File size: 13,426 Bytes
04428af c7aa9c1 04428af c7aa9c1 04428af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import streamlit as st
import normalizer_model
import numpy as np
import pandas as pd
import altair as alt
import plotly.graph_objects as go
from scipy.stats import norm
# Configure the Streamlit page before other commands
st.set_page_config(
page_title="Smartwatch Normative Z-Score Calculator",
layout="wide",
)
# Cache the normative DataFrame load
def load_norm_df(path: str):
return normalizer_model.load_normative_table(path)
load_norm_df = st.cache_data(load_norm_df)
# Load dataset
norm_df = load_norm_df("Table_1_summary_measure.csv")
# Friendly biomarker labels
BIOMARKER_LABELS = {
"nb_steps": "Number of Steps",
"max_steps": "Maximum Steps",
"mean_active_time": "Mean Active Time",
"sbp": "Systolic Blood Pressure",
"dbp": "Diastolic Blood Pressure",
"sleep_duration": "Sleep Duration",
"avg_night_hr": "Average Night Heart Rate",
"nb_moderate_active_minutes": "Moderate Active Minutes",
"nb_vigorous_active_minutes": "Vigorous Active Minutes",
"weight": "Weight",
"pwv": "Pulse Wave Velocity",
# add any others here
}
# Biomarkers temporarily disabled in the UI. Remove from this set to re-enable.
DISABLED_BIOMARKERS = {"weight"}
def main():
if "disclaimer_shown" not in st.session_state:
st.info(
"These calculations are dedicated for scientifically purposes only. "
"For detailed questions regarding personal health data contact your "
"healthcare professionals."
)
st.session_state.disclaimer_shown = True
st.title("Smartwatch Normative Z-Score Calculator")
st.sidebar.header("Input Parameters")
# Region with default Western Europe
regions = sorted(norm_df["area"].unique())
if "Western Europe" in regions:
default_region = "Western Europe"
else:
default_region = regions[0]
region = st.sidebar.selectbox(
"Region",
regions,
index=regions.index(default_region),
)
# Gender selection
gender = st.sidebar.selectbox(
"Gender",
sorted(norm_df["gender"].unique()),
)
# Age input: choose between years or group
st.sidebar.subheader("Age Input")
age_input_mode = st.sidebar.radio(
"Age input mode",
("Years", "Group"),
)
if age_input_mode == "Years":
age_years = st.sidebar.number_input(
"Age (years)",
min_value=0,
max_value=120,
value=30,
step=1,
)
age_param = age_years
else:
age_groups = sorted(
norm_df["Age"].unique(),
key=lambda x: int(x.split("-")[0]),
)
age_group = st.sidebar.selectbox("Age group", [""] + age_groups)
age_param = age_group
# BMI input: choose between value or category
st.sidebar.subheader("BMI Input")
bmi_input_mode = st.sidebar.radio(
"BMI input mode",
("Value", "Category"),
)
if bmi_input_mode == "Value":
bmi_val = st.sidebar.number_input(
"BMI",
min_value=0.0,
max_value=100.0,
value=24.0,
step=0.1,
format="%.1f",
)
bmi_param = bmi_val
else:
bmi_cats = sorted(norm_df["Bmi"].unique())
bmi_cat = st.sidebar.selectbox("BMI category", [""] + bmi_cats)
bmi_param = bmi_cat
# Biomarker selection with friendly labels
codes = sorted(
c for c in norm_df["Biomarkers"].unique() if c not in DISABLED_BIOMARKERS
)
friendly = [BIOMARKER_LABELS.get(c, c.title()) for c in codes]
default_idx = friendly.index("Number of Steps")
selected_label = st.sidebar.selectbox(
"Biomarker",
friendly,
index=default_idx,
)
biomarker = codes[friendly.index(selected_label)]
# Value input with consistent float types
default_value = 6500.0 if biomarker == "nb_steps" else 0.0
# Determine upper bound from normative data
mask = norm_df["Biomarkers"].str.lower() == biomarker.lower()
max_val = float(norm_df.loc[mask, "max"].max())
