1BRJV++UAjKoGBSIuCPOzQGDzaBvtLwaotBubbSc6fwEVlSmfYEPqlkM5bpVlEAHpKa08LTsjBCa1DeLoSS/ghoqDnp4MMGBBmEx2teIAI6/flpUCXkq6UTBQZysh3SV4rDMObOUHC5ltJC1waJF+eWAONfZwjbjwrdTJovNguNQ5LNEfgrsiumZmie4dJsinOLCpaE3dY0zEATxX94lFqxnlCTTpsgrSVmuAAkY/BZQ7Qzi9HNxlSHUHcFsMJHt9VNosuTrAILiFIElL+uRKQceoxhtU3UOCAW4LR346FTG6LYgmLGaJJhVGD1Ds4ih3kIduah2Dnzbie0/Q9VTyCu7RNXB6RbQPYVJhmZKSAPR7oAoJB6ebJH1oIemG0rIbFQbfIP9eO8cjn2L1uxI1rJAFimAyE8+AwrQQpuwC2LKcVhby00kzrdGMJ3Rwq9HUkbauPPr3aoHZYyK7DOjbK6AMkCGQ6CrBLZsQKxIo7lqBk3bhVUwEGQ7DDhAAKKQ4YIZwPQt+SwjuMrTN7UVfbwZeyFCZYMLpNVCe4cJKu3DMEF65JVqCt3fLYXBiEqxooPUFA6WdQ5SnhOAVjuTMQRS6U7A3Uce0QAAQLLaJUtpYmYlj1dk1W+obZaY0aAUSm4D8TNIKF2aTHypCIZskQGphZWAl7aE4WJRYVbpYoyIzaSX6Wy3XhxZlKP1QWlh5lIkLbGBwbgBe4QjtEEaJQ3nrKtkFCyiQZGFVsM4BmPRWL01BhJJNhA4QGgJeVhZGJUPAliP1OIRhwssIGTiHFFDLzDALABGC7K9CFnsCm4iCYPVvoyzgtsqKfE6Z185kHm9KrsZTbdMQCqDXz8LcaKDnzQGKk21U2gXCSRUYlQSsQcqkGi6D4bLImcFPx369fooCqCBJY/Iz5DLgtQUwSya8vfIIXkzDT1Mm1cuGYG0uRK9DDgJlA+UJHB3PMHTvTYEsd2lbXluIoMxgFjhCS8BtkXrSNOlNgwzirmlSflCewFCaHNIyf5HDbw1QLnKErT6clgocI0QxnUZxJuC2muAB4PSySNLgZ6gbndcSwu0QYB61Xa60s6jjGC3307UzLOrkVZnhwl5nwZ9ZRlgxECRM+CmyNvOyAtbOOQSuiUAweKsSCG0TzJed8ZIikmiYRUY2fqm4lTTk74nbKsBAEgEl62CBQKKXoW/PEE6PAT8lgFDAzwbgLqfAOBFAGAIVmyRIwhAwChzMI0nD4CxA7FxA+GIaRokhP0vAm+gh3U4NXjzPQL+TRHotR2FWgNQqrbnVjC90cKvR1JGya2GPXVbjOWsq+m0LyMhKr5BhclsO/cUkcnMTyLYXIQA4to+WRAUCgG0EWNeXhWmGcNMeOrNF5EsOZrX2wQsMmDxE0M5RnmRhVnsOGbuCXCWBnl0EKmUbIgT2mbIK+U4Ha/Ot2OC0I91ZhG36yA2mMK11AK+UbAQDptSZUpV5tDYfFciAHt5C2nPx+MEtZPW71xJCMI6gJUAxydAyZRDldgte0QYrGhT4yeywsvwCKJsNkyFU0gX5nsCi5VnlmeqnRRTcCi4gkqQvhSlgOAE6WwsoVixUyjYCkyJWFtB5ZgKUkfVEpP2NjguIglplHxUkhLQ5E2ATKoAceltrAQYXGCwmUHJssKIZTVSiphcCgJAZXgNAIACfQTgy0PbpWJWdmtdCxURBQu63NcTOmW7sZm1Ep1NAPkOpwn47jfa2Avrb0jCsAK3pMgptCQhOkwyyM5OFWwyycEyQDpcBrMJlAwSBMBkgzAgYyQCFPX3Mm9SNpRtSMCeW4JYsTJ7ShwnJIpanO9DVkseGgRY4030M5jsQ7lKAvzaJxEY6RmR8BDYH8ykT6aeocNFtFXSfOJSNdrMkJ/BTMkicWgJnAr5roqM9Dz8wMK11AG12CXnfwWqLbpBcSwpsdQKVdgoSjQpZsSk/WX+SCz5gwfcRNZMIkqq1rojkH16Xj2S2jJLHMGNiP/pLCZRSDlyPQ4QMs6b14MhJL+KRvlngTGBZqgN5J4vEJurg52VDCCcE7zMBAbhtFNgaZaA4TYC71F1MJAPA5whsjjAjO4QYAvkOIDsxj1KnjTCgfU7qzKHVKeOlNRNJLWMIIOVDBAyJpIegncOrmAiZgBAM+0xfg8f65sCeUEboG5jckUPK8mCyEAYPsTrVilw2g67p/djE2mv0jabRNCdac6vR1BH/lQwShgfkTdI/DloQZQNskBo55HJJ+C0h8vkEBvtS8HwDg2UHxYoNIRjcdWmUCja8Ms1LhWB4pbcThXwCxbKNUtmCaQbIlR30lFJY292GhO0BTIAbAjk3CTc0wZiAkfHgeQYqnomgYmDNQCuCkhFLEIS0jKrS0wJxIBYttwcUsCh3BObR8ikYZZuEHaJcsiFCHgd8oG0wj0XFXlwWe0WSBDkOVfxlVET8Wfkz5tEyNHwqiIPLIUIgV0jA8wwEBZmKle9VkgcGOja1rWqi45fHSoVodKyhx+lPwUSpYqNQtlEpqmolkE+vytqq8wUpf4iaQVTNF4L4j1mWS+MFVVhGMoY1pTZUhIFSYKGvnETFs8ANgb6eFoQlE37ZQt/ydqTXini7ysmCxW4BRolR0wxQZjCSYwgGZgoEBRN2wkNfOQmjxBAKBlQ4ChUb3cU0yiUbJc9COe/AMgMEtoBXsuLGFaE8eSEFsUw28eAevR55/0pdNfcAYVJQyLiAX7YgKga8wEAoGHKVBFYOtmPdYBYVz0Qun0QYkL0ck+4VkHrqoCUgb1crhN3P4afJgswoK4kAZa1ZCNgDFGCWBh2AA33FJIpFB37JhCiaYFzAMgKsLHWgr5xETymFUsmG0ocLE4ABwBCwBuj3w0+HsAdoZQEhkFpP54EVTPAyp2ta4UiuMsELBsAFKq4J0wogehwIj86zuh9FwBBUDAQVA2HBoo5lAYfwOULPgCgZWF/IgoUMk9oGEeQsDBSSWN3ThjUDregtpTDYnYbVS98TvKIf9Zrxhc7cajR1JLWB4bGXZ8Hp5Wh9CXBbDRSmkSn7IMuCewzpNRxeNgkvE8JfZyOQS54DjoCVY8BgAnY/wyavDVa3CT/PYKYFAgMwywyVtEAxHcDMG7AHGHpnWLD6DAQJgafDqQiLFPCZAwaEAMq2QKqbQwgbVgsFG6EjA9eKHLjUSIZA1JHMqMhgNpRevIICVbMs4OdlUNzNUJjGYKy1ECQELGBIsZpRoayiVYiDMC4bK6jOWYIDIojfD0Zen3HxGkOQ4HB6KSMYJA1qj5oUyPRSwQ19lg0JZLlLxWjKMqnafswsxvILamDBEBYZPM8Gd0nvXBk0wF2GZJ7By6oCN6n7VJloJoNKSWhTkRZcJi3Z6BwalVhrzAIq2hIcKHKO/76yE/6UWohneyZj09o2mL0muWD0UnGil6ECKTsfwsozlCdweGlERYAA/Z3cyOC1c5g5Dj8T0rhCgAUGwjKH08/h95rYmEijdQWQsxJIb+Tw1rWjNyHgDDJsnOwgvYqje6cOpPIM1gt2NPkwiwxewYQ1YMBPhySHSNHY/EEuzzeiLmmGC/hlBjsH5FelYBc4WADkS1kwn6Hst9L5K0O6C1DTj47nQ1RaGIpTpNODx6SdnAD6bMrkWyJynTCLDL7UBRtlOmflPhN2LwXBpf5WOH008XH6BArTTLzsTsay/unURCHPYZXJb9gerGrk4JvkDy0oA++nKINr5RhKE4HkerpPAgfIrBZwswbKXUDb8wzlDhtuuwWfAROeByrtNirtFl6clKbg16DsL/MYrDyDO5gGmECqh0spBLCxbxKcMsOmSRl0PGGgOCULOw/4GaC7JUTrco4Jz1WwLN2B1ld0cKsZX+jgVqOpI6VJAh0P2sjPAvp2B1LrpQ1XACQ2GBAGkOgV0oaLI9Ej4PQLFKZSYUlgCzh91JUqcCy0rBKotElP2kA6IFQY3MCANciQWSPgtnOk1jG4LQxhLonkRnrgqspuP8ng9JOnbm4WlwEIG9JMwfAQeZhWOycAMijzAcGoajtwyGopcCiQcFspMOA+Lbt7GUHL8baAWWAIZQDAfOm84GNI8waVMQts6pQGkE2VCiDNEpn1lzvoOKw1QG4OYA4ymHkgsCiADZx4+0AcSMateBHZXrFAwJTOEIGghgcQMusns5RmkSNwgPQ6alihKvRJR8woU4l4f6rRQGjKIB3SfUJmM6nyn4JqP03Bn5lnCHts3PjynghDBrPXRHq1dDQoCxSmMmpCYALJTS7ZbXEnskdjQOTy4LYBvEyBt1HksAarCpQEndvWlwXcFirwS2ykQiSrKGCWBYpdHNzj4AGQXmGAu+QA4GYZVFW/329E7hdmgYq6Ku2yqCoAhJwMWXlZWFeke6VlGYdZIl9cs2xQZzyZ4fVTgAsBswzwQQY3TfeD00saa7uPw3epoJK75CgABhSnUhbXLNLJtwp0Hvwkg9Mtm4v0U0MOpQFmITkm2DkL3AVKEzkmPh6id56B7MoAgU0rBWaBNM2l6R5gCjhrLBRn+jDyHEaZwW0XsPspuGWCfIINV8BrEQg3cdgDVIBH96BAZk0Ip5ehWLSo414mBELZGdAgjTETDMkNJJExygBWMrBQoG9SEqyTwR4gzbYwyT6wNFlgQ9pBZoUsONNoxhF6OqfR1BFvkgs7L9uSGoCXpkYOypIr0UMPfbeV/l/uZChMpeV8wWRFuqw8T/SKSCuqrJ4CR1b0AwhSAoFNAa+bpc8kNwAta3xkVwawCrRUC0ZV3V6KwW+h5WOyiBKRdVNc5UXvV3pUFRhS1ysZwLD4dUAGFGmybqJuZyyWHEiNrmrfG3m/ym8mJUvgUhYgGGllFYKR5ZLK+FoF6aAg1HhEFKBX62hVd6nq5hORBRkHQlNmeasyn8KgACWUXbgM6ZXqpSkbCVCWUDVviBpDKKuxEHFHMJkZB4/HoSYLXDpEBLbsJreeI3wxA3fAgSpQCy0Gw5P+twwodTFsXJCE22rG10IF1ZBBrLQCC2S3NZUZV7ZaYNQQw6iQJZidk3ZZaQYvRY4bPCA3A9U+N70uiNwAVEtiP0WTlkoHkOhlUecy1Z1NOTQwAVhFOkdqYiBMwMoJWVhHEzCzAPgtAna/iDP5BmUozSLg9AGJTVIKIaUxxiBH6AjS9NpksWcWYt9ae4Del+wOYeeo8E11qgMAp1cVjDEUO7nsRBe33lXXgad8GIkA1iBDqqtA5zdBwT2UlEZOePwEi2z7hEETNOaTPWCllQrgkhtE5CqhnEKYT5lr7tL3AQDZehdI9oRIbCDXBSELIemC00TMKMe/QxrNeELf8hpNHbESPnKzeNQONEjKDmSekMGBQPsLZerK1B9SNbi0yDJcsmqyChRQGWUypLcGSV/IXXrYm0XK+HGPoTyBwR5g0fI390X00A0tFi/HB0BmXUASRp/JwIc0n0NswYBYDiCLwYb4z0qPVMERNTawc5D2S/H+yD5K6m1Vphbx32rbqsGDn0Jkiq8CTSVjUPZjvEJBV2AzpNZTF6dQ+psyES+Hq289ZWX22oA6lMFnaMpgRsQBu6gKVO28gD1AkgW1LQiAefF7AMT+tTzODKv3BlY8OVFBOwuEzDbSZ61BCpZSyyzwCsBCgURPiERvAKeHSUkI7TM0Wdw5i8UWZkrPa5QpYx53UUPUDpd7QLHTgDMQwiwIWAWSmKjryETshqE+m142QAEjg5RZkG7a6ZOa6xK11DVL8vwHVQF1QcAaFNEqQLkjts1yW5XumFYUuEsZZ+4KJAZCmKW4WYGXlu4b8poaRYbkJgajQFpX7lHgStZwtF2rIOAMhGQZlqIbwMqTlIH5dJx2TsAskZ2WnRNw01Ssp7LuXotA6BoIBixaWQg4/d759LupLOfMEp1Do0INFwKbJntRUxUT0X2a3hjQ73K5apWihGjlITRpnNylhg29uxtIrSX/a3tARCsTRhnIrKbAPTRpPxrNeEIHtxpNHQkCjtKUAKWJLAqq3FYygPfSlHmx1g/AHqAHnlEGeXCaZC6f6KWAQWWQgqTMIrpk/K/0eNyXwZ7UKioPTZIWiMjSi3tx1s6okF8ukwYOTH3mtd2NVHGUMTTYA2LNrJIwBA4FEnauKpiS2wViKYAquAIQFUKpAFe9Ftq0DKs6SQlO3afU8jUTJLMwy9R0INkbRkF5YMf7GNKgQh2PHH9oIHI2iLqyyfcbnoiCQYVVEJElVWTrZcTBe1S0JrPFKiOnst3A0IwyZBBuyCwnSTWonSp1saKgx86Th1miV6AwhfSsyU1h3DxC7i9qXuHF+1HBNXdF1CzBLMc+uF6apAeGS0FZsjuAVQijbG1okDaVhUBxVhZ2TkTXi3ukMVb61ko73cOG9DGOMvBVwbIwpL+sSdlwO0+Bq1kAtVVOA9YAQ6mLJlvcF7CKYRxAmmTVZpZJk6uaR9gDLFoViTqWGRQwR5MpeS0o4BZgyheOkb42vTaE4NQYwfCklVhJNlDggNltIbXKpPbGa9J0XqS8hntVf3wKlBHSZE/5Myf6Ajh9go4pL+CleSyPCVmk1zaLFFSbRcCsCJgVgWR3iNAR9HsRCFglEd2/ZjFePeA+NcHQaMYT+o7XaOpI6BpRNpRa8JIXp1GhtrheC5DfoxPJjSEGZ8rsjaCHmp2nDK/hQVpFUVbPbWVgsgMYVfVTsBEkKQAxq5bqBQP8BIeXova+dl5Ey++D0y3qSR8CwpSdp+TyfrUUobpVrSKSR3DS8IYmBSV+mtF+BmXgwBE5D6jAMTRB30Qi3taQgE8GnyrDFVpMLr2r4Ix0olTAJM+lyVDJcjLoF/G+VJtUJRVQ+612ZlBBcGjH8gDBGQK5X7NM2XbBZJZUyA5fYdX25T5VVlx1R4sCWtk1jAcyWGa0D3XsfkIFRiJq1RxacTav3GagONGCnwTcdrIO8zIMbobDHoybcChXgcChyU5ok6et4dLFCy36WaWVA6EKhChb7SXpXPtJjtBicNtI0+qnKVAzygJ2nxwQiyctZpGug1mS7y0gmiBQsw/pFesgKs4KTQYrR8VxKuANEoh0sIZLAXVoMXhJjkS3G93PLCAPYl6JA3kvS0EkIKUBiCdRocmktIJa7zr9NPmqZBncDBVTemkaU2BTa1u3hSYUqZ4ALBSRpMPK0cSx0kZeu0CV5ETeV36aWiv7Kcq62oOUmXezjCYSHkkWAMB3ZAOKNDXxIAs6kmqQrRmN282QrtbuZyh30rbUsSsP6MEZXF6PuJuhRjNe0AVlGk0dMZwAot+EMKloxM4ZpNtsYXAnBEDA0L2HCasIlKf4CLuNKBgoTQS4z2HmQS03bXIECC0BFnC4htTbyk5YlYkBLc0Wqa1uaZJApROodBiREwD3yWg+0cOQn0HBSyA7Y6lAKDQAJuuolAQBqFrGV8uqMgD2U0qDyeCnaWwUfIkoOxuatFztJwW4lCfwMA6YQxZv37fiQEVw2j4FoQx+mjJcbistO1faBZhP+wOj7lbKWYEz6qAF0PK5MCkCVcb8gMrYCkC2kQ1lFleYJCFgIXWBCy3AE0B5Ak0qvBYKbkJHLvnL7l9Q3vkcCEHZND8l32sKMINBSC9aoyK1wDbpNq0CaSwpWJOylYqUdzBAGJSldDt8cNdEZk2ATXubsAfVhInGzULKtloFOkdmia5hkGRRdrrSTtKFskVBmJch72K3Tco/DKAwy0dmuQmvI8DArgY6nxQoTE9QQRniYrjoPMp7xcvEBVuCVWVRW0mP6/QxeBlAGNSVz23lqEykarjyBC7nCjKwzQgAHIInaILjU3Ga4DS5MSpMdv+j/QoO2P0sGpMv7wvuxm1qk5sE/BRQmSDvt1QAFjBaXTFlZzsnhNNvUJbakHraMkkcvAxksaRApZ3aH1t5gUobgzDo2PwUjcvKAeUuSH28gOCczn8b/R6EhkCQCiESAXyLIUiTvEJwRu83KAtb7iB3ErNAgX3/7iFSawyp1xWoTAwhzBDiVYtcKZJalqAZX+jgVqOpI+2tBfT023BbQ4hUgNJkuexYYBBpH4wBZWbCK3PAEBTwmgLMCWAnPbgVE95GB0EqRJBhYFkXoWugyE2EyRAsGYD1WgAHrNYKPMdEIWHCHOAIJ1YQMiBI2BS8JkPwMkeYDCFMA15rADNH0YkKQtXSMUJp3SoznSpDKZgMYpNV2VYTCExydvAzAgXVbMEilwTuSklGRUTNImi5vqorGEO0QfIolUELkw0JbIHQibOqfjqEn2bwWwIUbY4wHYB5HMIJ4AcmWEBL1lGWtgzZ+piqywNbRIVtgVzqVQ0cKJCk4AIyO02TCsBvDaKCIWHyKGPLPZXejiUcMESUWeOulD9YQCA9WAUn7a7XImSBHYPbGoJXGPwOHywRwC9JzYYhwMocvMLAkgHKk4HuPU24HSGCFOmthUfL9UaZxsF9ubwtW+0GsnWranAQyiYcfkqACQ4/IaJCsSAdItFVQiFMgac9BFkX6ZsFVh+dhlmQ10zKRXgAmZmkAsggAUDacinNruCAlxDRxM1tpaDO7CqhnLGRaCVhazCBIQw5Qp/T7woTcAcTqLTySIuqlt4BRIGtUaZtco8CWMHpvgmSdK8hLbPDDrW39tMhggkerISPtnQZg/kkbId8oG07AGMChd5WBAmacanWxSojz3wGr0VEExfVOji06Xx6GSBMkGzGm+CDuXTtvBaa5PgtgoLRZABUOGCpeyJEANnZTXYpK06S950Twu8zESRDpCYVUHBSMPtNkrW0V5BKVZDjGRg5A2Ki8vTTaMYHOrjVaOqIY/oQTICFHMYAVcGQ1pDB6LEQtPnkF2sIWL2mfCiLKOMoAk5tVX0DwhQITBOswuNOWwIwKwx+SwivYIGVDQg7BBiHqJB5vOHKIimDS32igdAUUUZWVfEzT/5bfUtUaVPBMMRJQFl3McSOADxg4GXEwZ5ssas+E8sB6HgpYFbVW1XIYholU+AeomCYdJJxMMnLUrNY4dSRTBhxARdivSmUByxjQwJ1Q7Y3Dc1YOhEF+qGMXcM488tc+iA1JKDXQ1NWyCvHBylBABAF78pbN5TOFNH58IEwKVu6Sm9WBgAhgygZQMCoaYJFFliCAeGABVgh/LRAYhOHlybdJ+ljBQzQ0rnK5vpJVVwYyz24x6p0xlSwxBKQ8gWBMGAo5xwwBoRFE0bGh9tqRbZmKoCMjldmwK28atIRSz0Q0nFyJq2y5LEbBQ4/awI+jxpjCI8meYwBwmeAZ1BBZQbROVf3hJKdGGUKrqP38CqZgE/Xyk/TNeKunPQAQMVAYIVwfRN+wYJhBvDLFkwzhO8bsAr0exPd58rdQhZ4mgVqROL0CVQ6aBXE8OiXJTQRZfVhhTC7TXp/IMdgy8mjR93dRAjAZwBn4CWOMBGCexxWjlMAPWggCGXzDEuglHfAfBV4M7glEyUegjkBhGGAGTpzqxlf6OBWo6kjA6UE7B4D9iD5UgYOZT3NEpnsF6bRQ90sMtj9AlaRHv6DM2y4rRacIkPLitiiyU9bMEr0kPdTgGCGNKLnMCqk7w1sDqefwRokD83UOipIC21a1jQ8gUobh5/kMFyZDTVlYU4YBw6RF6wMzCLP24DkCyrANUuUkfMyDHYfkwUuJEkoTyAfXbC44I0KgyiLygJWZfckvXZ9Wj63BhFny1wmi6RoqT80ZdEck1ZpMmCqtNOxqHiZ+9J/VtaasUBqJMM4AONB/LeQ+6GiJArGEr3SYs1kCBJGdNzlLspMGzKYD6Q1FQWjtE9qkBFLI8AEmEdFV2ZJ6XZZpH3mPqfl9qIZOR6oyUN2eQA/yVHu4BCcI9ktkOzx0LubFQXscVEaXVdDZox5mWQDRhlwyrJQqkINCspF8re1B2LrMzAGP0kNG9xWDmwyAfjIvio9cCepCZY8jz5JBKyCbEUM6bXKGN07UqZgD5K3bdJnsAcFCuUEEt2AnzIhGDkWlDsYgoRAaj2DWRJIbfJRbjekbjcOOEOL9q80x1Ze3iPSdYEHJMkwSwKlTvp3VNhmkAA7SJhwUwlkNzKUu0wkigxe1gYLgI4XAtJyt5LelYrYaIx+kiG5MdZMc4/kDlYhhJ/gCC0gP50jtUGgL21hyoMBBAcqWQN2IcTgdANuKwN3ObysgMco2Gcgj1vBDbAASK8NUe7gdF1MA14LUA4Au8+CMOl3m3sCLLDhZyyYIQXdXiVZh283jaZ50MGtRlNH8n0pTHsyRLGTI7vCR6XNQLk99s9MbmDwWgC7XyDZK1Ds5OA+dTgS6xBlmci/lR7sib4QbpYe5MkeATfDYMkWrqpDlpUnraBZANIbQ7LmylCgmdoUUJcqE7K4B+AlFi29Rl6zHqKCMAAY4iTgUrbQ8EibSlXzNDZlG2aWQ7DAQGWCLJ5JxNs2yrRvFUgKLpOfqpFCgnSMaoxmiZo4mCVBmkKHybEKBBaDl4l1q36KRXIBsnliMMsyiDfiDC4gM4uC/FeVkwALKPCkzmVU9ERvJjsms6y8bzn8JKKToqzUogDTI+Eyd+PMNLUppnEaFQrCybBfGe8zZNaQMwILqZjIKobwkxxemsPJheA+iwIegDKpXosM0L14X9XZYaWPFfJ8Mp+K8JK9IZI9QKmDwylQaj40GcqddA+5LQx2jsZklgJ0/WcTcntPiuUXPJ4wkGUd+eWGFgWC8TkV0XjAgfS6EIYrENhGlH21BmkZP7WejsttBVKbBJxeF2bRQN8u9pCsMLjK6NMEwDKoIC80ZQMHQc4HTi5AYJtoWe2jkjVglUJ4KS7t6ygYNcsBEr0cRoXOQamTw+73Ue606N6WchbuCbrmDEhtDCE4UJrAIwsxq0ifL7YYpNWWExcvxdGyrADuJeBmDViDNM6W1SEG5nCEBq1AWIOkebZzdG97GYZEb4hkTwBhAKUJJkKTI7NaoNTFMPm21SjvPBFgNvn7FoByB/lnazTjCe2WoNHUEXOjhXWHUPDlZTjcNGUDuVulJ5UBQLGLilP8JAMT5MupbKgokKDlTFVpTd2pZDAmfVKtPKIKe4C266UYSp0U2LotVGFPdkzx8nlU+Y+qbJwMjNQ+lF2YYCxaeg9kcRRlHSkr5ycZfIfBTXMKnqv8awFEdlWRjZVaug9U1i3erzBUMRWLlppDI9Z7+gnSOxoVEZvXV63Iqoyman0bLf0rCQYTUYCtOq+xMK6AD634jyqaitwjjPiP8vNF1IRCFutJj1mV4Yva7iqLMrWtqkCNvFx5ZGGlrNxUkOilqPq/0srgZoyomxplYxHZkCnXAlNqcJU1lTqvhvShZULI5X4WBWik0aXg3CySY4SXMVGZ1UH+w3J/6n4JLfLODe1Y4qGy41SkxxDIa6UC0NIETk4EIWTQKBsiCLqHAwcwSyHKnTZ4JaDxhspRQkT+rn6StKxmUUh/aAquBSOJhJckbXS5jQJbOuGIJgfcJ1cSFkrLPUY/K3daUSGmyk4HNh0DC8ltwZP/Vvel4FRUFlqyI2AaUZe6/KwUjEpIwWuBPHYrWen168sMe5WWGEBkdSc4UOwyETjUqU3dN/0HTEVuFgX9Tk4gvc4FGNCy5rV+fhrN2EYHtxpNHUmvZRDtnpQLMHhZ+XCUmTk/IbOLJgVoqU3SiN1gKLdxGB75WZqVECyQzRvkQx0ccNNUBW6WyG7IkYb3gpMMQJnfA7ETgJ9kkX5QSQ8ElwFjlRcr/QORe4DyslVjB+KgLJSV7DyQ/w4ogIn0rTwOhqKCLEPpROmP2qfqqBUkWBT8xJlCFtleqSyu4Qoke0Kk14WRr64KINW+o+BRLmkDUtPL6B8qmDBc6TpQJQPmMti2CkIa8YcU+Imq/UAFXjJoDxE5FwRJEWmPAzu+DtXSDzUmCtIpWLUHvKj5BvcEkpt8JDZVwELAGVBd5WhZXl0PFaRTgC0twsKqY/EpOCTvWBKT+g6nhgaegFEOYQ+G0WTJ6aMuX8UuDjfLETgymK7SYqvAXdmzqYYMLIwtytT5V80+VBbdKgCJXrrnzTI1JgirdLXcE3TNLS7PVXw/C5OCbqX/9dIyYx8qLTGday/NooDXGgwgON1XvkOd2MyyiNrVBo4MekO5OiDv8agZifQ3NguUARecsvuGK6LrqSy6En1hdI+YFZICCQbYhRCVVpqoRp3tpNNEIKUPFNzT/svtHG7WgJeiIDm7ygf3qNGE4DQhCBwGL8ngtpkIbcAarGpXp9GMA3Rwq9HUET8FsH4LVj7OrvkpCjDNMj3crQI9tClAq8AZDCMfVnuQMj2BTcuWZknALoQwPFrS9tNUpU3bpn1wj4JfoyKi7krJbgr8DFnFbpYowIgCzqosYlQ8VpVxVNlJKr6iYDA04sYUKrupso0sJG1v1PEM8b5Uy97QIDcC9Z4oI1tlyaU6OanX4wwmnRtEVfsMyW4/6oA1JIPLRNSoobpxRJQ1NcVmTRlUEG+4spmD9BXm8hwrH9Goir56UiBIThI4ZH+mOpKFhiD9bWSpxqIucuTdKrP60qrMbbPABE10mACcnjLcNlvqSynoVQF31KI2GWegSX5AwZrqKma4Iirq8mVwRplL+ttrMciL1ZUBsGpaYZHulPkhNdIQceCsCteCBAV6UYc2meFXmU+oLDRjsErUEc0ZCKiTV5H2RZpdOs8q026WQritFLQJRtrx0KIVAdV+1soLBEkpv5BSk9AAyWqUptpTKwAianlseAJOvwez5Eetc900h+EhyvKGprzGKrAtyS5q8p4wKyKaVKh7wCpQwMylJCSwpS1cxoCf4FGHPS6D26hRihqvT/ekWkkApO91GTBKAX0HuHQ+uSsnk1WrOqUubXSrGV/o4FajqSOhAVgDXC5Rk46RBZB/U3MAKx93ixKcHk6BQxkeu9+D28Ki7KN6gAYWA/dFZO8UOKTjdbMs8ixVS9p2PkSy24VVFEj0hlRJbwKWDHiiLKWs6lfBaBTwVjkOUPEZosYKanlaZZpU965AWmtF25F/K11w1FRBxNnO0KaqdsHJ0kppOQWX+05QMV5oUXBN7VUpwKFjN6IlXKXHpOOqysCplwxQoVlVRrE6m6wCaJIoyCYVGXlcBpnoR5k6Iw7iVSDrpwWChJD+vvJ9JuJOcIgDbNWVDJBL/DJYH5xmwEtxuBkOL8kR2gb6dqHiMasUwukXtMwt4xjVDCCUGmg/RechNKuuRVWWWNmqmaUQLBSyGQZQbuNygiC10kkWtVjmvoDbwiEYiycHMuso5L7iexlyuV9eZ5+CYLeFRSsV5LQgO/al6P4VXK4uBIDbYsgGHQa1j2bxRCeyrVMrCj6iJ5yadHCX7nM14fJTXE4mqlo7c2q6EJoMTi6El6HsvN3v0wRN6rcFl4VqLo0htSkED2TzC5MmDsKQEwiX9qEme4HF0PZSGbxCftXco58FTtXEKJSTIhtSvkGvpdfRDWMVQ1glgVKXBd+hA3VbOIKE1JzL1QTuApWsftRrxhe6oEyjqSNtL4fom0ftTf0kFS6l14UwywLlNh51wCpN4LCKDDxtwk1zuC1USW20WXCzDOkNAcKJJkITKAla3jQqZEkkGHmMkp8pQ6WdKtdVtsrwGMoTbPgOZQr9BCDkQ546fFHWTWU7qzO1QsUwMkMqTMo4AbK9qgdAtlMtT6DKcsEYrEIYZdWqW68asrCLMmqxxAAAZViNOEOmqvlFGAdQXDD40j+0aNCD3R4U8NJAIB/4Slqhgrwo8EEcKEc+rQZlbv0UtXP1WkhjKkIKnsHkOSrLYNoGIAy4bQJWjiFMxGNT2ycvXbINo2NmMHzASwuYFUbbl9pdL8VkFp2Wzml5nQOMGiowAZQmkrsCDxIoTRFoex4ot1KzDz8pA03I68Pi7nTVdl0Ai66BcgvgPi3Ns5BTJziZJfcylBGONNotdOyZ1SECh8NLsdjqTDWNkNv107HTBGWdY5kJaVap65bLGJxQoDDFoOX4BAVmfpqCM2VfFsr9qAme0mgLFmc9la7cLAopuZFZT/leY5CCzVIHFeXZebmcb8uJi2GRxnYCh9NH923Z5QgsiyaIARCqyQ8jJ4fAZvJ3TCDIcsq0Wkx2sZONUEIDiT4BN0vn3lo/gMI+E6NJQGgBiT6BwlSyk+OCRccTOFRUJjgQJDn93ncYsZ6YM2TWBRiYbdA1kIG9khz5qSpdjUYzDtDBrUZTRyiTKR9IJoOXptaf5TZOsgBBDyqyGRJRVjBIqHadptTUccpStlCnIkPab6klbD8j4KxUGVURFQNVAobQJNsmL8OibKhqIqCsuaKgT8kRqsz3BeJCF9W0Ic50MgjETgRBQrZsTdJDnjKjApDdwpjBIscCJr1hA1tmb30GmNSBLbGJRVX+0XmUS/5RkRKXXaAGKXurMmDCkuM0BETIIh9WoyIDv1Adj2r0QD6yKhBULXmDpLw2BgAZkJN/KSMvYisOtMBFHKQLaqpgFqnDlupExgNEy9QqOAQDNZAwAZ+TPVqQkN3SDApSKu2h7O7G4bX6KEw1AUYd4Px1RjQOaltLxxLIrHLoUOCj9J1ckDeyn6HCpCABFCcZpPOUWckgiagoKjRoe5UWgexyoNxhRlpTdZ7UREE1rGA+bYOCy7grGmMAOItkI24mbvEr5EQjdABDbttPU1DLA3KlMNx4pSDSf6vCP5uKKWmSJh1ApCNEYFMr5dCizoCBQ/dltaSF+7LxgsXhp+mahH2IVhboukrJA2hlpNTJSe4BGpuboQDda5GTDQtI9tL1N0shYFsoTOGwB+gzwmQod4AanpiAUF3uEGuGhQHkJ9OKhJcF/IDJhhWAnZOTY1k46KdkR7oCBfkazXhCr1VoNHXESzOYJQaEpEeEDGa9DINVpMIgsxSSp+XqIqx8IJsDIHq4UZvRMA7SykIWxZAHqz1IPrmpTSGYD9gDpOdlygUgpGyYysQq3a1aeo+aCqgla7XcLPcfOojsj1RlvNKvslBEekTu0v7sQbn0KrN1LKANspDSwGqJOEiQbjhIUFAfFWNBBimqSE0ViIXx0nakHwYFKMpXt7o4i5o6yGORcgmViVO6YrVN5VJg5uk4qrel3CeU/jE0AKMYZxIjZ4mQQTV44BV1zPF5VJZgSl7CPTlWuZSsMnJCBqZWATAL0n/YB4KUAC/x6J5g8lp5LfG5YupYTLXkLqKlfEBqXs1Y08xdxJptPw6SqaUs7cfup2FWWmPZQJRB5XHwR5pkxBIN1ba2ultZoI6JMp1KUsAr9BmzQO9PbRTkaCFk0Mjjc6WuWWjGEzPKYrMh96S69r4TT+K4W3Vdy6TxNVwRFWkqWzHuk05dSSHU8Smpg2raEdpSRmRXXQP1e2XQxCjZHSL7Yg5+NiGvgdRBF0RcBAd5b7rxdowSFY2xUMSWaiHJIWiFRcDpk8VwIj6mzFoPrStURK7RjA905lajqSNmSaBlBRXsmMUQ5Q4DTi5AaNJybHKjB7uniOLEdgSOEXmrQsTV+ZU2BrMQwOk3EDjke1luJ79aazAA9y0keoFKC4czEAI5qrBObhRI9AVUABQCXAZ7Zlmg3MHJ1SBBWajAqiqO4nEWk7JiFBDxnFxuDVQgSlmpwBFRUEvFSgJOThVeMfhpFtteiTi4oAc2LcUHCWoMwX1qjat0pGoMZJ+mCnnioIqFQLInjDLgvhN7CEd2Y0Bk2aWCVjUeZclmluSEwJd+pq5A6JNUoLqwjpb+mVwClo0SKnGWjMnxchkoGiUWBdJqX8IEDBmMh1I7bZYog2i4cXGSnSdrKqMCZFYC+RkMZp5h8sMu+na1YRZkhtKNg1mjIo9VTkKMEoOfpnNrFUSUrVSZeKskkNwkHRcCWi2wB+h9qe5QNggQ8FMWNR+R9yQYNdQCZHth2frXLFKwbJQwJHBnggI5syDgDAp4SQafUUczcr2IO+lZBSrSEhzSMzcujIuaoBTl/go0EWKBKmij+0BdAyYEvV6i65XsDkkyEZLHbWgymBU6znK7AbMkUMnyaF9mUVRdWJoA2HlaiTDKIiqmUy2B7XyIwOY0fkYexVY+QH5OFkYlRHJTCCdH+7VDaoMdJBn8lLr/40xsop/ua7MQoNJuwk8yWIMCdi5Aaj1DZrUL7gbIz0zCD2hlxhkIUZhiUXGcRjOO0JlbjaaOOP0hDE8WnchCEoB8LunBGMBvcSjbmTAgDApeVfcqFfhwXyC1KYBZIp2gLQvTKm0m3BaGSpbTQ7xCQYSfoiDGlx6fEOQukFnrwh4MqJCtQN6kcTcv+ltJFACZjfPijKOSJKhsl1WU1doe+Y6qfTn9pCtWAWZk7aQyZMq6ymdR5XqQEmS7JTNfSgMaFXjJDClA2VQeCCR7YqssFpD2NsrwiaFBenWDCoACFe5SQG0W6BhU8waAsmBMNo4wS7K7V79AZn0AU1b1q+5U1ccOIJIVGGVGXdgCNsQ+LT5+ckMILNqPynSGFmBWQnI/CMk+zh4g+cmmvW0UpwiUJlHDDHtASg+kvpU6fQF+UhYzyeBT2b2pMSf6SHM74bkyLeVLR4TQkE0vLIb8VNJ6JLrpWqY3BDROJSth8RJ6YMtVBSYt6ELptCBdDtR9TxpcWfkvvWZVRtKoyA56LQytyzwEDum37ZyA0x9vL7TpeL0MHa+VF3JlIS58U0QyE4eCPwDSy5dF7g3ldkM276DGDFaRrotVJGcFVcSm7unQpiCXB/ResyLAAwHDpfvezodI9AWIGo3IDK9VVKsUtPqSXhdIN4c4IDdL5HGtAlRhMphlsvjjAWWL218sw201o85uStpT6uRyrFqWoBlf6OBWo6kjocVQ6mDRQzy5yYPT68EaDGC4ApV2G26bjURvQPpVg0zbuU/Bk5vhsIohipNtADKL6VJgW5pgyEp2SI9SejiH0qDfKtCD3k+wyCLITxlwW6iFrFkOKYtYQbT0qv5W7WhDC1G3rdCmpgRK5qAsjgzVqlZafzk56mZlFsM4S1p9TlQ7XtmUwSgzcJdFdlYUcAKRjZOUTDAhZRVeXO2uJguGrEJnKqg1hh4P9xEFZCJaNq/aPkhfqpoICEMevx07P5hlClxU9jvSJ6tv1argFlXHbEiJiHpftcyC5AWxTy0LySXDKtJ59xMMZp6uQ+uyAF5rAKMsZQZtrgyIKOgBKAPup2QHNUfAzQqEiTByavBTlPk0StQNDwAGpzvkQqGKsKReVfnt5qeYaHuFmgOYpSBanq8+z5GFlYjvJy5lBVG3OHn9QoPcCcyyiDyFyZaMLMKU53Gl1SAtbIoj2RtSW17pE6xcBoJE/HumfJC5H9udhUY8qTBL0s2gIrPxjFZTjEoYuWCENo0hsBmSPUE8fvl+lfn2E0Cpi0f2dep4ENIEkzLNIdwMh58w4PT7sPtI3xLYXBYnskgbG8kZZDOH0JCWZyZDYFPRYKJXTWb8qFta9bVP9NCENdkTIruiDI1mPKGDW42mjoQWQ7KX5AFGJUSQMORyPpnlUzY3lLZQDF6G7J/AELXyNAvUPldlmgDSP3optYxLWR0nF8oATsDuJ+lBZEXksCgAUG1frXwYLc9HQR+LNY2B9K4FEFW6A68pLouCRxHpd90MR2hxeC1GZElWHQiqz7AquyajXKVp9BC5NVBBjwATIgqWBKcAwizReVQSAEtm3YB4fyqwARBl4FQADCDSnyr9ajQ2meFVndKA2OqJCeripSYAAGItL+T5VL6q5tDtUeZaSI/SOAOu9k+V/xzlCQwDc0wUp4mo0K/nTQadH+ltikELfopcFZR7ABO0XF+eKJuEtIQAIzcNVUHvJ2mffpqW0YXBouCOu2RRZRXo/rQHacISJKSDQ9aM7OeUNlnJRMwySWisvMzGSr9W5eWrssdWibKcdp4mC46UmoQm3ZNmRdlkMSR6AngZ8p4VBovONYDYq1hNVOT9ZFTHdTw+98meEIbMqjIpmfFaDAqIPfq9sAaDOGiUbhLVnsZ+kkXtmN2W+Lqr9xuVEGaBGq6EJrknVNoNmOUARqECww0RKMkNQ6RLBqPrxmUXNOr0JgNfOWlMrXepXXDSgJc2ZZMOsnKzigLp9R7aXizALIWotGmfW834Qge3Gk0dMUshMiuLEAxIbCgBAPy0iSDBYed8QACJDUUEDodRDmhZWBWP+LIVqrSJ4q6QVlqkY2WClkOtolwKHfARJCgIMOWSZmjKjBLibJxV8GVgUdWiU+lKlSRALScb1GFLwYNYWlFt4xUFfnKpWhixobyy4UK1ljckSYLKogKy4Eot3bN4O0ojqdrvBhZDuZVTMQ6jYjsIwOnzYkmCCmpFvL1IS1z1nupgVmWDVXEVC6sytDKopOYALPaOrc7qVZ1L7jFyLuBxMFbdYljJB6LiLBZvq9TJUJwsUJwqwGYWUO4QyO1Vgbd7EbBDDM4C/BY5yWkX8DIiLtYq0rnyWkJYAxzggJnnZHeWVsE1iyyjlH1Y1F5ZINL/hhbdd06OCsCoGEsMcXpQemjB42Iow60637JLXWCTjpkHdJ7VBIkaRQTRaoSX5ggsWg1gITlTCMZQ7oyLz1ShZGiKSOMbJOSKhiwmUw0/1LUPbQrc/RSP3RNUZz0vhFUMkej1YRR98qMukD5e3YNRK2qp3SZtLx2/l6TrTFlikiaoQNxwqV2yOVChrG4hAJfyBxpvfF+GpogmkKHyXhYimnSFNk1WhcEir2l6LYSdDwHGYK7vj3yZNZrxhA5uNZp6IoDi1CTMMrX9NIsBApvaabJQZogGCoAQMAcqcaDnCQQJag3qpbhcpuUoTWTRsqhZkg/XFEdoMHgtZlTd7SWp4IUHQi69UlU17ZuyPn7SiKr/AQyx56IXKOAIbFruVg94FdipjOyQbCkok6wyrkoKoJakY7ssepgLgwp+lBk/BZGUBYwyc/IzQ7qAMRqHlzZkxzQOBLEONoLFf6Klf/VzEWceq1sC0wWIz4t6L0IKViJPWFE1tipbrGrnCe6/JojlFJQoWURoxEGI6oCmzm1gCxiGgN/hw0m7cBIeMu1F+O0+wqwPZD34bUHcEUxOTowyi7dXIqstIA6gnX5aorcGBfwEhyWz/vYguQck+mjSU24zoNroljtMynoO+FGG3k+oY1BZTcDuF6i0s6HXy4/vLWqHywGhmkHQMj05BAjYg7FO1SyT7pXLdr+qRbK6/uCUpfUTdM4qbRQIK2cMIL6uEICX4WChgJ9gUQbZKtEkz8oHsuOfSZ3YVAvkwerUv5yUeaTxtWSLYiUjoGvAote4L2Jv4ZILVnFpEusKymhLeU00TrkPJUkCEN1rTABGyYef4jQ+OS81ygFZmVUErQBZdOBWoWrcGs04QAe3Gk0d8TKcAgIvRJCyENocoU3LwF7KpCC2I0N6QItTBbfU3hpuiNSqfFQwVWklr1s3y6LfZD/BUGnl5Bma4VELXgBQ3am4G8IqhTAqQbTv/GQTXsaIJACRp21Vty4I0vMyxMGnKswC4oAtlO1ZQ5MKo8jmi8fL5JHvLIZkVaMAhMmmB3L7goMaRahssmp5a8b75LJdrFkM42BEds2qlleogC7qOFYVZFfbgPGACoui4EieE2W2LwzAT3Oq1k9IeYgKgKsC6ChTbIpYWlGVRItkEOHQz4W2Gi9DcpOAmWcIkyHKPUkwj8Nbm0ahJwXXNeFsMMEKBrghyBs4jLPBbisV5Vk5jsqEEFaOxx630u9WBU9BUjUNENKZQ0TnXBhMesCCuqPJ8xE4PCpMCy1Efr9GhTKoKsiNJj4yCFVZXjdDulnVgEFw2WVLtdS1WKTLDQ2SAQQ2Q8vqgLrS2eTvW55AJ1p5RSuPW0BmPSM/ZZLgkMyGwZOZW2FIOU8+QGBxCM7IkSBjwE9RtztVmMY9qce2acJmuNRExMqJuJiQKY06TbQC+bfv0CTIn5CGSDnwUwaMcojQ5jCLAXggIplM9UTTTzK4LfJ+VgVxCZOapHAmf09lowyLpA/FSRYqM9rJ6UMXlGnGGdoKTKOpI1HAYHGplePSq1Wg0m4g0RsgtMnmJ7QN2LkAlSw9FFnA4WdsBBZgDfoIHRP2AAVItIQbt1UNLQCcKuBVxydlE+W2mrQsnDQiM/vAYfDdODsayQBU4MqUlRLAK4yCTxUgVRURqWXawCKdIAQ5NARWHGCooJS6scWfZZBODLIwSTDAkNpLlcnzbSaXeGWlvEfpUWEATFpg+QkGJji4qwSu8T5UIVO0zyAOkIE4yIyCMBFnHNUSMRgAqYVUHrBRIwmjan9MxrdV8gfGAQRV46nKJAoZHAuZhWYWXTu1JA9TgA8asAc4KhMD2OtNYL2JthcEevfgsKa6qFQcCAtABdS8ISFglBmcPob8TNL2+hlVtKcyrgzcJKcBO0cWcnZBwM3IQJ4bUTvgwCbnDe6RlCFI0uRMHXdoxROR0BKkRxVxNj+04/NslBFJHVgopIuEbPwQUJcxt8WIJiOCk31ZkIylKaEF+JkQwhZwNkoNsrQQU4WVgU33vpLDqM9xn7Tq3ANCQU0xWCAoYDdoBURUSHbhpjm8DIsysUyQvlXdN24rpH9zLLFggUBo8UgWoDyGDRfwUyaChFxZAXV5M0rBkPsNQCThCG1AlDFkdaAiG2gYLlmJwQRKXTYqLaTRtgoCLLRg5UOU26uXHTSasY/O3Go0dSS5wYWXNWAOunJJMc7YVLKqyCskyUKO7H3MCmXRQouh0mmTa0KbCWtQIL0+hNMb229F2VC5bK4elKHsqCUMCoLJlon+Dk0mbYtE5BhQ3UJWZTRVMMQ9wMwzRM0AVAFPdRZUflbpLauX/hWq8lwt00eNGby4mEwtrYeqZWuVlEBlVYF4H26aR/riIDn0601U/VcFOJEbRFXAqzLP1W4HXFbeC5OWgC3pdxpISYFRDqMmEqJqm1HWm8mCMiWHqJIssIDOYfR/uV81mVANAViJw+nlSK2nZfnUBobJDwdI9AdwehmKPan4FDNAcMrkemkRuVn4KZm5lEvpqvWvyrZyXwzJDgpG0ovUBg92QS2rx/pcs0jFUtUuE9WuCYGDIU4F0fWWmXtaigd8h1xAlC5bHb+6BqohA0kTgMJUTs00hDzhajXfJFcIr4W691VaWbTKYFToOhquWt6nyZ9qyqEy6NwTUkdNx27Igjels45kN0JlZmnMtE8W3VOhKdsSs3i7LBDSpUEGyYFs0ytXZ6x8IF8fOumK7kNfINHjySI1RAWjiW6PZBQJJiUQJFPyUkzqmLUsQTO+0MGtRlNHjLIPN81RmJFGuZ08KP20gVIHh5+m4LY0JQk/wVCa3hIvO3L5oC0LOIMhip0GMut8mf2kwhyjIm2+Uiwy/a+0GtLMnh7Sga2WOHlUXKayyamNLsyiGNq0QepqI1/U13ShUp3EFDxA5PGqvE25fKBbxTAKMAAKlqNAHACTBWVKjoCqv1WRk1EWUYtTtX+IOIim1qn0My8pM2ZqRZYNPQYAm2mFlW8qtW0leYIqWlO2X4IDbpqhkmVRi9NSlwkvPTTIV0Fjtfwi6pgms7VGhc5XdQGakBpTCgxpqZu7QHq1gUSPQGpjiMxyAy2rfAgO5CebSPQIsAqn5gx5FThRy1+lHbbyHF4mdiIYoo8OyLuWrpOAWQ5hlQTMMvnruq2m9P0lfagzGMAqCngZaT8ng2ejQhlVP0nZ3SCBqLmGIR0t1GTJylNgGVpKnsBQ7uDSCSR+fyhdOqyiQGpdCUYF8FJqf4DTx2H1UTRNqxAClXYRWYRBKImAmrggWkHwHRYVCZKunUXezVwWhyX6pc9smfS5qiBTtTEWnHTLQTJu5KFa/dI1FrBV0BoCzkAAK+/D7iki0eMh0e3J6yx9oKsmcVxa/ZmyW5pVoImv3e8i0euShCQfoNJhRdKDRG+IjqUesisqUI1T7MGqYlGNZhygg1uNpo4w10dokh7WS1FWyU1z+CkWaU7dFloCdbOG9KSF7EwVwsq5MEsh/CSD01OJOnD5CcrIBo406feBRJ+PwKGHuTNA3bxCS+p7ZfaWScsuMMBLm1EgPWTMMhgTBi37q2V4swhAUJCiquuNSrwsaxVkV6Y8eYeaxVB60qoNg76BZLayutAp0hyacQAKKGsk9ZoKxFmUHRWcAhZaUmdDlnirbaKGBOhVMgQhM56RxACA6p6mZAmCM/IllfrPwKbgjNwkRLwtQ/6/ygGhWqMcjQmIdat2HHAGUg+t/G+zy0NYBQp802tpqTm5oYxAZjtFxodRZrAGaV/KUs3up3sruYG0zEaFRRnlwImzx4m+AIluV2Yrw8gzFzIjzn2BRLdLOtoER7Kbum0FCcQygDJ11FIuCaEVT0S4bGVL11rei048ofDSXPrrygYSSZqoBQnpsOAwlCYlovuHSa2wmQecfkZ6Y+U04AiYRXJZUP7JocmG2JwxQUVnfoJFkw8/QaspyibPT5DFHgvIK7fSoTTWiPXpoWrNG08MlY81l4Vidr8XZesT64qw1vWDLVtDmdyiR1ZyoZDa23iyQ534ZDvpkDTOlXYT5qYcjBz9wlg5F+VWqR3m9H1QmGTKAlXKDpfbtQJRM75gQgjxxm/TaDQajUaj0WiaH5251Wg0Go1Go9GMGXRwq9FoNBqNRqMZM+jgVqPRaDQajUYzZtDBrUaj0Wg0Go1mzKCDW41Go9FoNBrNmEEHtxqNRqPRaDSaMYMObjUajUaj0Wg0YwYd3Go0Go1Go9Foxgw6uNVoNBqNRqPRjBl0cKvRaDQajUajGTPo4Faj0Wg0Go1GM2bQwa1Go9FoNBqNZsygg1uNRqORzJ49Gx/96EcbPQwAwPLly8EYw9VXX93ooWg0Gs2oQge3Go1mzPP000/j5JNPxqxZs5BIJDBt2jQce+yx+NnPftbooQ2Lhx9+GIwx/OhHP9rsZ+9617vAGMPvfve7zX52+OGHY9q0afUYokaj0dQdHdxqNJoxzeLFi7HffvvhySefxCc+8Qn8/Oc/x8c//nFwzvGTn/xkyHtfeOEF/PrXv27QSLefffbZB6lUCvfff/9mP1u8eDFM08QDDzww5HXXdfHII4/gkEMOqdcwNRqNpq6YjR6ARqPR1JLvfOc7aG1txSOPPIK2trYhP9u4ceOQ/zuOU8eRDR/TNLFw4cLNAtgXXngB3d3dOO200zYLfB977DGUy2Uceuih9RyqRqPR1A2dudVoNGOaV155BXvsscdmgS0ATJw4ccj/t6S5feqpp3DEEUcgmUxi+vTp+Pa3v43f/e53YIxh+fLlQz574okn4v7778cBBxyARCKBOXPm4P/+7/+GbK+3txf/7//9P+y5557IZDLIZrN4+9vfjieffHKHju/QQw/Fhg0b8PLLL0evPfDAA8hms/jkJz8ZBbrVP1OfA4AbbrgBJ5xwAqZOnQrHcbDzzjvjkksuQRAE0WfOOussZDIZFIvFzfb/gQ98AJMnTx7y/ltvvRWHHXYY0uk0WlpacMIJJ+DZZ5/doePTaDSa7UUHtxqNZkwza9YsPPbYY3jmmWe2+7Nr1qzBkUceiWeffRbnn38+vvjFL+Laa6/dTM6gePnll3HyySfj2GOPxQ9+8AO0t7fjox/96JDA7tVXX8X111+PE088ET/84Q/x5S9/GU8//TSOOOIIrF27drvHqILU6gztAw88gAMPPBALFy6EZVlYvHjxkJ+1tLRg7733BgBcffXVyGQyOPfcc/GTn/wE++67Ly666CKcd9550WdOPfVUFAoF3HzzzUP2XSwW8a9//Qsnn3wyDMMAAFxzzTU44YQTkMlk8N3vfhcXXnghnnvuORx66KFDJgMajUZTM4RGo9GMYf79738LwzCEYRjioIMOEl/5ylfEbbfdJlzX3ey9s2bNEqeffnr0/7PPPlswxsTjjz8evdbT0yM6OjoEALFs2bIhnwUg7rvvvui1jRs3CsdxxJe+9KXotXK5LIIgGLLfZcuWCcdxxLe+9a0hrwEQv/vd7173+HK5nDAMQ5x55pnRa7vttpv45je/KYQQ4oADDhBf/vKXo591dXWJY489Nvp/sVjcbJuf+tSnRCqVEuVyWQghRBiGYtq0aeK9733vkPf95S9/GXLMg4ODoq2tTXziE58Y8r7169eL1tbWzV7XaDSaWqAztxqNZkxz7LHH4sEHH8Q73/lOPPnkk/je976H4447DtOmTcONN974up9dtGgRDjroICxYsCB6raOjAx/84Ae3+P758+fjsMMOi/7f1dWF3XbbDa+++mr0muM44Jy+eoMgQE9PDzKZDHbbbTcsWbJku4+vpaUFe+21V5S57e7uxgsvvICDDz4YAHDIIYdEUoQXX3wRmzZtGqK3TSaT0b8HBwfR3d2Nww47DMViEUuXLgUAMMZwyimn4JZbbkE+n4/ef91112HatGnR9m6//Xb09/fjAx/4ALq7u6M/hmFg4cKFuPvuu7f7+DQajWZ70cGtRqMZ8+y///74xz/+gb6+Pjz88MM4//zzMTg4iJNPPhnPPffcVj+3YsUKzJ07d7PXt/QaAMycOXOz19rb29HX1xf9PwxD/OhHP8Iuu+wCx3HQ2dmJrq4uPPXUUxgYGNiBoyNpgtLWLl68GIZh4MADDwQAHHzwwXjsscdQqVQ209sCwLPPPot3v/vdaG1tRTabRVdXFz70oQ8BwJDxnHrqqSiVStGEIJ/P45ZbbsEpp5wCxhgA4KWXXgIAHHXUUejq6hry59///vdmBXwajUZTC7RbgkajGTfYto39998f+++/P3bddVecccYZ+Otf/4qLL754RLavdKevRQgR/fvSSy/FhRdeiI997GO45JJL0NHRAc45zjnnHIRhuEP7PfTQQ/Gzn/0MDzzwABYvXhwVqwEU3FYqFTzyyCO4//77YZpmFPj29/fjiCOOQDabxbe+9S3svPPOSCQSWLJkCb761a8OGc+BBx6I2bNn4y9/+QtOO+00/Otf/0KpVMKpp54avUe9/5prrsHkyZM3G6dp6keORqOpPfqbRqPRjEv2228/AMC6deu2+p5Zs2YNcSFQbOm1beVvf/sbjjzySFx11VVDXu/v70dnZ+cObbO6qOzBBx8c4mE7depUzJo1Cw888AAeeOABvPnNb0YqlQIA3HPPPejp6cE//vEPHH744dFnli1btsX9vO9978NPfvIT5HI5XHfddZg9e3YUKAPAzjvvDIBcKI455pgdOhaNRqMZLlqWoNFoxjR33333kMyp4pZbbgEA7Lbbblv97HHHHYcHH3wQTzzxRPRab28vrr322h0ej2EYm43nr3/9K9asWbPD25w6dSp22mkn3HnnnXj00Ucjva3i4IMPxvXXX48XXnhhiCRBZZqrx+O6Ln75y19ucT+nnnoqKpUKfv/732PRokV43/veN+Tnxx13HLLZLC699FJ4nrfZ5zdt2rTDx6jRaDTbis7cajSaMc3ZZ5+NYrGId7/73Zg3bx5c18XixYujzOMZZ5yx1c9+5StfwR/+8Acce+yxOPvss5FOp/Gb3/wGM2fORG9vb6Q13R5OPPFEfOtb38IZZ5yBgw8+GE8//TSuvfZazJkzZziHiUMPPRTXXHMNAGzWfezggw/Gn/70p+h91a+3t7fj9NNPx+c//3kwxnDNNddscTIAUEe0uXPn4mtf+xoqlcoQSQIAZLNZXHnllfjwhz+MffbZB+9///vR1dWFlStX4uabb8YhhxyCn//858M6To1Go3kjdOZWo9GMaa644goceeSRuOWWW3Duuefi3HPPxcMPP4zPfvazeOihh7bY3EExY8YM3H333dh9991x6aWX4sc//jFOP/10fOxjHwMAJBKJ7R7PBRdcgC996Uu47bbb8IUvfAFLlizBzTffjBkzZuzoIQKIg9Zp06Zh1qxZQ35WHexWB7cTJkzATTfdhClTpuDrX/86rrjiChx77LH43ve+t9X9nHrqqRgcHMTcuXOxzz77bPbz0047DXfeeSemTZuG73//+/jCF76AP//5z1iwYMHrTiQ0Go1mpGBia1N0jUaj0WyRc845B//zP/+DfD6/1SIyjUaj0TQGnbnVaDSa16FUKg35f09PD6655hoceuihOrDVaDSaJkRrbjUajeZ1OOigg/CWt7wFu+++OzZs2ICrrroKuVwOF154YaOHptFoNJotoINbjUajeR2OP/54/O1vf8P//u//gjGGffbZB1ddddUQ6yyNRqPRNA9ac6vRaDQajUajGTNoza1Go9FoNBqNZsygg1uNRqPRaDQazZhhzGluwzDE2rVr0dLSskMG6xqNRqPRaDSa2iKEwODgIKZOnQrORzbXOuaC27Vr1w7bDF2j0Wg0Go1GU3tWrVqF6dOnj+g2x1xw29LSAoBOVjabbfBoNBqNRqPRaDSvJZfLYcaMGVHcNpKMueBWSRGy2awObjUajUaj0WiamFpISHVBmUaj0Wg0Go1mzKCDW41Go9FoNBrNmEEHtxqNRqPRaDSaMYMObjUajUaj0Wg0YwYd3Go0Go1G8xouuek5fP+2pY0ehkaj2QF0cKvRaDQaTRXrB8q46v5l+MXdr6DsBY0ejkaj2U50cKvRaDQaTRVeEDZ6CBqNZhjo4Faj0Wg0Go1GM2bQwa1Go9FoNBqNZsygg1uNRqPRaLbC7xcvb/QQNBrNdqKDW41Go9FotsJlt2rHBI1mtKGDW41Go9FoNBrNmEEHtxqNRqPRaDSaMYMObjUajUaj0Wg0YwYd3Go0Go1Go9Foxgw6uNVoNBqNRqPRjBl0cKvRaHaYnnwFFV+3J9WMLYRo9Ag0Gs1w0MGtRqPZIdb2l7Dvt+/AUVfc2+ihaDQ7zPLuAq685xXkK370moCObjWa0YzZ6AFoNJrRyb0vbgIArOkvNXgkGs2O89Yf3Qc3CLGqr4hL370nAOD8fzzd4FFpNJrhoDO3Go1m2Cx6Zn2jh6AZYQZKHnrylUYPo+a4QQgAuO6RVXhubQ69BReLX+lp8Kg0Gs1w0JlbjUYzbD79h8dw1pFzEQqBr7xtXqOHoxkml9+6FL+69xUAwF1fOgJzujINHlHtCUKB43/6n0YPQ6PRjAA6c6vRaEaEn9/9Mn55zyvoLbiNHopmmKjAFgCO+oHWVGs0mtGFDm41Gs0OcetWpAi+XObVaDSaZue7i5biqvuXNXoYmhFGB7cajWa7EULgPllQ9loGSl6dR6OpNav7irj5qXUIQ+0iMNa44Yk1+MKfH0fR9d/4zWOMlzcO4sp7XsElNz3X6KFoRhgd3Go0mhHl2B/d1+ghaIbBYyt6N3vt0O/ejc/9cQn+8fiaBoyoNrzeBG088YU/P4EbnliL+RfdNu5WXQoV7dE9VtHBrUaj0WgiPnLVw1v92X9fHTsuAjc9tQ4f+e3Wj3U8sqK32OghaDQjgg5uNRrNiDMelzjHCiVvfGSz7n5hY6OH0HS86+cP4J+Prx7yWhAK9Bd1kahmdKGDW41GM+J8+g9LGj0EjUazneQrPr543ZNDXnvPLx/Agm/djuXdhQaNqjY8saofl97yfKOHoakROrjV1BU/CHHudU/gtF//d8wVp5TcAO+9cjF+csdLjR5Kzegvujjrj0twzwuvr1XUWkaNprnxgnCbfk+fXD0AALjpqbW1HlJdOekXD+ChZZvryzVjA93EQVM3Hl/Zh/deuRgqpn1uXQ5vmtba2EGNIH9bshqPrejDYyv68IVjdmn0cGrCdxctxU1PrcNNT617w/c+tqIX+87qqMOoNCNFEAqMsTmnZiv8+I4X8Yu7X3njN2o0oxCdudXUheXdBbz7l4uHPDhX9hbh+qO/OnfjYBm/vOdlrOkrNXooNWdtf3mb3/vtm/WS32hCCIGdL7il0cPQ1Ik/Pbxqqz8TYvzNcMbjMY9ldOZWUxfuWrp58cZnr12CvWe04cQ9p2BaexLH7zmlASMbPmde/SieXjPQ6GFoakS+4iPjbP5V+Y0bn4Vtclxw/O4NGNXI8+oY01Rqdpxf3vMKPnfk3EYPo66c+ftH8duP7t/oYWhGCB3campCruxhdW8J86dmX/d9T67qx5Or+gEAyy8/oQ4jGxmEEOgtuJiQcbYpsC25AQYrHia2JOowOs1IsKy7gCOvuAcAcPyek/GOvabi7XICtiFXxtWLlwMAzj5qLloSVoNGOXJsS+bq+XW5OoxE02i+f9sLGCz7OHb+pEYPpW5sKQGjGb3URZbwi1/8ArNnz0YikcDChQvx8MNb9xb89a9/jcMOOwzt7e1ob2/HMccc87rv1zQnR37/Hhz/0/+MKV/Mar5+/TPY99t34HcPbFvbxv2/cwcO+M6dWD+w7cv6zci946hQ7BP/92j071ueXo/PXLsEhQpZnD1XFeSd9IsH6j62RvHs2hwGimOjAx0Da/QQmppf3fsK3nvl4kYPQ6PZIWoe3F533XU499xzcfHFF2PJkiXYe++9cdxxx2Hjxi3Pku655x584AMfwN13340HH3wQM2bMwFvf+lasWTN2OuOMB3oK5Iv4/v/9LwBgrKmZrn1oJQDgm/96/baNKhjKy78fWjZ6g/2nV48v6cWKns2X6W9+mgrpzvjdI9Frr2wq4OFxVHW9KT+6J2gKMea+lTQajaLmwe0Pf/hDfOITn8AZZ5yB+fPn41e/+hVSqRR++9vfbvH91157LT772c9iwYIFmDdvHn7zm98gDEPceeedtR6qpkbc/NQ6eNvQ1jEYQ2XaS9fn8PCyXuxx8W248PpnGj2cEaF3HBm5r+otwgs2vx+/8rentvj+9/3Pg7Uekkaj0Wi2kZpqbl3XxWOPPYbzzz8/eo1zjmOOOQYPPrhtD4NisQjP89DRsWVLoUqlgkqlEv0/l9OasGbjc3/cNkP/h17twcFzO2s8mvrwth//J/r3Nf9dEf371qfX410LpjViSMPmmgdXvPGbxgi/vGfrFkkqC68ZP7y6KY85XZlGD6OhaDMBzWiippnb7u5uBEGASZOGitInTZqE9evXb9M2vvrVr2Lq1Kk45phjtvjzyy67DK2trdGfGTNmDHvcmsbgjaHM7dZY9Oy23ffNyB3Pb2j0EJqCD/3moUYPoaGMlSBnezS3p/xKZ+bHA0tW9uEXd78MfxtWGjXNTVP73F5++eX485//jH/+859IJLZcZX7++edjYGAg+rNq1da9+zTNjfYZ1IwGnpDuHq/lmVFvBze+Cqz+vmT1Nr9X1RCMZ9g4uD3e88vF+P5tL+BPD69s9FA0w6SmsoTOzk4YhoENG4ZmfDZs2IDJkye/7mevuOIKXH755bjjjjuw1157bfV9juPAcZwRGa9Gsy2s6i02egiaGrMjWepl3YVR3nFv2yaXdzy/EZNbE6Pa/mz0T0Q0teTljflGD0EzTGqaubVtG/vuu++QYjBVHHbQQQdt9XPf+973cMkll2DRokXYb7/9ajlETRPBRklq4Jzrnmj0EDQ1ZFVvEZsGK2/8xtfQk9/+z4xGvrtoKT529SNv/MYmpm8cFUdqtp+trc5oRg81lyWce+65+PWvf43f//73eP755/GZz3wGhUIBZ5xxBgDgIx/5yJCCs+9+97u48MIL8dvf/hazZ8/G+vXrsX79euTzeiY11vnXk2sbPYRtYm3/8Nrs/vq