File size: 9,573 Bytes
1d10323 7d88991 1d10323 7464ef1 b9adb22 7464ef1 b9adb22 7464ef1 b9adb22 7464ef1 b9adb22 7464ef1 b9adb22 7464ef1 b9adb22 7464ef1 b9adb22 7464ef1 b9adb22 7464ef1 b9adb22 7464ef1 b9adb22 7464ef1 b9adb22 7464ef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
---
title: Whisper TikTok Demo
emoji: π
colorFrom: yellow
colorTo: purple
sdk: streamlit
sdk_version: 1.36.0
app_file: app.py
pinned: false
license: apache-2.0
---
# Introducing Whisper-TikTok π€π₯
## Star History
[](https://star-history.com/#MatteoFasulo/Whisper-TikTok&Date)
## Table of Contents
- [Introduction](#introduction)
- [Video (demo)](#demo-video)
- [How it works?](#how-it-works)
- [Web App (Online)](#web-app-online)
- [Streamlit Web App](#streamlit-web-app)
- [Local Installation](#local-installation)
- [Dependencies](#dependencies)
- [Web-UI (Local)](#web-ui-local)
- [Command-Line](#command-line)
- [Usage Examples](#usage-examples)
- [Additional Resources](#additional-resources)
- [Code of Conduct](#code-of-conduct)
- [Contributing](#contributing)
- [Upcoming Features](#upcoming-features)
- [Acknowledgments](#acknowledgments)
- [License](#license)
## Introduction
Discover Whisper-TikTok, an innovative AI-powered tool that leverages the prowess of **Edge TTS**, **OpenAI-Whisper**, and **FFMPEG** to craft captivating TikTok videos. Harnessing the capabilities of OpenAI's Whisper model, Whisper-TikTok effortlessly generates an accurate **transcription** from provided audio files, laying the foundation for the creation of mesmerizing TikTok videos through the utilization of **FFMPEG**. Additionally, the program seamlessly integrates the **Microsoft Edge Cloud Text-to-Speech (TTS) API** to lend a vibrant **voiceover** to the video. Opting for Microsoft Edge Cloud TTS API's voiceover is a deliberate choice, as it delivers a remarkably **natural and authentic** auditory experience, setting it apart from the often monotonous and artificial voiceovers prevalent in numerous TikTok videos.
## Streamlit Web App

## Demo Video
<https://github.com/MatteoFasulo/Whisper-TikTok/assets/74818541/68e25504-c305-4144-bd39-c9acc218c3a4>
## How it Works
Employing Whisper-TikTok is a breeze: simply modify the [clips.csv](clips.csv). The CSV file contains the following attributes:
- `series`: The name of the series.
- `part`: The part number of the video.
- `text`: The text to be spoken in the video.
- `tags`: The tags to be used for the video.
- `outro`: The outro text to be spoken in the video.
<details>
<summary>Details</summary>
The program conducts the **sequence of actions** outlined below:
1. Retrieve **environment variables** from the optional .env file.
2. Validate the presence of **PyTorch** with **CUDA** installation. If the requisite dependencies are **absent**, the **program will use the CPU instead of the GPU**.
3. Download a random video from platforms like YouTube, e.g., a Minecraft parkour gameplay clip.
4. Load the OpenAI Whisper model into memory.
5. Extract the video text from the provided JSON file and initiate a **Text-to-Speech** request to the Microsoft Edge Cloud TTS API, preserving the response as an .mp3 audio file.
6. Utilize the OpenAI Whisper model to generate a detailed **transcription** of the .mp3 file, available in .srt format.
7. Select a **random background** video from the dedicated folder.
8. Integrate the srt file into the chosen video using FFMPEG, creating a final .mp4 output.
9. Upload the video to TikTok using the TikTok session cookie. For this step it is required to have a TikTok account and to be logged in on your browser. Then the required `cookies.txt` file can be generated using [this guide available here](https://github.com/kairi003/Get-cookies.txt-LOCALLY). The `cookies.txt` file must be placed in the root folder of the project.
10. Voila! In a matter of minutes, you've crafted a captivating TikTok video while sipping your favorite coffee βοΈ.
</details>
## Web App (Online)
There is a Web App hosted thanks to Streamlit which is public available in HuggingFace, just click on the link that will take you directly to the Web App.
> https://huggingface.co/spaces/MatteoFasulo/Whisper-TikTok-Demo
## Local Installation
Whisper-TikTok has undergone rigorous testing on Windows 10, Windows 11 and Ubuntu 23.04 systems equipped with **Python versions 3.8, 3.9 and 3.11**.
If you want to run Whisper-TikTok locally, you can clone the repository using the following command:
```bash
git clone https://github.com/MatteoFasulo/Whisper-TikTok.git
```
> However, there is also a Docker image available for Whisper-TikTok which can be used to run the program in a containerized environment.