value = st.sidebar.number_input(
f"{selected_label} value",
min_value=0.0,
max_value=max_val,
value=default_value,
step=1.0,
)
# Compute
norm_button = st.sidebar.button("Compute Normative Z-Score")
if norm_button:
try:
res = normalizer_model.compute_normative_position(
value=value,
biomarker=biomarker,
age_group=age_param,
region=region,
gender=gender,
bmi=bmi_param,
normative_df=norm_df,
)
except Exception as e:
st.error(f"Error: {e}")
return
# Show metrics
st.subheader("Results")
m1, m2, m3, m4, m5 = st.columns(5)
m1.metric("Z-Score", f"{res['z_score']:.2f}")
m2.metric("Percentile", f"{res['percentile']:.2f}")
m3.metric("Mean", f"{res['mean']:.2f}")
m4.metric("SD", f"{res['sd']:.2f}")
m5.metric("Sample Size", res["n"])
# Compute actual age group and BMI category for cohort summary
age_group_str = normalizer_model._categorize_age(age_param, norm_df)
bmi_cat = normalizer_model.categorize_bmi(bmi_param)
st.markdown(
f"**Basis of calculation:** Data from region **{region}**, "
f"gender **{gender}**, age group **{age_group_str}**, "
f"and BMI category **{bmi_cat}. "
f"Sample size: {res['n']}**."
)
# Detailed statistics table
st.subheader("Detailed Statistics")
stats_df = pd.DataFrame(
{
"Statistic": [
"Z-Score",
"Percentile",
"Mean",
"SD",
"Sample Size",
"Median",
"Q1",
"Q3",
"IQR",
"MAD",
"SE",
"CI",
],
"Value": [
f"{res['z_score']:.2f}",
f"{res['percentile']:.2f}",
f"{res['mean']:.2f}",
f"{res['sd']:.2f}",
res.get("n", "N/A"),
f"{res.get('median', float('nan')):.2f}",
f"{res.get('q1', float('nan')):.2f}",
f"{res.get('q3', float('nan')):.2f}",
f"{res.get('iqr', float('nan')):.2f}",
f"{res.get('mad', float('nan')):.2f}",
f"{res.get('se', float('nan')):.2f}",
f"{res.get('ci', float('nan')):.2f}",
],
}
)
st.table(stats_df)
# Normality assumption note
note = (
"*Note: Percentile and z-score estimation assume a normal "
"distribution based on global Withings user data stratified by "
"the parameters entered.*"
)
st.write(note)
# Normality checks
import normality_checks as nc
R = nc.iqr_tail_heaviness(res["iqr"], res["sd"])
q1_z, q3_z = nc.quartile_z_scores(
res["mean"],
res["sd"],
res["q1"],
res["q3"],
)
skew = nc.pearson_skewness(res["mean"], res["median"], res["sd"])
st.subheader("Normality Heuristics")
# Determine skewness interpretation
if abs(skew) <= 0.1:
skew_interp = "Symmetric (OK)"
elif abs(skew) <= 0.5:
skew_interp = f"{'Right' if skew > 0 else 'Left'} slight skew (usually OK)"
elif abs(skew) <= 1.0:
skew_interp = f"{'Right' if skew > 0 else 'Left'} noticeable skew"
else:
skew_interp = f"{'Right' if skew > 0 else 'Left'} strong skew"
norm_checks = pd.DataFrame(
{
"Check": [
"IQR/SD",
"Q1 z-score",
"Q3 z-score",
"Pearson Skewness",
],
"Value": [
f"{R:.2f}",
f"{q1_z:.2f}",
f"{q3_z:.2f}",
f"{skew:.2f}",
],
"Flag": [
(
"Heavier tails"
if R > 1.5
else "Lighter tails" if R < 1.2 else "OK"
),
"Deviation" if abs(q1_z + 0.6745) > 0.1 else "OK",
"Deviation" if abs(q3_z - 0.6745) > 0.1 else "OK",
skew_interp,
],
}
)
st.table(norm_checks)
# Add skewness interpretation guide
st.markdown(
"""
**Pearson Skewness Interpretation:**
- ≈ 0: Symmetric distribution
- ±0.1 to ±0.5: Slight/moderate skew
- ±0.5 to ±1: Noticeable skew
- larger than±1: Strong skew
- Positive values: Right skew (longer tail on right)
- Negative values: Left skew (longer tail on left)
"""
)
# Warning if heuristic checks indicate non-normality
if any(("OK" not in val) for val in norm_checks["Flag"]):
st.warning(
"Warning: Heuristic checks indicate possible deviations "
"from normality; interpret z-score and percentiles with "
"caution."