+V0edBGPxK93b/Zml6wZrMJLas24HvYgvu3XpCI+k3mz75PKR5X01HIemHmxvKmGUfWUNiydXDwz7e17TWGoe3J566qm44oorcNFFF2HBggV44oknsGjRoqjIbOXKlVi3bl30/iuvvBKu6+Lkk0/GlClToj9XXHFFrYeqaTB/e2zbNXCjme/c8jxufWZ0FZad9uvtL6IqeUENRlJ7/vn4jt2HFV8XoWhGD+Xt/P38we0v1mgkzcky3Y56VFOX9rtnnXUWzjrrrC3+7J577hny/+XLl9d+QJqmRQiBfMUf1Xq+bUF/cTYvf3pYF6Vqxj7lHZiMeUEIy2jqOnSNBkCTuyVoxh+f++MS7PmNf+uCD41Go6kRZS8YU01zNJrXooNbTVNxy9O0XP/bB5Y1eCS1ZUc0rKORjbmx0ap1LLP4lW5cec8rOPZH9zZ6KJo68bsHljd6CE3P6Chv1myNusgSNJqxxEh86T3wcs8IbKX5eWbtAI7KbtmjWtN4nlrdv0N66tHOL+/eege68cCOuIEAY6eobPk2yMLGyKGOW3TmVtOcNPE3SxMPTaPZLp5cPT7lPw++Oj4ml1tjrK+MvRGn/+7hRg9BU2N0cKvRbAclN9hhq6jxyGjL9Nw4SuzoNJod5dVNO26rOUqsyN+QFT26Ec9YRwe3Gs128I8dtInSjA4+/6fHGz2EUcNA0cMn/u9R3Pr0ujd+s6ZpKLo7btE32iarW+LupRu36X0f/M34k+uMJXRwqxlxukegU1Ozfod62st0u9Der2OXH93xIm5/bgM+c+2SRg9Fo9kmChUfZ4zy7nqabUMHt5oR5yNXDV/P9M/H1yBsQquakRxRxR8dTQ52tPgEAD577RJcec/4Lt4Zq2waJ+2GxxrDkRbc/cK2ZT2bleFkrTWjCx3cakac59blRmQ7PYWx3f/9v6/2NnoI28Rnr31sWJ//7qKlTTlR0QC/+c+rO/zZm58aX3KE1X1ap/mpa4b3XdBoxopmWPPG6OBWo9G8Lo8s7xv2Ni679fkRGEltWdEz/K5xT6zqhxeMHimGLqzZdi67dWmjh6DRaLYRHdxqNJqa8+v/NL/10Pv/97/D3sZJv3gA5//j6REYjabZuHvpRjy2YnSstmg04x0d3Go0Gg0wYhZvf3ts/DlqnHvdExBjoZT+dSi6Ad575YONHsaw2JAr44Sf3j+sbXx30VLkyt4Ijai+aFXC+EEHtxqNRqMZFv94fA1e3LDj/qn1ouIHeODl8dH6eku86+cPDHsbV97zCi69ufllRprxjQ5uNU3LQ8uar4vQGE9OaUaI8Vh8NBq0xt+48blx7V+6PjcyqxPPrB2fne00owcd3Gqalst1AYdmlPLdRS80egiaLfCnh1cOexvXPTL8bWgaA9N2CeMGHdxqRpSNgyPXmnZ1Xwlv+f7doyIjpHljHlsxfNeF0UKoU/xjlq/+/WkMlEan5nS8o0Pb8YMObjUjyjdvfG5Et7e8pzgiOrFm5O/jrPDoX0+ubfQQ6sZKbbE1prniNp2ZHw/0jnGv9bGMDm41I8pIZm4VI9UUotm48cm1KDVpx5zfL16O2efdjPP+/lSjhzIqWbp+bN6zGmJtf6nRQ9DsANurStjnktvx8sbB2gxGU1N0cKvRNBAvbE7JxcU3PgsA+PMjq0Zsm4Nlf8S2pdE0Ei06wbjpOnjMD+9r9BA0O4AObjWa7WCkv87HkzSzmTMgOtOq0Ww7z6zJYc9v3IZrH1rR6KFoNFtEB7eaEYWNccn+WDeqryXNfOZ0V7Hhc+LP7sfNT61r9DDqQhAKeEGIVb3jV1tdcAN87Z/PNHoY20XFb86VMs3Io4NbzYgimjqEaT5+859XGz0EzThlWXdhxLf5uT8uGfFtNiP3vrgJu3ztVhz2vbtx+3MbGj0czTZy8Q3PNnoImjqhg1uNZjsY6cTtz+56GYWK1qKONbyg+Sd5/++vTzZ6CGOCqxcva/QQNNvIomfXN3oImjqhg1vNiDLWZQm14Ct/ay5Hgpueqo1l17Nrta61mcjVyKv1X0+u1W4CGo2moejgVjMiDBQ9fO2fT+Ph5b2NHsqo4+anm0uneNYfH6/JdoNQ4KDL7sRfHx05B4bhEoQCRdfHU6vHXzvRNTUKQM/+0+N4yxX31GTbzYjrh1iysg/BOHEP0GhGAzq41YwIh3//blz70NhvS3nrM80ViI40tS6YWzdQxpebKFN94s/ux/yLbhuXgUmxhh7L7jgq3HlkeR/e88vF+MkdLzZ6KA0lX/HH5e+RpjnRwa1mRKh1O8qiS7rUT1/zGD7++0ca5lqwZGV/Q/ZbD0pugJ3Ov6XRw6grz9ewQcjz63L40G8ewq1NlpnX1Iaf3vXyuHRTueGJNdg4WMabLr4N7/7l2OwmqRl96OBWMyqYf9FteHljHoueXY87nt+IjYOVRg9pRGkGQ/Qr732lbvv688ONzfKHoai5POLtP/kP7n+5G5+5dnw4CLyWlzfmGz2EunPfS92NHkLd+fldL0eOEWNV3nP/OLyuox0d3GpGDcf88N7o37VMkLy8cRBfv/5prBsYqklc0TPy1kmKfzy+pmbb3hbCUOCnd75Ut/398p76BdJb4rx/PNVU8oixyKeueRRPrx6AHzSHRKHWq0sA8MI4bAbC2NgvJP7QVQ81egia7UQHt5pRSS38dL0gxHcXLcUxP7wPf/jvSnz22iUIQ4Er73kFf310FY74/j0jvk/FD//9Qs22vS0ceNmddd3f9vZ4H2n+8ujqxg5gHPDKpgLe8fP7ccE/m6NBxh/rUBMQiuZYhdkSdy/dWLNt//HhuFOZ64dNew404wcd3GqGTSO+yGqxy2v/uwJXVmUUn1kzgN0uvBXfXbS05lm+tQPl6DzWW7fXna+MOZmHpnlololEENY+g3z5rUsx54JbsLqv+TqX1crX+MUNeTyzJs5YL7z0DrznysU12Vcz8Kt7X8HvFy9v9DAi/vDfFTjyinuwsqf57rlGooNbzbBY3VfEuX95ou77Pf23D4/4Npe/5svBC0RdzfjnXHALZp93M3Y6/xZ8+prH6rbfsZplyZU9LHpmHcoeuQKUvQCfvfYx/OLul+s+lq/+7alxWWzUTNTz9P/o9vpJfLaVklc7d4xq+ooenljVX5d91ZOf3/USVvcVcfmtS3Hxjc/CaxK5zdevfwbLugv41k3PNXooTYXZ6AFoRi9/eXRVwxoQjHSxyqJn1uOa/6544zfWCd1JZ/h8/PeP4uFlvfjwgbNwyUlvwv7fuQODZR+3PF3/c3vdo6vw3n2n44CdOuq+72ZACAHWYC1KPedwzdiGfGyrYmvPFf9+sWbe0COB7nQ5FJ251ewQq3qLDe+stXGwPCLbEULg0394bNx5NKpM4kdqkAV/I1bUYQnt4WXUUOS6R1dh8cvdGCw39st/PD98Fj3T+MlaWMfUrU7Sj03+9HDssNJs19g09PSlGh3canaIZtAcHfCdO7F+YPgBbrN9SSmO+eG96C+6Ndn2Xx5Zhf2/cyf++2oPlq4frMk+todn1gzgxidHru1vuWoJ1vVDnPabxlc7D5Q8DJZrX7HfjPx9SWPdQID6atlvfWYdNubKQ+5DzdiinpOlbcHgOritRge3mu2mUPHxm/uXNXoYAICHlvUMexvN9RUV8/LGPBZ86/YRt1K68cm1+Mrfn0J3voKPXFX/rK1ioOThhifWYHl3ASf+7H58/k+PR9nW4fLtm5tPf3bOdU9gz2/8e8xqnF+fxh9zPUdQ9kIccOmdOOTyu+q419en3rKQM69+BL2F2kzOd4T/vLSp0UOoKaYOboegg1vNdnP/y81jaD0S3pUjESDXkl//Z2QnEl+vsmZyG1gUsfc3/40v/PkJvOWKe6LXXtwwMlnkZm4FXWmC1rT1Lm7zQ4EVPQV848ZnG6ZbbESmraeJgrt6c+fSjfjurUsbPYyIf46wl/iza3NNVSS6uq+Et3z/7qaqHWkkOrjVbDefqmMl/xtx0Q3P4g7ZHWdHOe3XjV+yfj3GU3HZJSNU8csbbaT7OvSXXDyzpjGdnNTD+IYnRk4Csi3c88ImHPH9e3D14uU48+pH6rpvRaPikLuWDu/7aTTTnW8ei8GRbjTx3isX454XGpsNXvxKnGhaun4Qy3uKuPD6Zxo4ouZBB7eaUc/H/+9RDBTHrpbRHeFMX6Or1l+PkchqbhqsNHVx4EGX3YUTf3Y/PvC//8Xz6+rX0erWp9dhwbdux39e2oT7GrhEWw+Nd3e+gh/d/uIQzWvQoOj2Y1c/2pD9vpZG/NY/2UTteGvxtXfDE43Vkjd7YqaR6OBWMybY+1v/3qHPNZMmbGs8vy6HE3/2H/z9sdWo+MMrUOktuHVpQzochltYdtmtz4/QSGrLg6/24O0/+U/d9veZa5dgoOThw1c93NSZ7ZFgv2/fgZ/c+RL2+mb8vfA/977asPE8snxktOSjjWbI3CpXnVrc8dfXeQVEs+3o4FazXTSTxui1zD7vZjy6nQ+R03793xqNZmR5Zk0OX/rrk/jxHS8N6xr88PbGtvndFj7/p8dx34s7nlkcbVn8l0ZIZ7w9GA0Obi/459N1Oe6RXvXYUU751YMNk6JENOiSf/z3j+Lvj61uiFPI/973Cg74zp345T0vo+jWxrli9nk3D5EH1IvXew54QYgf/vsFPLZifE6qgDoFt7/4xS8we/ZsJBIJLFy4EA8//PoV2n/9618xb948JBIJ7LnnnrjlllvqMUzNG7Cip4Cdzm/ua3Hyrx7crvc3gw3W9nDlPa/g4MvvwoZcGQMlb7sD3esfHx2ZhvP/8TTe88sH8NiKvu3+7J1LN9ZgRLXj2B/dh78+uqquPrh+g2Ubf3xoJY790X0NHUO9OfFn92P2eTfDD8KaW4SFoWgaG7I7nt+AL/31Sez5jX/XvavXpbdQQdv3Fr2ATTXMIp/264fwwMvdw15Z2x5yr+Pbfc2DK/DTu17Ge6/cvufhWKLmwe11112Hc889FxdffDGWLFmCvffeG8cddxw2btzyA2jx4sX4wAc+gDPPPBOPP/44TjrpJJx00kl45pnGiKSbOVO5rYzUMZz/j6ff+E1NwOzzbt7sz4k/+w+eXds8+q/hsG6gjIWX3om9v/lvnPDT+yN9qbIMy1d8FN3Nv/jW9JeQHyWNBNb0l7BkZT/ee+Vi3PL0OgyWPfQWXHz5r0/i1U1b707X8OzYDvLlvz2FPS6+Da4f4i+PrsIXr3uipi1M/75kdc22vT3s+vVb8YN/D11NqMV3bjNl8+d+7VbMu3AR1g+UIYRAEArkRjirecyP7sW8CxfhoVfJCaYnX2l4ExMA2OVrt+L03z4M1w+jQLDkBnWxxxspm8Gt8cHfPITdvr4oeua842f34/Jbl6JHBtXVlo5hKIYd6L9eJvzpqu9BPwjx2IpefOzqR7b4XBirMFHj6G3hwoXYf//98fOf/xwAEIYhZsyYgbPPPhvnnXfeZu8/9dRTUSgUcNNNN0WvHXjggViwYAF+9atfveH+crkcWltbMTAwgGw2Cz8IUagEWJ8r44O/+S+686Sx/N7Je+Gnd76EGz53CO57aROOmjcJ/3pyLf7nvlfwycPmYO1AGafsOx1H/eDeIdu//nOH4MFXerDH1Cw+/n+P4soP7oO37DYRAMAZVQXf/cJGvG+/GZjTlYbnC/hhiKRt4MBL70Su7OOde0/FhIwNAPjXk+vwjXfOx7l/eRK/PG0ffPz/HsW5x+6KH97+YrS/YsXHzhMzWNFTxKSsg2/+6zlc/I75OOL79+Did8zHfS9uwrHzJ+MCafG0YEbbZg/GTxy2E379n2VYdM5hcEwDEzI2NuYqmNGRxOKXe7Cqr4iLbngWALD4vKMgAPz0jpdw3aOr8KsP7YNP/2HJG5770cCZh+6EvzyyCmcethOO33MK3jqGs0ffeMd8HL37JNgmx39f7cFX/vZUU9hQjQS7TMzg+D2n4IX1g9h9Sha7Tc5ACNKVjiXesfdU/PjUBTA4Q3/RxbUPrcRdSzfiIwfNwg1PrMXe09uw88Q03jyzHfe8sBE7d2WwcKcO/PD2F3HH8xuRcQzsMbUVF79jflOvulx9xv746O82d1G4/nOHYMGMNrh+iF/d+wreufdUvLhhEC0JC7tMyqAz42D2eTcDAF699Hisz5XhBwKHf//ueh/CsPnbpw/C8+tyOGLXifjY7x/ByxvzOPPQnXDiXlOwIVfBnK40uvMV/OvJtbjoxD2wuq+I+17qxh5Ts3jzzDZ8/Z/P4D37TMfCnTow54LmvdZb4/NH74JJWQfHzp+Ez//pcfz31V68+83T8NW3zcPEFgf3v9yNg3aegL88ugqHzu3EjPYUGCM7w+fW5vDC+kHkKz5OWzgTz6zJYf/Z7U19z7+WDxwwE5OyDm58Yi3esttEHDmvC48u78MBO3Xge4uWImWb+NMnDwRAE8Cf3fVyFCe8lnfsPRX/2krtwuG7dqFQ8fHD9+2Nm55ah6ltCRy3x2T4ocBe3/g3DtulEyfvOx1f+PMT+NQRc/C2PSZjbX8ZR82bCMfk2DhYQVvKgmNyPLV6AE+u7sc79pqK//3Pqzhsbif2m90BAQHHNCCEgBuEsA2O1X0lPLV6APOnZpFxTAghYIUVdLS3RfHaSFLT4NZ1XaRSKfztb3/DSSedFL1++umno7+/HzfccMNmn5k5cybOPfdcnHPOOdFrF198Ma6//no8+eSTb7hPFdzOOOcv4E5qJA5Do9FoNBqNZlSQtAyUmkSW8nqElSJW/fh9NQluzRHd2mvo7u5GEASYNGnSkNcnTZqEpUu3bO68fv36Lb5//fote31WKhVUKrGWJpern7WORqPRaDQaTTMxGgLbWjPq3RIuu+wytLa2Rn9mzJjR6CFpNBqNRqPRaBpETYPbzs5OGIaBDRuGdmjZsGEDJk+evMXPTJ48ebvef/7552NgYCD6s2rVKgDARe+YPwJHoNFoNKOTjFPThTmNpuaMcTtmTQ2p6befbdvYd999ceedd0aa2zAMceedd+Kss87a4mcOOugg3HnnnUM0t7fffjsOOuigLb7fcRw4jrPZ6+/bbwY+dNg8rB8oY3ZnGr9fvBwX3/gsPn/0LvjQgTMxIe1gQ66ML/3lSRw4ZwKOe9MkrOgp4tm1OVz3yErcds7huGvpRpy0YBoKro9l3QW88+cPYO7EDH71oX1w1f3LccBO7XjX3tOizjeWwSGEiDpAhaHAyt4iZk1IwQsEQiEw78JFQ8Z57ccX4t4XN+FLb90Vz63NoSfv4ge3v4jvvndPzJ2YweW3LsV79pmOp1b3Y+/pbZjcmsCEtI1c2UfFD7BsUwH/fbUHnz96F3DGcO+Lm3DG1Y8gZRtb9fV75dLjwUBC/GfXDmCnzgzufXEj3jyjHcf+6F5c9I490F9wMaszjctveR5vntWOH5+6AP/34IoRa4/aCH506t5wTAPZhIW5EzM48LI7Gz2kEaPFMfHLD+2D+VOyKLoB/vn4Gpy41xQU3QDzp2QRCIErbnsB/3Nf44zsd4RPH7Ez1g+Uhpiln7LvdFz4jvnoK7jgjOGw792N0xbOxAXH745L/vUcrnt0VQNHPHzmdKXx6qbCkNcuOH4ePnn4zkNe84MQBmfR940XhMiVPEzIbP59+PjKPrz7l4trN+gR4MS9psAxDfzrybU4eb/peGJlPyZlHXzuyLmY3JrA9PahNRTV37VlL8Dnrl2CTxw+BwfOmRAVmY0GXvrO2/HXR1fjsRV96Cu62H1KC96//0zM6Eih6Pp4evUADtipY6udBVXRjmMa0WuvPf4jdu3CvcPwjq4FczrT+PQRO+Nvj63GW/cgKeJ1j6zCWUfNxT4z2zGlNQHT2L78mxACtz6zHgt36oAXiKb4jp+UdbAhR9LJw3bpxKubCljTX4qKvj504EzMnpDG7lOyOGRuJ/wgxMbBCqa2JYdsZ6Dooej5qHghJmYdnPf3p7er4c2SC4/F9297AZ85YmdMb0/ipF8+gCN3m4gvHrsr8hUfDNTF76r/LMOZh+2EbMJCd76CTvl9UnR92Abf4jVRrh8lL8B/XurGUfMmImEZ0c8YY7j4hmdw0M6dOHr3ibAMKnJ+5MXV+PyPd+y8vhE1d0u47rrrcPrpp+N//ud/cMABB+DHP/4x/vKXv2Dp0qWYNGkSPvKRj2DatGm47LLLAJAV2BFHHIHLL78cJ5xwAv785z/j0ksvxZIlS/CmN73pDff3WreEZiMIBTiTHnUCaE1ZNduXF4RgAL532wtYuFMHjt590ht+5o0YLQ+N894+Dx8+cBYeeLkbDy/rxfnH7w6Db/5weGJVP076xQMNGOGOc/f/ewtmT0jhk9c8hoU7deDjh83Zps8t7y7gLVfcU9vBjSDH7D4Jvzl9v+j/1cHM6zFa7tHX0pq0cPsXD8fEbGLI62EowLdw724Pz64dwAk/vT/6/8yOFFb2Foe1zeFy0oKpyFd8/Pj9bx6SZd7W6/x6VN8DT1x0LJK2gd2+vuh1PtEYXrn0+C1+Lw2Xm55ai7P++Dge/foxUXDS6N+LPae14obPHYIf3/Eiugsuvv2uNw37vn4juvMV7PftO2q6j2re8+ZpOHzXLpz05mkYKHlw/RAZx8SV976C1qSFMw/dCQDFAcO97mUvwCGX34WebeyyufzyE4a1v1pQy3it5utWp556KjZt2oSLLroI69evx4IFC7Bo0aKoaGzlypXgPJ4JHHzwwfjjH/+Ir3/967jggguwyy674Prrr9+mwHY0oG7o1mTtglqFJWdYFxy/+4htsyNtj4qWtZ8+grJcb91jMt66x5YlLQCwx9TmmwC9HssuOz568P/6I/u9wbuHMrszXYsh1YSbzj4Ub5rWOuS14QY8zcySC49FR9re4s9GIgB47YP0nGN2wbl/eWP3mVryg/ct2OIDfqSvc1tqy+e1Efz3/KPRlrJw4fXP4Nj5k2oS2ALAiXtNxYl7Ta3JtneUf3z2YHDOcO5bd6vbPjszThTUveNn9w/xfx1pprQm8MNTF0T/r37Gn3vsrkPeOxLXPWEZ2HN6K+55YcsZ+Z060/jSW3fFWX98HL//2AHD3t9ooy6irLPOOmurMoR77rlns9dOOeUUnHLKKTUelWZHuPKD++DU/23OlrU3nnUIdpnYAtPY9i8Os8aZg5Hkpx9487Af/H//zMF475XNvTx96n4zNgtst4fj95yMW57esrtKM/LsN49Dusb62F0ntkT/TtsGdu7K1HR/WyNtGzh0l05cctKbahbYAcD09iRW95Xw7ZOaJyly6NxOTG6lrPz3T9m7waMZf/zjswdjl6/dWrPt/+kTB9Zs21uDb+F58NGDZ+PvS1bjilP2xr6z2ptuklMvdMWBZrvYb3ZHo4ewVWZ3ppG0jTd+YxWMMew1vRVPrW7+zlbv3Hv4X1L7zmrHS995e02/5HeUDx04E/vMbMd79pk+rO189717YeFOE3Dxjc+O0MhqS60DW4Cyv/d++S24/bkN+ODCWdv9ezJSHDlvIn5+2j4138/9Xz1qROQNI8n2rrSMJY6aNzFaSWwUtdr/8996W8N+n147Pzx2/iRc/I75uOjE+TWXfDQ7o94KTFNfDM6w/PITMH9Kcy3n7zE1i2xix6QeX3zNklEz4Zj0K3rOMbuM2DYb/ZDZEnO60vj2SXsOO7AFgJaEhdMPnj38QdWIjGPiBzJzt/eMtrrtd9aEND5+2JyGPYgB4KIT6+di0yyB7fPfehuWX35CQ897ozj/7fOw/PIT8NuP7t/oodSEX5y2T0Ov6+wJQ6VmX33bbmCMjfvAFtCZW80OUsslxe1luEL55jmSzfnh+xZg7sQMdp00ssvIE9L2Nhci1IO/ffrgRg+hrrx33+k4YrcuTNiKznas8tpiufFAwmq+yWStec8+0/D2N03BsfOHX8TczJyw15SG7v/zx+yCu1/YiFeku0ozJi4ahT4Tmh3irKPmNnoIAEYmyG6WDM+WMDiw2+SWER/jonMOx28/uh/uOPdwHDJ3wohue0fYWjHVcLj+c4cAoOz3SE8OhoO6ZTszTlPfeyNNowMBValeb5rlGtfid2xLnHvsrvjh+xaM+cC2GcgmLHzv5Fi/rYPbGH0mNDvEcXtMjoKHRvH9k/fCf88/etjbaY5Hz5ZRXoEjTVeLg6PmTcLciS249uMH4tVLj6/JfraFH1dVGI8kC2a0Ydllx+PZbx6H2845PJJ4NJK2lIXfnD42l2hfjytO2Rvffe9eDR3DUfMm1n2fXxtBp5rhUq/g/pOHb5s1oWZksKoKqHVwG6PPhGaHWVBHveCWOGW/Gehq2dywfnuZ/wZ2YB8+cFbDZBiH79JVl/1wztDSgI5Wz33rOJz05mk12z5jDKbBwRjDwxccU7P9bCuPX3gsDtipeYsya8Hyy0/AyftOb3jHtNo6um+Z7XFuqTX1SiDXakLeLPz+YwcgaRn43smNnawpqh0TbB3cRugzoRkWl71nz0YPYdh0Zhzc/PlDMSnr4MvH7YafvH8BDtipA1efsT8uOH4eLnrH/Ib44f7sA2+ua2FAvVdPP3DATKTs+gU8r22Y8oWjR65Ib1tpliVqADht4cxGD2HMMrODuqk1kw0Ta+o1qtHD/rPb8cw3j8P79pvR6KEAAPwwnrU102Sq0eiCMs2w+MABM3H+P56u+34P26VzRLe3x9RWPFSV2XvXAsomvmU3Wsr88akLcNQP7h3RfW6N33/sAOw6KYMprck3fvMI8vHD5uCHt79Y1302knctmIqf3PlSo4fRME4/aDb++NDKRg+jbgjUL3V775ffgoofjvks5njEDwVSTVRQPasjbkud1PdbhM7cakYdBme4qs66xTldmbq1Lzxi1666B7YA8Lkjm6NIsJZMlSb6k7MJzJowejq2aUYPT170VjDGxmVge/kYWMl7I5qt8U972sbDFxyNR752jLYAq0IHt5ph87bXaW870nzy8Dl4+IKjYTeoOKgZipJqRb11xY1Yob/m4wvxnn2m4dpPLITBGS5+R318V2dNSOF3Y9Tr8/WYOAKa+JGiHt7c13584Wbyl/HE+w8Ye1KXdy0YKi2pp5RqW5mYTYxI/clYovmukmbUceWH9kHZC9FbdHHI5XfVdF8XNLj6uNYB2ecboANtFI3IMezclcEP37cg+v+W2lfWgnu/fGRd9tNs3PqFwxo9hIgJmdo//JutuU01mYR+3O8IP3n/m3HDE2sbPQzNdjJ201CausEYQ9I2MK0t2XAvy1pT66KMcxvcLe3qM8ZXdlFnO2pLPQLKZqKJ6gU34337Db/7n0YzWtDBrWZkqWHNxh/OXFi7jW8jzfzwGgnesttELD7vqLoEfc1wLt+2x2S0JsfvMnItaYS1XKNpZkcCxxx/GuDX8qkjdsyD9xOHkUfwe/apnW2hZmTRwa1mRKllUOSMwzaWjWBqWxJ/+dRBjR5GXeCc4YmLjm30MBpCrScXHzl4Vm130Iw0b2yrAbDPzPYd+txX3zYPf//Mwbj8Pc3hbat5Y3S0oBlRalnolbJ15qFepOtwrpsly8UYw6JzmkcbWi8a0dRgrNMMqxGarbOjl8c0OPad1d6wQmbN9qOvlGZEOWb32vUTb+ZijbHGxGyi5p6JzRQIzJus762R5u1vGtv6+y0xnjtEnXPM+CmG1TQ/4/c3UVMTatVatDPjNFV3p1rQ2WTFN0pnNl4489Dxdby15k3TWhs9hLryvZP3GpfetopzjmlsMaxGU834U/xrNE3Io18/BpkmK8BJ1Xg8bSm7ptvfXtrHsT/pSDIhbeOnH3hzo4dRN/5w5kLsM6utKf1PX8tt5xyO4358X6OH0TDGeoJEE6Mzt5pRQnMIBGv11diZcZou6/ORg2bhoDkTcOGJtWl08KnDd6xyWTMyjPRzviNt419nHYrHLjwWh8wd2fbYzcyhu3SOisAWAHab3ILvvXf8FkVt7y0/HhuvjBV0cKsZFRyx68RGDwEA8PMP7tPoIdSNlG3iT588EB87ZHZNtp9uskz1eGOkC8oevuBo7Dl9fEkRNDRJGqtB4JHzmuO5o9l+9NNFMyr45rv2aPQQAABH7jb+vuxqsZR3xK5dI77N4XLgnAmNHsKoZjwu+TablGhbECO4CvbkRW9FNmmOy2uvaW5G32+mZlwyGh8ims154qJjcfPT63DinlPf+M11Zr/ZI1sMefPnD8UlNz2Hr7xt3ohuV9M8/PmTBzZ6CA2ldZTp1HUMPn7QEYNGo6kbbSkbH1w4Psz995jaij9/cnw0wwDGZ/+C8eYIodGMFrTmVqPZTsazl+Vw+PcXD2/0EDRVjMcs1mG7jJ9CN83mjMd7fryin9IazXaSdprL1WC0MKM91eghaGrIaAgc/vfD++G6cS4l2Kkz0+ghaDQ1Rwe3Gs120hymZPXlS8cO36B9NAQ/N551yIhs55bPj792vqOBpG1g4TgvHKxVo53RQLO0/NbUHh3cakacY+fXrgVvMzAevx4da3x8VczsGJns8mgrtBlvnHXk3EYPYdTTmWmuJiwaTTXj44mlqSs/G+PdieZPzY7o9uZ0pUd0e7Vg/xF2EtCMPUaTHdRHDhp+UeMlTWJP2ChuOnsUrk6MnltUM0y0W4JmxGm2TlsjTWty5LJy9335SEzMOiO2vVrx5pntw97GSDcN0AyPjvT4zbxNzCaGvY3TRrHrx6Ssgw25yrC2Mbl1+Oew3szt2na98bUfX1jDkWhqjc7capqev3567NopzZyQGvOTgfGIGAWRfGfGgcHjVNb3Th6/bVm3l4PmTBhy7kYbJ+7VfD7T9WDGdsiO9p01/Am9pnHo4FbT9Exqaa4MwfF7Tmn0EBrCcIvKRrIzUq0YqYITPkqW6H8uJUR7TM0O68jHm8XW/qO8KOtLbx1+geho5ZozDxjVExPNtqGDW41mOzlhhILb3Sa1jMh26sXnhlmEEzZ/bDssTd47956K9+wzDcfvORlTRsmS7dveNBmLzjkMf//MwcPSzO41ffQ1M+jMNL8cqFak7OEpEkez1/dhu3ThxW+/vdHD0NQYrbnVNBUzOpJY1Vtq9DBeF8YYDM4QDDNa++MnRpemiw8z25Ewm/+BOBw99ddP2H1EtJz1hDGGeZOpQHI4V3cUqDA2oy1loTu/Y7rTfWa2jexgRhEPnn8UWhKj2w1ka5nbu750BI76wb0ARod1oWbrNP/TRjMq+cOZOxa4ffukPUd4JLXh/q8eOextTBhHmaO3zp8EcxRne7aF0RbYvpbp7ckd/uwojG23m0e/fgzu+/KR+M1H9sMRu3Y1ejgNY0prEhlnbObF5nRl8OXjdsOFJ86HY+paiNHM2H7aaBrGoTuowdvSZLkZtZqTR3kgUw+O2T32O57atuOBU7353nvHZ2HVcJobjMbM7fbSmXEwc0IKx8yfNKpszzTbx+eOnIszD92p0cPQDBMd3Gpqxn1fPhI7dabxk/cvwK8/st8Ob2c8PDjHIr85fT8cvDMFTO8/YEaDR7PtvG//GThsl04cOnfoBE1XT2+dZpyAvhE6PNVoxi5jc21B0xTMnJDC3f/vLdv1mbZR0tlpuJmbxecdNUIjaW7+cOZC5Moe2lKjy1P1GimrmX3ezdFrPzhlb1x847O498VNjRpW09I1CiU21nbIZMazJ7BGMxrRmVtNU7HX9DacfdRcfPukNzV6KDVjwYy2UbVMPxw4Z6MusN0SrUkLszubv5PccLnyg/ts0/v+e/7ReOiCo3HJu/bAKftOx4dHoONXvbnilL23+b03fO6QGo5E0wy0j5LEimbb0JlbTdPwxWPIe/FLb90Nrh/i69c/0+ARaTTEZ9+yc6OHUBfevo02d6o71YcPml3D0dSW3adsuxXf9pj/j2Vu/+LhjR5CzXjH3uOzscVYRWduNU3DF47ZZYuvjz413+sz1o5nLPP3zxyEs4+ai48eMvt13/f+/UePpni4fO343Rs9hBFhvBeFfeKw7S+a2mWUeXNvD7pT5NhCB7eapmQ0PHfePI69LscL+87qwJfeutsb2gJNaR0fMhMA+MThcxo9BM0IcMHxu+OOc49o9DA0mpqgg1tNU/D/XtMOsrp9abJJZ9T/+MzBePhrR2/3507db/Rm+X770R13vRjLfHIMBXzj1QptvMEYw9yJmW1+/3Dbb2s09aRmwW1vby8++MEPIpvNoq2tDWeeeSby+fzrvv/ss8/GbrvthmQyiZkzZ+Lzn/88BgYGajVETZPw108fhLOOGipJMDjDJe/aA+e/fV6k72s2GGOv28by/fvPwMvfeTvOfc1D4QOjyBbrtewycewuSw6HpN2cE7Ad4jWrJqmxdGyazThuj0mY2OJstWsXALQ4Js4+esuyMY2mGalZcPvBD34Qzz77LG6//XbcdNNNuO+++/DJT35yq+9fu3Yt1q5diyuuuALPPPMMrr76aixatAhnnnlmrYaoqTPXb6XieP/ZHVt8/cMHzcanjmjuQp6MY+JHp8ZV1wt36ogyzW/ZrQumwfH5o3fBtCp3hPGu9dOMLm46+9Do3994x/wGjmTkefLit+LRrx+Dv3zqoEYPpWH86kP74sHzj44m4SfuNQUHzom/k9+2x2QsuejYRg1Po9khauKW8Pzzz2PRokV45JFHsN9+tIz5s5/9DMcffzyuuOIKTJ26eVXim970Jvz973+P/r/zzjvjO9/5Dj70oQ/B932YpjZ2GO0smNG22WtjISv07jdPx9vfNAV3L92IQ3