# Dependencies
To streamline the installation of necessary dependencies, execute the following command within your terminal:
```python
pip install -U -r requirements.txt
```
It also requires the command-line tool [**FFMPEG**](https://ffmpeg.org/) to be installed on your system, which is available from most package managers:
```bash
# on Ubuntu or Debian
sudo apt update && sudo apt install ffmpeg
# on Arch Linux
sudo pacman -S ffmpeg
# on MacOS using Homebrew (<https://brew.sh/>)
brew install ffmpeg
# on Windows using Chocolatey (<https://chocolatey.org/>)
choco install ffmpeg
# on Windows using Scoop (<https://scoop.sh/>)
scoop install ffmpeg
```
> Please note that for optimal performance, it's advisable to have a GPU when using the OpenAI Whisper model for Automatic Speech Recognition (ASR). However, the program will also work without a GPU, but it will run more slowly.
## Web-UI (Local)
To run the Web-UI locally, execute the following command within your terminal:
```bash
streamlit run app.py
```
## Command-Line
To run the program from the command-line, execute the following command within your terminal:
```bash
python main.py
```
### CLI Options
Whisper-TikTok supports the following command-line options:
```
python main.py [OPTIONS]
Options:
--model TEXT Model to use [tiny|base|small|medium|large] (Default: small)
--non_english Use general model, not the English one specifically. (Flag)
--url TEXT YouTube URL to download as background video. (Default: <https://www.youtube.com/watch?v=intRX7BRA90>)
--tts TEXT Voice to use for TTS (Default: en-US-ChristopherNeural)
--list-voices Use `edge-tts --list-voices` to list all voices.
--random_voice Random voice for TTS (Flag)
--gender TEXT Gender of the random TTS voice [Male|Female].
--language TEXT Language of the random TTS voice(e.g., en-US)
--sub_format TEXT Subtitle format to use [u|i|b] (Default: b) | b (Bold), u (Underline), i (Italic)
--sub_position INT Subtitle position to use [1-9] (Default: 5)
--font TEXT Font to use for subtitles (Default: Lexend Bold)
--font_color TEXT Font color to use for subtitles in HEX format (Default: #FFF000).
--font_size INT Font size to use for subtitles (Default: 21)
--max_characters INT Maximum number of characters per line (Default: 38)
--max_words INT Maximum number of words per segment (Default: 2)
--upload_tiktok Upload the video to TikTok (Flag)
-v, --verbose Verbose (Flag)
```
> If you use the --random_voice option, please specify both --gender and --language arguments. Also you will need to specify the --non_english argument if you want to use a non-English voice otherwise the program will use the English model. Whisper model will auto-detect the language of the audio file and use the corresponding model.
## Usage Examples
- Generate a TikTok video using a specific TTS model and voice:
```bash
python main.py --model medium --tts en-US-EricNeural
```
- Generate a TikTok video without using the English model:
```bash
python main.py --non_english --tts de-DE-KillianNeural
```
- Use a custom YouTube video as the background video:
```bash
python main.py --url https://www.youtube.com/watch?v=dQw4w9WgXcQ --tts en-US-JennyNeural
```
- Modify the font color of the subtitles:
```bash
python main.py --sub_format b --font_color #FFF000 --tts en-US-JennyNeural
```
- Generate a TikTok video with a random TTS voice:
```bash
python main.py --random_voice --gender Male --language en-US
```
- List all available voices:
```bash
edge-tts --list-voices
```
## Additional Resources
### Code of Conduct
Please review our [Code of Conduct](./CODE_OF_CONDUCT.md) before contributing to Whisper-TikTok.
### Contributing
We welcome contributions from the community! Please see our [Contributing Guidelines](./CONTRIBUTING.md) for more information.
### Upcoming Features
- Integration with the OpenAI API to generate more advanced responses.
- Generate content by extracting it from reddit <https://github.com/MatteoFasulo/Whisper-TikTok/issues/22>
### Acknowledgments
- We'd like to give a huge thanks to [@rany2](https://www.github.com/rany2) for their [edge-tts](https://github.com/rany2/edge-tts) package, which made it possible to use the Microsoft Edge Cloud TTS API with Whisper-TikTok.
- We also acknowledge the contributions of the Whisper model by [@OpenAI](https://github.com/openai/whisper) for robust speech recognition via large-scale weak supervision
- Also [@jianfch](https://github.com/jianfch/stable-ts) for the stable-ts package, which made it possible to use the OpenAI Whisper model with Whisper-TikTok in a stable manner with font color and subtitle format options.
### License
Whisper-TikTok is licensed under the [Apache License, Version 2.0](https://github.com/MatteoFasulo/Whisper-TikTok/blob/main/LICENSE).
|