)
# Skew-Corrected Results (optional)
with st.expander("Optional: Skew-Corrected Results"):
st.write("Adjusts for skew via Pearson Type III back-transform.")
st.write("Error often <1 percentile point when |skew| ≤ 0.5.")
st.write("Usually more useful for stronger skewed distributions.")
st.write("Note: This is a heuristic and may not always be accurate.")
res_skew = normalizer_model.compute_skew_corrected_position(
value=value,
mean=res["mean"],
sd=res["sd"],
median=res["median"],
)
pct_skew = f"{res_skew['percentile_skew_corrected']:.2f}"
sc1, sc2 = st.columns(2)
sc1.metric(
"Skew-Corrected Z-Score",
f"{res_skew['z_skew_corrected']:.2f}",
)
sc2.metric(
"Skew-Corrected Percentile",
pct_skew,
)
st.markdown("---")
st.subheader("Visualizations")
# Prepare data for normal distribution
z_vals = np.linspace(-4, 4, 400)
density = norm.pdf(z_vals)
df_chart = pd.DataFrame({"z": z_vals, "density": density})
# Shade area up to observed z-score
area = (
alt.Chart(df_chart)
.mark_area(color="orange", opacity=0.3)
.transform_filter(alt.datum.z <= res["z_score"])
.encode(
x=alt.X(
"z:Q",
title="z-score",
),
y=alt.Y(
"density:Q",
title="Density",
),
)
)
# Plot distribution line
line = (
alt.Chart(df_chart)
.mark_line(color="orange")
.encode(
x="z:Q",
y="density:Q",
)
)
# Vertical line at observed z
vline = (
alt.Chart(pd.DataFrame({"z": [res["z_score"]]}))
.mark_rule(color="orange")
.encode(x="z:Q")
)
chart = (area + line + vline).properties(
width=600,
height=300,
title="Standard Normal Distribution",
)
st.altair_chart(chart, use_container_width=True)
# Text summary
st.write(
f"Your value is z = {res['z_score']:.2f}, which places you in "
f"the {res['percentile']:.1f}th percentile of a normal "
f"distribution."
)
# Bullet chart showing z-score location
# Using a horizontal bullet gauge from -3 to 3 SD
bullet = go.Figure(
go.Indicator(
mode="number+gauge",
value=res["z_score"],
number={"suffix": " SD"},
gauge={
"shape": "bullet",
"axis": {
"range": [-3, 3],
"tickmode": "linear",
"dtick": 0.5,
},
"bar": {"color": "orange"},
},
)
)
bullet.update_layout(
height=150,
margin={"t": 20, "b": 20, "l": 20, "r": 20},
)
st.plotly_chart(bullet, use_container_width=True)
# Show percentile text
st.write(f"Percentile: {res['percentile']:.1f}%")
else:
st.sidebar.info(
"Fill in all inputs and click Compute " "to get normative Z-score."
)
# Footer
st.markdown("---")
st.markdown(
"Built in with ❤️ in Düsseldorf. © Lars Masanneck 2025. "
"Thanks to Withings for sharing this data openly."
)
if __name__ == "__main__":
main()
|