bphOuHeHH9IA7aOe74pOPZscH5x88bdz631X6ww+li1oy0Jsn+aUVPocEjaRyMMRiMHEHeslsXdp3UAiGAXb9+KwDgPftM2y5PYI2mGajJHfvggw+ira0tCmwB4JhjjgHnHA899NA2b2dgYADZbFYHtpqmJ2EZePueU5BNWOjMODh4bueQDO3HZTvHo+dNbNQQNSPAvMnZRg+hISy58Fjc+oXDsPuUsXn8C2bo7nOMMewxtRWWwWGbcWgwUbca14xCahI1rl+/HhMnDn2Im6aJjo4OrF+/fpu20d3djUsuueR1pQwAUKlUUKlUov/ncrntH7CmYYyX1rqnHzwbB+w0YbsKOJoRnYEG5k/J4rl1Y/d7Zs9prUP+39XiIGEZY7pLl8EZ3rn3VNz45NpGD6VpuOr0/bC8p7jFFbexwJeP2w03P7VuTP8uj2e2K3N73nnngTH2un+WLl067EHlcjmccMIJmD9/Pr7xjW+87nsvu+wytLa2Rn9mzBi9xTrjgdkTxqcZOmMM86dmh2RERiPT2pI4creuRg+joVx9xv6NHkJN2X1KFn/+5IG44XOH4JGvHaP9P8cpR+8+CWceuv1euKOFzx05F7d84bBGD0NTI7Yrc/ulL30JH/3oR1/3PXPmzMHkyZOxcePGIa/7vo/e3l5Mnjz5dT8/ODiIt73tbWhpacE///lPWNbrt8Q7//zzce6550b/z+VyOsBtYm774uE46ReL8bycLetM4OiCMYbfnXEADv3uXVjdV2r0cBrCeFimPXCMaWu3Bf1dNL6ZNk5aoo8Xtiu47erqQlfXG2dtDjroIPT39+Oxxx7DvvvuCwC46667EIYhFi5cuNXP5XI5HHfccXAcBzfeeCMSiTd+iDiOA8dxtv0gNA3FMQ3sMjETBbfjRZYw1vj3Fw/H/Itu2+rPx0u7Wo1GM7r5v48dgPte3ITTFs5s9FA0I0hN1kh33313vO1tb8MnPvEJPPzww3jggQdw1lln4f3vf3/klLBmzRrMmzcPDz/8MAAKbN/61reiUCjgqquuQi6Xw/r167F+/XoEQVCLYWoaxAVjpH3neOb1/H0B4CMHza7PQDSaEWL+GC2W07w+h+/aha+fOF87QowxamZDcO211+Kss87C0UcfDc453vve9+KnP/1p9HPP8/DCCy+gWCwCAJYsWRI5KcydO3fItpYtW4bZs2fXaqiaOtOsTRk0I8dYv8aTsg425Cpv/EbNqOGMQ3aCHwoctksn3vnzBxo9HI1GMwxqFtx2dHTgj3/841Z/Pnv2bIiqNem3vOUtQ/6vGdu8/U2Tcesz6/Hxw8ZuwcJ44bSFM/HHh1bidx/dH7+695UxaxdVzb/POQKn/ea/eHatrrQeK9gmx+eOnPvGb9RoNE2PNpDVNIQfv38BPr4mN2ZtZsYD//nKkVg3UMYBO3Xg0nfvCQA4cpz4+LamLHz6iJ1x9p8eb/RQNBqNRvMadHCraQiOaWDfWdo4fTQzoyOFGR3j09pNo9FoNM2LVlBrNBrNDjB/6tiXX2g0Gs1oRGduNRqNZgfYuSuDv3/mIHRlxnbxnEaj0Yw2dHCr0Wg0O8i+s/5/e/cfE3X9xwH8dXB8jiO6Owi5AwXFoTBRKFGvs6x9v9wiY/1aW8yx5qpVGG66nGY/6T+YtbZyxtpa8p839RvWElmMX6ZDTALhhF1aFK4JlAZ3FCk/nt8/iM/4CDo18ORzz8d2G3fv1+7zunsen7243b2JDXYLRER0FX4sgYiI6Bq4/y3R3MPhloiIiIh0g8MtERHRNRgMwe6AiG4Wh1siIqJriL1LCXYLRHSTONwSERFdw4IYc7BbIKKbxOGWiIiIiHSDwy0RERER6QaHWyIiokn+t2ntpGv8RhnRXMPhloiIaJLshTHBboGI/gUOt0RERESkGxxuiYiIrhJtGv/v9P9Njw9yJ0R0s4zBboCIiOhOc3THf+Rc36CsXsSPKBDNNRxuiYiIrhJ7lyJrUmKD3QYR3QJ+LIGIiIiIdIPDLRERERHpBodbIiIiItINDrdEREREpBu6+0IZABER8fv9Qe6EiIiIiKYzMadNzG0zSXfD7cWLF0VEJCkpKcidEBEREdH1BAIBsVqtM3qfuhtuY2PHt27p7u6e8SeL7hx+v1+SkpLk/PnzYrFYgt0OzRLmHBqYc2hgzqHhRnMGIIFAQBITE2e8B90Nt2Fh4x8jtlqt/OUJARaLhTmHAOYcGphzaGDOoeFGcp6tNyH5hTIiIiIi0g0Ot0RERESkG7obbk0mkxQXF4vJZAp2KzSLmHNoYM6hgTmHBuYcGu6EnA2YjT0YiIiIiIiCQHfv3BIRERFR6OJwS0RERES6weGWiIiIiHSDwy0RERER6Ybuhts9e/bIokWLJDIyUpxOp5w8eTLYLdE/jh49Ko8//rgkJiaKwWCQQ4cOadYByLvvvisJCQliNpvF7XbL2bNnNTWXLl2SgoICsVgsYrPZ5MUXX5TBwUFNTVtbm6xbt04iIyMlKSlJdu3aNaWXAwcOSHp6ukRGRsqKFSuksrJyxh9vKCopKZHVq1fL3XffLfHx8fLUU0+Jz+fT1Pz9999SVFQk99xzj0RHR8szzzwjvb29mpru7m7Jy8uTqKgoiY+Pl+3bt8vIyIimpr6+XlauXCkmk0lSU1OlvLx8Sj88H8yesrIyyczMVDdqd7lccuTIEXWdOetPaWmpGAwG2bp1q3obc9aH9957TwwGg+aSnp6urs+5nKEjHo8HiqLg888/x5kzZ/DSSy/BZrOht7c32K0RgMrKSrz11lv44osvICKoqKjQrJeWlsJqteLQoUM4ffo0nnjiCaSkpGBoaEitefTRR5GVlYUTJ07g22+/RWpqKjZs2KCuDwwMwG63o6CgAF6vF/v27YPZbMann36q1hw/fhzh4eHYtWsXOjo68PbbbyMiIgLt7e2z/hzoXW5uLvbu3Quv14vW1lY89thjSE5OxuDgoFpTWFiIpKQk1NTU4NSpU7j//vuxdu1adX1kZATLly+H2+1GS0sLKisrERcXhzfeeEOt+emnnxAVFYXXXnsNHR0d2L17N8LDw1FVVaXW8Hwwu7766iscPnwYP/zwA3w+H958801ERETA6/UCYM56c/LkSSxatAiZmZnYsmWLejtz1ofi4mJkZGTgwoUL6uW3335T1+dazroabtesWYOioiL1+ujoKBITE1FSUhLErmg6Vw+3Y2NjcDgceP/999Xb+vv7YTKZsG/fPgBAR0cHRATfffedWnPkyBEYDAb8+uuvAIBPPvkEMTExuHz5slrz+uuvIy0tTb3+7LPPIi8vT9OP0+nEK6+8MqOPkYC+vj6ICBoaGgCMZxoREYEDBw6oNZ2dnRARNDY2Ahj/IygsLAw9PT1qTVlZGSwWi5rrjh07kJGRoTlWfn4+cnNz1es8H9x+MTEx+Oyzz5izzgQCASxZsgTV1dV4+OGH1eGWOetHcXExsrKypl2biznr5mMJV65ckebmZnG73eptYWFh4na7pbGxMYid0Y3o6uqSnp4eTX5Wq1WcTqeaX2Njo9hsNlm1apVa43a7JSwsTJqamtSahx56SBRFUWtyc3PF5/PJH3/8odZMPs5EDV8nM29gYEBERGJjY0VEpLm5WYaHhzXPf3p6uiQnJ2tyXrFihdjtdrUmNzdX/H6/nDlzRq25XoY8H9xeo6Oj4vF45M8//xSXy8WcdaaoqEjy8vKmZMGc9eXs2bOSmJgoixcvloKCAunu7haRuZmzbobb33//XUZHRzVPrIiI3W6Xnp6eIHVFN2oio+vl19PTI/Hx8Zp1o9EosbGxmprp7mPyMa5Vw9fJzBobG5OtW7fKAw88IMuXLxeR8edeURSx2Wya2qtzvtUM/X6/DA0N8Xxwm7S3t0t0dLSYTCYpLCyUiooKWbZsGXPWEY/HI99//72UlJRMWWPO+uF0OqW8vFyqqqqkrKxMurq6ZN26dRIIBOZkzsabqiYiukFFRUXi9Xrl2LFjwW6FZklaWpq0trbKwMCAHDx4UDZu3CgNDQ3BbotmyPnz52XLli1SXV0tkZGRwW6HZtH69evVnzMzM8XpdMrChQtl//79Yjabg9jZrdHNO7dxcXESHh4+5dt7vb294nA4gtQV3aiJjK6Xn8PhkL6+Ps36yMiIXLp0SVMz3X1MPsa1avg6mTmbN2+Wr7/+Wurq6mTBggXq7Q6HQ65cuSL9/f2a+qtzvtUMLRaLmM1mng9uE0VRJDU1VbKzs6WkpESysrLko48+Ys460dzcLH19fbJy5UoxGo1iNBqloaFBPv74YzEajWK325mzTtlsNlm6dKmcO3duTv4+62a4VRRFsrOzpaamRr1tbGxMampqxOVyBbEzuhEpKSnicDg0+fn9fmlqalLzc7lc0t/fL83NzWpNbW2tjI2NidPpVGuOHj0qw8PDak11dbWkpaVJTEyMWjP5OBM1fJ38ewBk8+bNUlFRIbW1tZKSkqJZz87OloiICM3z7/P5pLu7W5Nze3u75g+Z6upqsVgssmzZMrXmehnyfBAcY2NjcvnyZeasEzk5OdLe3i6tra3qZdWqVVJQUKD+zJz1aXBwUH788UdJSEiYm7/PN/X1szucx+OByWRCeXk5Ojo68PLLL8Nms2m+vUfBEwgE0NLSgpaWFogIPvzwQ7S0tOCXX34BML4VmM1mw5dffom2tjY8+eST024Fdt9996GpqQnHjh3DkiVLNFuB9ff3w26347nnnoPX64XH40FUVNSUrcCMRiM++OADdHZ2ori4mFuBzZBNmzbBarWivr5es6XMX3/9pdYUFhYiOTkZtbW1OHXqFFwuF1wul7o+saXMI488gtbWVlRVVWHevHnTbimzfft2dHZ2Ys+ePdNuKcPzwezZuXMnGhoa0NXVhba2NuzcuRMGgwHffPMNAOasV5N3SwCYs15s27YN9fX16OrqwvHjx+F2uxEXF4e+vj4Acy9nXQ23ALB7924kJydDURSsWbMGJ06cCHZL9I+6ujqIyJTLxo0bAYxvB/bOO+/AbrfDZDIhJycHPp9Pcx8XL17Ehg0bEB0dDYvFgueffx6BQEBTc/r0aTz44IMwmUyYP38+SktLp/Syf/9+LF26FIqiICMjA4cPH561xx1KpstXRLB37161ZmhoCK+++ipiYmIQFRWFp59+GhcuXNDcz88//4z169fDbDYjLi4O27Ztw/DwsKamrq4O9957LxRFweLFizXHmMDzwex54YUXsHDhQiiKgnnz5iEnJ0cdbAHmrFdXD7fMWR/y8/ORkJAARVEwf/585Ofn49y5c+r6XMvZAAA3914vEREREdGdSTefuSUiIiIi4nBLRERERLrB4ZaIiIiIdIPDLRERERHpBodbIiIiItINDrdEREREpBscbomIiIhINzjcEhEREZFucLglIiIiIt3gcEtEREREusHhloiIiIh0g8MtEREREenG/wHrG68RrMe3jAAAAABJRU5ErkJggg==\n" }, "metadata": {} } ], "source": [ "fig = plt.figure(figsize=(8, 5))\n", "for batch in train_dataset.take(1):\n", " spectrogram = batch[0][0].numpy()\n", " spectrogram = np.array([np.trim_zeros(x) for x in np.transpose(spectrogram)])\n", " label = batch[1][0]\n", " # Spectrogram\n", " label = tf.strings.reduce_join(num_to_char(label)).numpy().decode(\"utf-8\")\n", " ax = plt.subplot(2, 1, 1)\n", " ax.imshow(spectrogram, vmax=1)\n", " ax.set_title(label)\n", " ax.axis(\"off\")\n", " # Wav\n", " #file = tf.io.read_file(wavs_path + list(df_train[\"file_name\"])[0] + \".wav\")\n", " file = tf.io.read_file(list(df_train[\"Audio_Path\"])[0])\n", " audio, _ = tf.audio.decode_wav(file)\n", " audio = audio.numpy()\n", " ax = plt.subplot(2, 1, 2)\n", " plt.plot(audio)\n", " ax.set_title(\"Signal Wave\")\n", " ax.set_xlim(0, len(audio))\n", " display.display(display.Audio(np.transpose(audio), rate=16000))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "Pn9ingJaRkYS" }, "source": [ "## Model\n", "\n", "We first define the CTC Loss function." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "7lXw7JNNRkYT" }, "outputs": [], "source": [ "\n", "def CTCLoss(y_true, y_pred):\n", " # Compute the training-time loss value\n", " batch_len = tf.cast(tf.shape(y_true)[0], dtype=\"int64\")\n", " input_length = tf.cast(tf.shape(y_pred)[1], dtype=\"int64\")\n", " label_length = tf.cast(tf.shape(y_true)[1], dtype=\"int64\")\n", "\n", " input_length = input_length * tf.ones(shape=(batch_len, 1), dtype=\"int64\")\n", " label_length = label_length * tf.ones(shape=(batch_len, 1), dtype=\"int64\")\n", "\n", " loss = keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length)\n", " return loss\n" ] }, { "cell_type": "markdown", "metadata": { "id": "JSYnFIIkRkYT" }, "source": [ "We now define our model. We will define a model similar to\n", "[DeepSpeech2](https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition/deepspeech2.html)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "-D9m8LV2RkYT", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "40e00241-9de9-4daa-f6ef-4115e192b2cb" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Model: \"zmasr\"\n", "______________________________________________________________________________________________________________\n", " Layer (type) Output Shape Param # \n", "==============================================================================================================\n", " input (InputLayer) [(None, None, 193)] 0 \n", " \n", " expand_dim (Reshape) (None, None, 193, 1) 0 \n", " \n", " conv_1 (Conv2D) (None, None, 97, 32) 14432 \n", " \n", " conv_1_bn (BatchNormalization) (None, None, 97, 32) 128 \n", " \n", " conv_1_relu (ReLU) (None, None, 97, 32) 0 \n", " \n", " conv_2 (Conv2D) (None, None, 49, 32) 236544 \n", " \n", " conv_2_bn (BatchNormalization) (None, None, 49, 32) 128 \n", " \n", " conv_2_relu (ReLU) (None, None, 49, 32) 0 \n", " \n", " reshape (Reshape) (None, None, 1568) 0 \n", " \n", " bidirectional_1 (Bidirectional) (None, None, 1024) 6395904 \n", " \n", " dropout (Dropout) (None, None, 1024) 0 \n", " \n", " bidirectional_2 (Bidirectional) (None, None, 1024) 4724736 \n", " \n", " dropout_1 (Dropout) (None, None, 1024) 0 \n", " \n", " bidirectional_3 (Bidirectional) (None, None, 1024) 4724736 \n", " \n", " dropout_2 (Dropout) (None, None, 1024) 0 \n", " \n", " bidirectional_4 (Bidirectional) (None, None, 1024) 4724736 \n", " \n", " dropout_3 (Dropout) (None, None, 1024) 0 \n", " \n", " bidirectional_5 (Bidirectional) (None, None, 1024) 4724736 \n", " \n", " dense_1 (Dense) (None, None, 1024) 1049600 \n", " \n", " dense_1_relu (ReLU) (None, None, 1024) 0 \n", " \n", " dropout_4 (Dropout) (None, None, 1024) 0 \n", " \n", " dense (Dense) (None, None, 13) 13325 \n", " \n", "==============================================================================================================\n", "Total params: 26609005 (101.51 MB)\n", "Trainable params: 26608877 (101.50 MB)\n", "Non-trainable params: 128 (512.00 Byte)\n", "______________________________________________________________________________________________________________\n" ] } ], "source": [ "\n", "def build_model(input_dim, output_dim, rnn_layers=5, rnn_units=128):\n", " \"\"\"Model.\"\"\"\n", " # Model's input\n", " input_spectrogram = layers.Input((None, input_dim), name=\"input\")\n", " # Expand the dimension to use 2D CNN.\n", " x = layers.Reshape((-1, input_dim, 1), name=\"expand_dim\")(input_spectrogram)\n", " # Convolution layer 1\n", " x = layers.Conv2D(\n", " filters=32,\n", " kernel_size=[11, 41],\n", " strides=[2, 2],\n", " padding=\"same\",\n", " use_bias=False,\n", " name=\"conv_1\",\n", " )(x)\n", " x = layers.BatchNormalization(name=\"conv_1_bn\")(x)\n", " x = layers.ReLU(name=\"conv_1_relu\")(x)\n", " # Convolution layer 2\n", " x = layers.Conv2D(\n", " filters=32,\n", " kernel_size=[11, 21],\n", " strides=[1, 2],\n", " padding=\"same\",\n", " use_bias=False,\n", " name=\"conv_2\",\n", " )(x)\n", " x = layers.BatchNormalization(name=\"conv_2_bn\")(x)\n", " x = layers.ReLU(name=\"conv_2_relu\")(x)\n", " # Reshape the resulted volume to feed the RNNs layers\n", " x = layers.Reshape((-1, x.shape[-2] * x.shape[-1]))(x)\n", " # RNN layers\n", " for i in range(1, rnn_layers + 1):\n", " recurrent = layers.GRU(\n", " units=rnn_units,\n", " activation=\"tanh\",\n", " recurrent_activation=\"sigmoid\",\n", " use_bias=True,\n", " return_sequences=True,\n", " reset_after=True,\n", " name=f\"gru_{i}\",\n", " )\n", " x = layers.Bidirectional(\n", " recurrent, name=f\"bidirectional_{i}\", merge_mode=\"concat\"\n", " )(x)\n", " if i < rnn_layers:\n", " x = layers.Dropout(rate=0.5)(x)\n", " # Dense layer\n", " x = layers.Dense(units=rnn_units * 2, name=\"dense_1\")(x)\n", " x = layers.ReLU(name=\"dense_1_relu\")(x)\n", " x = layers.Dropout(rate=0.5)(x)\n", " # Classification layer\n", " output = layers.Dense(units=output_dim + 1, activation=\"softmax\")(x)\n", " # Model\n", " model = keras.Model(input_spectrogram, output, name=\"zmasr\")\n", " # Optimizer\n", " opt = keras.optimizers.Adam(learning_rate=1e-4)\n", " # Compile the model and return\n", " model.compile(optimizer=opt, loss=CTCLoss)\n", " return model\n", "\n", "\n", "# Get the model\n", "model = build_model(\n", " input_dim=fft_length // 2 + 1,\n", " output_dim=char_to_num.vocabulary_size(),\n", " rnn_units=512,\n", ")\n", "model.summary(line_length=110)" ] }, { "cell_type": "code", "source": [], "metadata": { "id": "XgSVEpffqySU" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "t_oyQ58ERkYU" }, "source": [ "## Training and Evaluating" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "R0SD621WRkYU" }, "outputs": [], "source": [ "# A utility function to decode the output of the network\n", "def decode_batch_predictions(pred):\n", " input_len = np.ones(pred.shape[0]) * pred.shape[1]\n", " # Use greedy search. For complex tasks, you can use beam search\n", " results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0]\n", " # Iterate over the results and get back the text\n", " output_text = []\n", " for result in results:\n", " result = tf.strings.reduce_join(num_to_char(result)).numpy().decode(\"utf-8\")\n", " output_text.append(result)\n", " return output_text\n", "\n", "\n", "# A callback class to output a few transcriptions during training\n", "class CallbackEval(keras.callbacks.Callback):\n", " \"\"\"Displays a batch of outputs after every epoch.\"\"\"\n", "\n", " def __init__(self, dataset):\n", " super().__init__()\n", " self.dataset = dataset\n", "\n", " def on_epoch_end(self, epoch: int, logs=None):\n", " predictions = []\n", " targets = []\n", " for batch in self.dataset:\n", " X, y = batch\n", " batch_predictions = model.predict(X)\n", " batch_predictions = decode_batch_predictions(batch_predictions)\n", " predictions.extend(batch_predictions)\n", " for label in y:\n", " label = (\n", " tf.strings.reduce_join(num_to_char(label)).numpy().decode(\"utf-8\")\n", " )\n", " targets.append(label)\n", " wer_score = wer(targets, predictions)\n", " print(\"-\" * 100)\n", " print(f\"Word Error Rate: {wer_score:.4f}\")\n", " print(\"-\" * 100)\n", " for i in np.random.randint(0, len(predictions), 2):\n", " print(f\"Target : {targets[i]}\")\n", " print(f\"Prediction: {predictions[i]}\")\n", " print(\"-\" * 100)\n" ] }, { "cell_type": "markdown", "metadata": { "id": "NavxqQegRkYV" }, "source": [ "Let's start the training process." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "vugxVG2-RkYW", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "ffbb0fc8-d6a4-4901-e542-450e2de51d1a" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Epoch 1/200\n", "1/1 [==============================] - 4s 4s/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 54s 11s/step - loss: 280.3683 - val_loss: 190.5100\n", "Epoch 2/200\n", "1/1 [==============================] - 0s 75ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 839ms/step - loss: 86.6413 - val_loss: 74.3344\n", "Epoch 3/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 667ms/step - loss: 83.9221 - val_loss: 70.4005\n", "Epoch 4/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 680ms/step - loss: 74.4365 - val_loss: 71.7059\n", "Epoch 5/200\n", "1/1 [==============================] - 0s 66ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 669ms/step - loss: 65.9256 - val_loss: 74.2275\n", "Epoch 6/200\n", "1/1 [==============================] - 0s 65ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 665ms/step - loss: 63.7472 - val_loss: 64.9777\n", "Epoch 7/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 666ms/step - loss: 59.0318 - val_loss: 72.0029\n", "Epoch 8/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 668ms/step - loss: 61.5732 - val_loss: 68.8926\n", "Epoch 9/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 688ms/step - loss: 57.8475 - val_loss: 61.7637\n", "Epoch 10/200\n", "1/1 [==============================] - 0s 81ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 56.3472 - val_loss: 59.8899\n", "Epoch 11/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 811ms/step - loss: 56.9523 - val_loss: 60.8580\n", "Epoch 12/200\n", "1/1 [==============================] - 0s 66ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 687ms/step - loss: 55.3890 - val_loss: 65.2349\n", "Epoch 13/200\n", "1/1 [==============================] - 0s 66ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 672ms/step - loss: 55.4309 - val_loss: 66.3740\n", "Epoch 14/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 685ms/step - loss: 54.9646 - val_loss: 62.1246\n", "Epoch 15/200\n", "1/1 [==============================] - 0s 66ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 670ms/step - loss: 53.7092 - val_loss: 59.1405\n", "Epoch 16/200\n", "1/1 [==============================] - 0s 66ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 672ms/step - loss: 54.0880 - val_loss: 58.7334\n", "Epoch 17/200\n", "1/1 [==============================] - 0s 66ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 690ms/step - loss: 53.4504 - val_loss: 60.5394\n", "Epoch 18/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 695ms/step - loss: 52.8594 - val_loss: 62.2759\n", "Epoch 19/200\n", "1/1 [==============================] - 0s 94ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 946ms/step - loss: 53.1221 - val_loss: 60.4830\n", "Epoch 20/200\n", "1/1 [==============================] - 0s 92ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 52.5530 - val_loss: 57.9976\n", "Epoch 21/200\n", "1/1 [==============================] - 0s 111ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 52.3053 - val_loss: 57.3616\n", "Epoch 22/200\n", "1/1 [==============================] - 0s 79ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1000ms/step - loss: 51.9913 - val_loss: 58.6424\n", "Epoch 23/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 841ms/step - loss: 51.9597 - val_loss: 59.6710\n", "Epoch 24/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 681ms/step - loss: 51.7355 - val_loss: 58.4488\n", "Epoch 25/200\n", "1/1 [==============================] - 0s 66ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 852ms/step - loss: 51.3883 - val_loss: 57.2756\n", "Epoch 26/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 708ms/step - loss: 51.4069 - val_loss: 57.7176\n", "Epoch 27/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 707ms/step - loss: 51.1882 - val_loss: 58.7833\n", "Epoch 28/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 705ms/step - loss: 50.9066 - val_loss: 57.7158\n", "Epoch 29/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 703ms/step - loss: 50.5527 - val_loss: 56.7773\n", "Epoch 30/200\n", "1/1 [==============================] - 0s 75ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 50.3671 - val_loss: 58.6454\n", "Epoch 31/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 895ms/step - loss: 50.2194 - val_loss: 59.6487\n", "Epoch 32/200\n", "1/1 [==============================] - 0s 66ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 686ms/step - loss: 49.7212 - val_loss: 57.4765\n", "Epoch 33/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 691ms/step - loss: 49.3390 - val_loss: 58.0322\n", "Epoch 34/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 696ms/step - loss: 48.7770 - val_loss: 60.4925\n", "Epoch 35/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 710ms/step - loss: 47.9643 - val_loss: 59.0265\n", "Epoch 36/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 705ms/step - loss: 47.3073 - val_loss: 59.1847\n", "Epoch 37/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 717ms/step - loss: 46.2350 - val_loss: 62.4832\n", "Epoch 38/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 705ms/step - loss: 44.9732 - val_loss: 60.8203\n", "Epoch 39/200\n", "1/1 [==============================] - 0s 76ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 975ms/step - loss: 43.6342 - val_loss: 62.6938\n", "Epoch 40/200\n", "1/1 [==============================] - 0s 82ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 42.5279 - val_loss: 67.4025\n", "Epoch 41/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 692ms/step - loss: 41.5513 - val_loss: 67.6657\n", "Epoch 42/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 697ms/step - loss: 40.8318 - val_loss: 73.1254\n", "Epoch 43/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 703ms/step - loss: 40.6209 - val_loss: 78.6465\n", "Epoch 44/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 713ms/step - loss: 39.9639 - val_loss: 73.6232\n", "Epoch 45/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 718ms/step - loss: 38.8675 - val_loss: 82.8925\n", "Epoch 46/200\n", "1/1 [==============================] - 0s 66ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 702ms/step - loss: 38.5207 - val_loss: 76.4856\n", "Epoch 47/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 697ms/step - loss: 37.6787 - val_loss: 69.6204\n", "Epoch 48/200\n", "1/1 [==============================] - 0s 80ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 851ms/step - loss: 37.1372 - val_loss: 72.7817\n", "Epoch 49/200\n", "1/1 [==============================] - 0s 76ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 973ms/step - loss: 36.5018 - val_loss: 70.9699\n", "Epoch 50/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 874ms/step - loss: 35.9560 - val_loss: 69.9423\n", "Epoch 51/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 715ms/step - loss: 35.1836 - val_loss: 72.0382\n", "Epoch 52/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 850ms/step - loss: 34.3618 - val_loss: 79.1895\n", "Epoch 53/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 716ms/step - loss: 33.1099 - val_loss: 74.7553\n", "Epoch 54/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 709ms/step - loss: 31.4292 - val_loss: 71.6617\n", "Epoch 55/200\n", "1/1 [==============================] - 0s 80ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 723ms/step - loss: 29.0624 - val_loss: 79.6929\n", "Epoch 56/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: y\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 785ms/step - loss: 27.4510 - val_loss: 81.9462\n", "Epoch 57/200\n", "1/1 [==============================] - 0s 83ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 905ms/step - loss: 25.4366 - val_loss: 76.9334\n", "Epoch 58/200\n", "1/1 [==============================] - 0s 80ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: eeyeye\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 907ms/step - loss: 23.9502 - val_loss: 64.2882\n", "Epoch 59/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: \n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yeyeye\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 706ms/step - loss: 22.3700 - val_loss: 47.6921\n", "Epoch 60/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: eyeyesyesyeyeyese\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: eyeyesyesyeyeyese\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 20.3380 - val_loss: 46.8438\n", "Epoch 61/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yesyesyesyeyeyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: esyesyesyesyeses\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 836ms/step - loss: 18.8931 - val_loss: 43.5477\n", "Epoch 62/200\n", "1/1 [==============================] - 0s 71ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eeees\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: esyesyesyesyesyesyese\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 737ms/step - loss: 17.7420 - val_loss: 50.6988\n", "Epoch 63/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: eesesyes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyesyesyesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 712ms/step - loss: 16.7118 - val_loss: 54.4376\n", "Epoch 64/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eeeees\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyesyesyesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 713ms/step - loss: 16.0422 - val_loss: 55.7261\n", "Epoch 65/200\n", "1/1 [==============================] - 0s 82ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyesyesyesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyesyesyesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 14.8190 - val_loss: 63.4300\n", "Epoch 66/200\n", "1/1 [==============================] - 0s 79ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: eesesyesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: eesesyesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 13.8171 - val_loss: 69.2596\n", "Epoch 67/200\n", "1/1 [==============================] - 0s 72ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esesesesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yeseseseseses\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 728ms/step - loss: 12.8497 - val_loss: 79.3719\n", "Epoch 68/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: esyesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: eeesesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 718ms/step - loss: 11.8487 - val_loss: 84.4914\n", "Epoch 69/200\n", "1/1 [==============================] - 0s 73ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eeeees\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eeeees\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 707ms/step - loss: 10.8563 - val_loss: 87.1034\n", "Epoch 70/200\n", "1/1 [==============================] - 0s 79ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: eseseso yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yesyesyeseseses\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 719ms/step - loss: 9.6162 - val_loss: 74.7305\n", "Epoch 71/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: eseseso yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eeeees\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 729ms/step - loss: 8.9566 - val_loss: 67.3843\n", "Epoch 72/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: esesoyesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: eesesoyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 710ms/step - loss: 7.9415 - val_loss: 77.9798\n", "Epoch 73/200\n", "1/1 [==============================] - 0s 88ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: eesyesesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: eeseso yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 981ms/step - loss: 7.0656 - val_loss: 76.4265\n", "Epoch 74/200\n", "1/1 [==============================] - 0s 81ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9583\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyesyesyesonoyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: esyes oyeso yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 6.3355 - val_loss: 50.5775\n", "Epoch 75/200\n", "1/1 [==============================] - 0s 73ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9583\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yesyesyesyesyesyeso\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: eyesyesyesyesyesyese\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 875ms/step - loss: 5.7279 - val_loss: 48.1116\n", "Epoch 76/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: esyesyeseees\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: eyesyesyesyesyesyee\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 870ms/step - loss: 5.3120 - val_loss: 75.6176\n", "Epoch 77/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: eyesyesyesonyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: eyesyesyesyesyesyese\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 868ms/step - loss: 4.8044 - val_loss: 66.4928\n", "Epoch 78/200\n", "1/1 [==============================] - 0s 73ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: eyesyesyesyesyesyesye\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yesyesyesyesyesyeso n\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 746ms/step - loss: 4.2239 - val_loss: 42.4932\n", "Epoch 79/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: eyesyesyesonoyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: esyesyesno yesoyeses\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 720ms/step - loss: 4.1175 - val_loss: 52.5719\n", "Epoch 80/200\n", "1/1 [==============================] - 0s 72ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: eyesyesyesonoyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: eyesesnoyesoyeses\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 747ms/step - loss: 4.1333 - val_loss: 67.0228\n", "Epoch 81/200\n", "1/1 [==============================] - 0s 72ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yesyesyesyesyeyeson\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: eyesyesyesyesyesyese\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 875ms/step - loss: 3.6794 - val_loss: 59.1241\n", "Epoch 82/200\n", "1/1 [==============================] - 0s 87ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9583\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yesyesyesyesyesyesno n\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yesyesyesyesyesyesno n\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 973ms/step - loss: 3.3159 - val_loss: 42.5774\n", "Epoch 83/200\n", "1/1 [==============================] - 0s 72ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: esyesyes no yesno yesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyeseyesesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 743ms/step - loss: 3.2797 - val_loss: 37.5323\n", "Epoch 84/200\n", "1/1 [==============================] - 0s 73ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: eyesyesyesyesyesyese\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: eyesyesyesyesyesyese\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 731ms/step - loss: 3.2228 - val_loss: 53.0730\n", "Epoch 85/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eeeeso\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eeeeso\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 724ms/step - loss: 3.1060 - val_loss: 62.3882\n", "Epoch 86/200\n", "1/1 [==============================] - 0s 74ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eeeesooy\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: eyesyesyesonoyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 744ms/step - loss: 3.0630 - val_loss: 59.2805\n", "Epoch 87/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 1.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: esyesyesno yesno yeses\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: esyesyesno yesno yeses\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 864ms/step - loss: 2.9543 - val_loss: 51.2364\n", "Epoch 88/200\n", "1/1 [==============================] - 0s 74ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yesyesyesyesyesyesno n\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yesyesyesyesyesyesno n\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 733ms/step - loss: 2.6354 - val_loss: 46.2535\n", "Epoch 89/200\n", "1/1 [==============================] - 0s 94ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yesyesyesyesyesyesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yesyesyesyesyesyesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 2.8762 - val_loss: 47.3027\n", "Epoch 90/200\n", "1/1 [==============================] - 0s 72ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: eyesyesyesyesyesyesye\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eeeeesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 755ms/step - loss: 2.6828 - val_loss: 51.0762\n", "Epoch 91/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: eeyesyesnoyesno\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: eeyesyesnoyesno\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 726ms/step - loss: 2.4903 - val_loss: 47.2116\n", "Epoch 92/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8958\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yesyesyesyesyesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yesno yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 719ms/step - loss: 2.7518 - val_loss: 35.7837\n", "Epoch 93/200\n", "1/1 [==============================] - 0s 73ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8125\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yesyesno no yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: esesyes yesno yesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 729ms/step - loss: 2.4681 - val_loss: 27.8956\n", "Epoch 94/200\n", "1/1 [==============================] - 0s 71ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8958\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: esesyes yesno yesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: esesyes yesno yesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 728ms/step - loss: 2.3752 - val_loss: 35.2397\n", "Epoch 95/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyeyesesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: esyesyes no yesno yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 714ms/step - loss: 2.6356 - val_loss: 42.0822\n", "Epoch 96/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: eesyesyesno yesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: eesyesyesno yesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 728ms/step - loss: 2.3680 - val_loss: 46.1826\n", "Epoch 97/200\n", "1/1 [==============================] - 0s 78ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: esyesyes no yesno yesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: eyesyes yesyesyesyesye\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 996ms/step - loss: 2.2399 - val_loss: 45.9417\n", "Epoch 98/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8958\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yesyesyesyesyesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yesno yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 783ms/step - loss: 2.3434 - val_loss: 38.5010\n", "Epoch 99/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8958\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: esyesyes yesyesyesyesye\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: esesyes yesno yesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 729ms/step - loss: 2.3613 - val_loss: 34.7916\n", "Epoch 100/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8958\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: esyesyes yesyesyesyesye\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yesyesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 727ms/step - loss: 2.2511 - val_loss: 35.8907\n", "Epoch 101/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9583\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: es yesyesyesyesyesno n\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyeyesesno no yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 868ms/step - loss: 2.2026 - val_loss: 43.3531\n", "Epoch 102/200\n", "1/1 [==============================] - 0s 71ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: esyesyes yesyesyesyesye\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eeeyeesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 879ms/step - loss: 2.1807 - val_loss: 49.7006\n", "Epoch 103/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9583\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: esyesyes yesyesyesyesye\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: esyesyesyesyesyesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 883ms/step - loss: 2.1129 - val_loss: 48.1502\n", "Epoch 104/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9375\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: es yesyesyesyesyesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: esyesyes yesyesyesyesye\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 872ms/step - loss: 2.0269 - val_loss: 44.7339\n", "Epoch 105/200\n", "1/1 [==============================] - 0s 76ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8750\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: es yesyesyesyesyesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: es yesyesyesyesyesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 910ms/step - loss: 2.1771 - val_loss: 37.7323\n", "Epoch 106/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8958\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyesyesyesno no yen\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yesyesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 950ms/step - loss: 2.0686 - val_loss: 35.8053\n", "Epoch 107/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.9167\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: esyesyes yesyesyesyesye\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yesno yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 865ms/step - loss: 2.2343 - val_loss: 30.6255\n", "Epoch 108/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8542\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: esesyes yesno yesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: esesyes yesno yesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 719ms/step - loss: 1.9240 - val_loss: 31.4071\n", "Epoch 109/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8542\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yesyesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 873ms/step - loss: 2.1481 - val_loss: 28.8162\n", "Epoch 110/200\n", "1/1 [==============================] - 0s 73ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8542\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yesyesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 864ms/step - loss: 1.9513 - val_loss: 34.7927\n", "Epoch 111/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8542\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yesyes yes yesyesyesye\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 869ms/step - loss: 2.2712 - val_loss: 32.4843\n", "Epoch 112/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8750\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyesyesyesno no yen\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yesyesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 861ms/step - loss: 2.0218 - val_loss: 32.4852\n", "Epoch 113/200\n", "1/1 [==============================] - 0s 79ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.7500\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yesyesyesyesyesno no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 858ms/step - loss: 2.3283 - val_loss: 23.5414\n", "Epoch 114/200\n", "1/1 [==============================] - 0s 78ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8125\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyesyesyesno no n\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: esyesyes yesno yesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 970ms/step - loss: 1.9481 - val_loss: 22.6650\n", "Epoch 115/200\n", "1/1 [==============================] - 0s 80ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.7292\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyesyesyesno no n\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 895ms/step - loss: 1.9019 - val_loss: 20.6532\n", "Epoch 116/200\n", "1/1 [==============================] - 0s 73ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.7083\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yes yesno no yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yesyes yes yesyes yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 871ms/step - loss: 1.7562 - val_loss: 20.2097\n", "Epoch 117/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.7500\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yesyesyesyesyesno no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yesyes yes yesyesyesye\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 717ms/step - loss: 1.8052 - val_loss: 22.2932\n", "Epoch 118/200\n", "1/1 [==============================] - 0s 73ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.6875\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yesyes yes yesyes yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 734ms/step - loss: 1.7678 - val_loss: 21.1680\n", "Epoch 119/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.6875\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyesyesyes no no yen\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yes yes no no yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 724ms/step - loss: 1.7065 - val_loss: 21.0673\n", "Epoch 120/200\n", "1/1 [==============================] - 0s 66ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.5417\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yesyes yes yesno yesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyesyesyes no no ye\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 929ms/step - loss: 1.8452 - val_loss: 18.9185\n", "Epoch 121/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.6458\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yesyesyesyesyesno no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yesyesyesyesyesno no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 869ms/step - loss: 1.7903 - val_loss: 20.1284\n", "Epoch 122/200\n", "1/1 [==============================] - 0s 81ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.7917\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yes yesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 981ms/step - loss: 1.6992 - val_loss: 23.4997\n", "Epoch 123/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.7500\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyesyesyesno no yen\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yesyes yes yesyesyesye\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 786ms/step - loss: 1.8053 - val_loss: 24.7002\n", "Epoch 124/200\n", "1/1 [==============================] - 0s 71ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8750\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yesyesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 875ms/step - loss: 1.7967 - val_loss: 29.6860\n", "Epoch 125/200\n", "1/1 [==============================] - 0s 72ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8750\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yesyesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 866ms/step - loss: 2.0938 - val_loss: 32.9771\n", "Epoch 126/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8750\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: esyesyes yesno yesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 875ms/step - loss: 1.8254 - val_loss: 33.4772\n", "Epoch 127/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.7083\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yesyes no no yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 742ms/step - loss: 2.3324 - val_loss: 23.4185\n", "Epoch 128/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4583\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yesyes yes yes no yesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 858ms/step - loss: 1.7535 - val_loss: 15.8728\n", "Epoch 129/200\n", "1/1 [==============================] - 0s 76ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4375\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yesyes yes yes no yesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 873ms/step - loss: 1.8281 - val_loss: 11.8264\n", "Epoch 130/200\n", "1/1 [==============================] - 0s 82ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.5208\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyesyesyes no no ye\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 1.7891 - val_loss: 18.2115\n", "Epoch 131/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.7083\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yes yesno no yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyesyesyesno no ye\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 866ms/step - loss: 1.6895 - val_loss: 23.2124\n", "Epoch 132/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.7708\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yesyes yes yesno yesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 877ms/step - loss: 1.5542 - val_loss: 23.8865\n", "Epoch 133/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.7083\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyesyesyesno no yen\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 728ms/step - loss: 1.5610 - val_loss: 24.2938\n", "Epoch 134/200\n", "1/1 [==============================] - 0s 71ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.5833\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yes yes yes yes yes yesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yes yes yes yes yes yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 870ms/step - loss: 1.5056 - val_loss: 19.9511\n", "Epoch 135/200\n", "1/1 [==============================] - 0s 74ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yesyesyes yesno no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 728ms/step - loss: 1.4277 - val_loss: 13.9049\n", "Epoch 136/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4167\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 874ms/step - loss: 1.3726 - val_loss: 12.5963\n", "Epoch 137/200\n", "1/1 [==============================] - 0s 79ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4167\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yesyes yes yes no yesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 1.4157 - val_loss: 12.9085\n", "Epoch 138/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4375\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyesyesyes no no yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 946ms/step - loss: 1.4176 - val_loss: 13.4406\n", "Epoch 139/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4583\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yesyesyesyesno no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: es yes yes yesno no yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 724ms/step - loss: 1.4159 - val_loss: 17.4657\n", "Epoch 140/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.5208\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yesyes yes yes no yesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 737ms/step - loss: 1.4305 - val_loss: 19.3620\n", "Epoch 141/200\n", "1/1 [==============================] - 0s 71ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4583\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: esyesyesyesyes no no yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yesyesyes yesno no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 730ms/step - loss: 1.4325 - val_loss: 16.0638\n", "Epoch 142/200\n", "1/1 [==============================] - 0s 71ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4375\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: esyesyesyesyes no no yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 874ms/step - loss: 1.3951 - val_loss: 13.6185\n", "Epoch 143/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: es yes yes yesno no yesn\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 867ms/step - loss: 1.3674 - val_loss: 15.0745\n", "Epoch 144/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4583\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: es yes yes yesno no yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yesyes yes yes no yesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 867ms/step - loss: 1.3724 - val_loss: 18.8238\n", "Epoch 145/200\n", "1/1 [==============================] - 0s 76ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.6042\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yesyesyesyesyesno no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 931ms/step - loss: 1.3297 - val_loss: 22.1614\n", "Epoch 146/200\n", "1/1 [==============================] - 0s 78ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.6458\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yes yes yes yesyes yesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: es yes yes yesno noyesn\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 1.2756 - val_loss: 20.8377\n", "Epoch 147/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4583\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: es yes yes yes no no yesn\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yesyesyes yesno no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 726ms/step - loss: 1.3017 - val_loss: 16.1885\n", "Epoch 148/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.6875\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yesyesyesyesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yes yesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 882ms/step - loss: 1.3151 - val_loss: 23.6632\n", "Epoch 149/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.7708\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yesyesnonoyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: es yesyesyesyesyesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 879ms/step - loss: 1.2588 - val_loss: 30.1208\n", "Epoch 150/200\n", "1/1 [==============================] - 0s 80ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.6458\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yesyesyesyesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yesyes yes yesyesyes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 1.2596 - val_loss: 22.3811\n", "Epoch 151/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4375\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyesyesyes no no yen\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 955ms/step - loss: 1.2185 - val_loss: 15.1495\n", "Epoch 152/200\n", "1/1 [==============================] - 0s 81ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.3750\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yesno no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yesno no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 1.1831 - val_loss: 13.7388\n", "Epoch 153/200\n", "1/1 [==============================] - 0s 80ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 1.1752 - val_loss: 17.9248\n", "Epoch 154/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.7292\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: es yesyesyesyesyesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 868ms/step - loss: 1.2295 - val_loss: 26.1474\n", "Epoch 155/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8125\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: esyes yesyesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: es yesyesyesyesyesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 869ms/step - loss: 1.1787 - val_loss: 35.4152\n", "Epoch 156/200\n", "1/1 [==============================] - 0s 72ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.8958\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: eyesyesyesyesno noyes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yesyes yesyesyesyesye\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 726ms/step - loss: 1.1374 - val_loss: 40.8815\n", "Epoch 157/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.7708\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: esyes yes yes no yesnon\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yesyes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 870ms/step - loss: 1.1870 - val_loss: 29.8804\n", "Epoch 158/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4792\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: es yes yes yesno noyesn\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 872ms/step - loss: 1.1428 - val_loss: 16.6342\n", "Epoch 159/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.3542\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 865ms/step - loss: 1.1403 - val_loss: 11.5896\n", "Epoch 160/200\n", "1/1 [==============================] - 0s 84ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.3750\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yesno no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 970ms/step - loss: 1.1483 - val_loss: 11.3536\n", "Epoch 161/200\n", "1/1 [==============================] - 0s 71ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4167\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yesyes yes yes no yesnon\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 928ms/step - loss: 1.1321 - val_loss: 13.8546\n", "Epoch 162/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4167\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yesno no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: es yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 865ms/step - loss: 1.1853 - val_loss: 14.6645\n", "Epoch 163/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.4167\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: es yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: esyesyesyesyes no no yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 936ms/step - loss: 1.2289 - val_loss: 12.8536\n", "Epoch 164/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.2292\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yes yes yes yes no yes no n\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 876ms/step - loss: 1.1714 - val_loss: 7.8979\n", "Epoch 165/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.1250\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 858ms/step - loss: 1.0773 - val_loss: 5.3538\n", "Epoch 166/200\n", "1/1 [==============================] - 0s 67ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.1042\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: yes yes yes yes no no yesno\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: yes yes yes yes no no yesno\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 712ms/step - loss: 1.1715 - val_loss: 4.2681\n", "Epoch 167/200\n", "1/1 [==============================] - 0s 82ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.1042\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: es yes yes yes yes no no yn\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 878ms/step - loss: 1.1033 - val_loss: 4.2497\n", "Epoch 168/200\n", "1/1 [==============================] - 0s 79ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.1042\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: es yes yes yes yes no no n\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 1.1601 - val_loss: 4.1096\n", "Epoch 169/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.1458\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: yes yes yes yes no no yesno\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: yes yes yes yes no no yesno\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 730ms/step - loss: 1.0787 - val_loss: 4.6171\n", "Epoch 170/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.1042\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yes no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 878ms/step - loss: 1.1329 - val_loss: 4.1856\n", "Epoch 171/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.1042\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 870ms/step - loss: 1.0870 - val_loss: 3.9529\n", "Epoch 172/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0833\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yes no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 893ms/step - loss: 1.0476 - val_loss: 3.6631\n", "Epoch 173/200\n", "1/1 [==============================] - 0s 72ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.1042\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 734ms/step - loss: 1.0729 - val_loss: 3.8514\n", "Epoch 174/200\n", "1/1 [==============================] - 0s 74ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.1042\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: es yes yes yes no no yesno\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 744ms/step - loss: 1.0712 - val_loss: 4.0790\n", "Epoch 175/200\n", "1/1 [==============================] - 0s 77ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.1250\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 982ms/step - loss: 1.0623 - val_loss: 4.1853\n", "Epoch 176/200\n", "1/1 [==============================] - 0s 77ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.1667\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: es yes yes yes no no yesno\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yes yes yes yes no yes no n\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 956ms/step - loss: 1.0977 - val_loss: 5.6953\n", "Epoch 177/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.1250\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yes yes yes yes no yes no n\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: es yes yes yes no no yesno\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 725ms/step - loss: 1.1747 - val_loss: 5.8280\n", "Epoch 178/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.1042\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yes no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yes yes yes yes no yes no n\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 734ms/step - loss: 1.0427 - val_loss: 4.5344\n", "Epoch 179/200\n", "1/1 [==============================] - 0s 76ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.1042\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: es yes yes yes yes no no yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: es yes yes yes yes no no yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 879ms/step - loss: 0.9838 - val_loss: 4.1291\n", "Epoch 180/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0625\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: yes yes yes yes no no yesno\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: yes yes yes yes no no yesno\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 880ms/step - loss: 0.9841 - val_loss: 3.8380\n", "Epoch 181/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0625\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yes yes yes yes no yes no no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 794ms/step - loss: 1.0445 - val_loss: 3.2274\n", "Epoch 182/200\n", "1/1 [==============================] - 0s 70ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0625\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 797ms/step - loss: 0.9741 - val_loss: 2.9388\n", "Epoch 183/200\n", "1/1 [==============================] - 0s 79ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0417\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 761ms/step - loss: 0.9929 - val_loss: 3.0111\n", "Epoch 184/200\n", "1/1 [==============================] - 0s 80ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0417\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: yes yes yes yes no no yesno\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yes yes yes yes no yes no no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 1.0417 - val_loss: 3.1504\n", "Epoch 185/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0417\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yes yes yes yes no yes no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 886ms/step - loss: 1.0880 - val_loss: 2.9475\n", "Epoch 186/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0417\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yes yes yes yes no yes no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yes no no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 876ms/step - loss: 1.0694 - val_loss: 2.7470\n", "Epoch 187/200\n", "1/1 [==============================] - 0s 72ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: yes yes yes yes yes no no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yes no no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 735ms/step - loss: 1.0205 - val_loss: 2.6253\n", "Epoch 188/200\n", "1/1 [==============================] - 0s 71ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0208\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yes no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: yes yes yes yes no no yes no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 723ms/step - loss: 0.9886 - val_loss: 2.6864\n", "Epoch 189/200\n", "1/1 [==============================] - 0s 68ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: yes yes yes yes yes no no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yes no no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 881ms/step - loss: 0.9939 - val_loss: 2.2641\n", "Epoch 190/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0417\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yes no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: yes yes yes yes no no yesno\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 874ms/step - loss: 1.0252 - val_loss: 2.3229\n", "Epoch 191/200\n", "1/1 [==============================] - 0s 82ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0417\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: yes yes yes yes no no yesno\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 996ms/step - loss: 0.9696 - val_loss: 2.4037\n", "Epoch 192/200\n", "1/1 [==============================] - 0s 77ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0417\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yes no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yes yes yes yes no yes no no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 895ms/step - loss: 1.0141 - val_loss: 2.5212\n", "Epoch 193/200\n", "1/1 [==============================] - 0s 80ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0417\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yes yes yes yes no yes no no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 1s/step - loss: 0.9695 - val_loss: 2.6592\n", "Epoch 194/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0208\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no yes no no\n", "Prediction: yes yes yes yes no yes no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 873ms/step - loss: 0.9821 - val_loss: 2.9898\n", "Epoch 195/200\n", "1/1 [==============================] - 0s 77ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0208\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yes no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 750ms/step - loss: 0.9678 - val_loss: 2.6875\n", "Epoch 196/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yes no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 727ms/step - loss: 0.9613 - val_loss: 2.4534\n", "Epoch 197/200\n", "1/1 [==============================] - 0s 71ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: yes yes yes yes no no yes no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yes no no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 872ms/step - loss: 0.9611 - val_loss: 2.4519\n", "Epoch 198/200\n", "1/1 [==============================] - 0s 73ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: yes yes yes yes yes no no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 865ms/step - loss: 0.9940 - val_loss: 2.2739\n", "Epoch 199/200\n", "1/1 [==============================] - 0s 69ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: yes yes yes yes yes no no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 1s 875ms/step - loss: 0.9569 - val_loss: 2.6029\n", "Epoch 200/200\n", "1/1 [==============================] - 0s 76ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes no no yes no\n", "Prediction: yes yes yes yes no no yes no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yes no no\n", "----------------------------------------------------------------------------------------------------\n", "2/2 [==============================] - 2s 941ms/step - loss: 0.9044 - val_loss: 2.4798\n" ] } ], "source": [ "# Define the number of epochs.\n", "epochs = 200\n", "# Callback function to check transcription on the val set.\n", "validation_callback = CallbackEval(validation_dataset)\n", "# Train the model\n", "history = model.fit(\n", " train_dataset,\n", " validation_data=validation_dataset,\n", " epochs=epochs,\n", " callbacks=[validation_callback],\n", ")\n" ] }, { "cell_type": "markdown", "metadata": { "id": "rXbUKPvJRkYW" }, "source": [ "## Inference" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Q77qMiFFRkYX", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "a4b88303-9b57-4188-c79e-6decf308214a" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1/1 [==============================] - 0s 78ms/step\n", "----------------------------------------------------------------------------------------------------\n", "Word Error Rate: 0.0000\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: yes yes yes yes yes no no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes no no\n", "Prediction: yes yes yes yes yes yes no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes no no no\n", "Prediction: yes yes yes yes yes no no no\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes no yes no yes yes\n", "Prediction: yes yes yes no yes no yes yes\n", "----------------------------------------------------------------------------------------------------\n", "Target : yes yes yes yes yes yes yes yes\n", "Prediction: yes yes yes yes yes yes yes yes\n", "----------------------------------------------------------------------------------------------------\n" ] } ], "source": [ "# Let's check results on more validation samples\n", "predictions = []\n", "targets = []\n", "for batch in validation_dataset:\n", " X, y = batch\n", " batch_predictions = model.predict(X)\n", " batch_predictions = decode_batch_predictions(batch_predictions)\n", " predictions.extend(batch_predictions)\n", " for label in y:\n", " label = tf.strings.reduce_join(num_to_char(label)).numpy().decode(\"utf-8\")\n", " targets.append(label)\n", "wer_score = wer(targets, predictions)\n", "print(\"-\" * 100)\n", "print(f\"Word Error Rate: {wer_score:.4f}\")\n", "print(\"-\" * 100)\n", "for i in np.random.randint(0, len(predictions), 5):\n", " print(f\"Target : {targets[i]}\")\n", " print(f\"Prediction: {predictions[i]}\")\n", " print(\"-\" * 100)\n" ] }, { "cell_type": "code", "source": [ "\n", "#############################################################\n", "################### Give Audio Path And Run #################\n", "#############################################################\n", "\n", "aud = \"/content/working/waves_yesno/0_0_1_1_1_1_0_0.wav\"\n", "\n", "#############################################################\n", "\n", "\n", "def encode_aud(wav_file):\n", " \"\"\"\n", " audio file encoder\n", " params : wav audio file path\n", " return : spectogram\n", " \"\"\"\n", " file = tf.io.read_file(wav_file)\n", " audio, _ = tf.audio.decode_wav(file)\n", " audio = tf.squeeze(audio, axis=-1)\n", " audio = tf.cast(audio, tf.float32)\n", " spectrogram = tf.signal.stft(\n", " audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length\n", " )\n", " spectrogram = tf.abs(spectrogram)\n", " spectrogram = tf.math.pow(spectrogram, 0.5)\n", " means = tf.math.reduce_mean(spectrogram, 1, keepdims=True)\n", " stddevs = tf.math.reduce_std(spectrogram, 1, keepdims=True)\n", " spectrogram = (spectrogram - means) / (stddevs + 1e-10)\n", "\n", " return spectrogram\n", "\n", "\n", "aud = encode_aud(aud)\n", "aud = tf.expand_dims(aud, axis=0)\n", "#Make preds by ai\n", "pred = model.predict(aud)\n", "#decode and detokenize it\n", "pred = decode_batch_predictions(pred)\n", "print(pred)\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "0Inb51ZrRZpA", "outputId": "58378512-fbb3-44ab-8025-4d6a9339ae44" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1/1 [==============================] - 3s 3s/step\n", "['no no yes yes yes yes no no']\n" ] } ] }, { "cell_type": "code", "source": [ "# @title Save models\n", "!mkdir model\n", "import json\n", "\n", "# Save the model weights and architecture\n", "model.save(\"model/zoomasr\")\n", "\n", "\n", "#with open(\"model/transformer_model_architecture.json\", \"w\") as json_file:\n", " # json_file.write(model.to_json())\n", "\n", "# Save the tokenizer vocabulary as a JSON file\n", "with open(\"model/tokenizer_vocab.txt\", \"w\", encoding=\"utf-8\") as file:\n", " file.write(vocabresult)" ], "metadata": { "id": "RvVrphYysRSE" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title load model and tokenizer\n", "import json\n", "import tensorflow as tf\n", "from tensorflow import keras\n", "\n", "# Load the tokenizer vocabulary from the JSON file\n", "with open(\"model/tokenizer_vocab.txt\", \"r\") as file:\n", " idx_to_char = file.read()\n", "\n", "characters = [x for x in idx_to_char]\n", "# Mapping characters to integers\n", "char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token=\"\")\n", "# Mapping integers back to original characters\n", "num_to_char = keras.layers.StringLookup(\n", " vocabulary=char_to_num.get_vocabulary(), oov_token=\"\", invert=True\n", ")\n", "\n", "print(\n", " f\"The vocabulary is: {char_to_num.get_vocabulary()} \"\n", " f\"(size ={char_to_num.vocabulary_size()})\"\n", ")\n", "\n", "# A utility function to decode the output of the network\n", "def decode_batch_predictions(pred):\n", " input_len = np.ones(pred.shape[0]) * pred.shape[1]\n", " # Use greedy search. For complex tasks, you can use beam search\n", " results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0]\n", " # Iterate over the results and get back the text\n", " output_text = []\n", " for result in results:\n", " result = tf.strings.reduce_join(num_to_char(result)).numpy().decode(\"utf-8\")\n", " output_text.append(result)\n", " return output_text\n", "\n", "\n", "def CTCLoss(y_true, y_pred):\n", " # Compute the training-time loss value\n", " batch_len = tf.cast(tf.shape(y_true)[0], dtype=\"int64\")\n", " input_length = tf.cast(tf.shape(y_pred)[1], dtype=\"int64\")\n", " label_length = tf.cast(tf.shape(y_true)[1], dtype=\"int64\")\n", "\n", " input_length = input_length * tf.ones(shape=(batch_len, 1), dtype=\"int64\")\n", " label_length = label_length * tf.ones(shape=(batch_len, 1), dtype=\"int64\")\n", "\n", " loss = keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length)\n", " return loss\n", "\n", "\n", "\n", "\n", "with keras.utils.custom_object_scope({'CTCLoss': CTCLoss}):\n", " loaded_model = tf.keras.models.load_model(\"model/zoomasr\")\n", "\n", "\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ooFyqRYCuL7T", "outputId": "6670dcae-4025-47ab-8719-b6b98b4a1a44" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "The vocabulary is: ['', '<', 'U', 'N', 'K', '>', ' ', 'y', 'e', 's', 'n', 'o'] (size =12)\n" ] } ] }, { "cell_type": "code", "source": [ "\n", "#############################################################\n", "################### Give Audio Path And Run #################\n", "#############################################################\n", "\n", "aud = \"/content/working/waves_yesno/0_0_1_1_1_1_0_0.wav\"\n", "\n", "#############################################################\n", "import numpy as np\n", "# An integer scalar Tensor. The window length in samples.\n", "frame_length = 256\n", "# An integer scalar Tensor. The number of samples to step.\n", "frame_step = 160\n", "# An integer scalar Tensor. The size of the FFT to apply.\n", "# If not provided, uses the smallest power of 2 enclosing frame_length.\n", "fft_length = 384\n", "\n", "\n", "def encode_aud(wav_file):\n", " \"\"\"\n", " audio file encoder\n", " params : wav audio file path\n", " return : spectogram\n", " \"\"\"\n", " file = tf.io.read_file(wav_file)\n", " audio, _ = tf.audio.decode_wav(file)\n", " audio = tf.squeeze(audio, axis=-1)\n", " audio = tf.cast(audio, tf.float32)\n", " spectrogram = tf.signal.stft(\n", " audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length\n", " )\n", " spectrogram = tf.abs(spectrogram)\n", " spectrogram = tf.math.pow(spectrogram, 0.5)\n", " means = tf.math.reduce_mean(spectrogram, 1, keepdims=True)\n", " stddevs = tf.math.reduce_std(spectrogram, 1, keepdims=True)\n", " spectrogram = (spectrogram - means) / (stddevs + 1e-10)\n", "\n", " return spectrogram\n", "\n", "\n", "aud = encode_aud(aud)\n", "aud = tf.expand_dims(aud, axis=0)\n", "#Make preds by ai\n", "pred = loaded_model.predict(aud)\n", "#decode and detokenize it\n", "pred = decode_batch_predictions(pred)\n", "print(pred)\n" ], "metadata": { "id": "P0TYnqxVyYTs", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "8370d96e-0c48-4629-f606-d6510fc8e811" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1/1 [==============================] - 3s 3s/step\n", "['no no yes yes yes yes no no']\n" ] } ] }, { "cell_type": "code", "source": [ "# @title io ops\n", "!zip -r yesno_zoomasr_model.zip /content/model" ], "metadata": { "id": "-IspmV3gxLBL", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "edb2ebaa-fbbb-4688-a61a-476a965d2e3e" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " adding: content/model/ (stored 0%)\n", " adding: content/model/tokenizer_vocab.txt (stored 0%)\n", " adding: content/model/zoomasr/ (stored 0%)\n", " adding: content/model/zoomasr/fingerprint.pb (stored 0%)\n", " adding: content/model/zoomasr/saved_model.pb (deflated 91%)\n", " adding: content/model/zoomasr/assets/ (stored 0%)\n", " adding: content/model/zoomasr/keras_metadata.pb (deflated 95%)\n", " adding: content/model/zoomasr/variables/ (stored 0%)\n", " adding: content/model/zoomasr/variables/variables.data-00000-of-00001 (deflated 7%)\n", " adding: content/model/zoomasr/variables/variables.index (deflated 72%)\n" ] } ] } ], "metadata": { "accelerator": "GPU", "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" } }, "nbformat": 4, "nbformat_minor": 0 }