|
|
|
import os |
|
import spacy |
|
import gradio as gr |
|
from sentence_transformers import SentenceTransformer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import numpy as np |
|
import zipfile |
|
import re |
|
|
|
print("Directory corrente:", os.getcwd()) |
|
|
|
zip_path = "en_core_web_lg-3.8.0.zip" |
|
extraction_dir = "./extracted_models" |
|
test_dir = "./extracted_models/en_core_web_lg-3.8.0" |
|
|
|
|
|
if not os.path.exists(test_dir): |
|
|
|
with zipfile.ZipFile(zip_path, 'r') as zip_ref: |
|
zip_ref.extractall(extraction_dir) |
|
print(f"Modello estratto correttamente nella cartella {extraction_dir}") |
|
|
|
|
|
zip_path = "images.zip" |
|
extract_to = "images" |
|
|
|
|
|
if not os.path.exists(extract_to): |
|
os.makedirs(extract_to) |
|
|
|
|
|
if os.path.exists(zip_path): |
|
with zipfile.ZipFile(zip_path, 'r') as zip_ref: |
|
zip_ref.extractall(extract_to) |
|
print(f"Immagini estratte nella directory: {extract_to}") |
|
print("Contenuto della directory images:", os.listdir(extract_to)) |
|
else: |
|
print(f"File {zip_path} non trovato. Assicurati di caricarlo nello Space.") |
|
|
|
|
|
|
|
|
|
model_path = os.path.join(extraction_dir, "en_core_web_lg-3.8.0") |
|
|
|
|
|
nlp = spacy.load(model_path) |
|
|
|
|
|
|
|
|
|
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2', device='cpu') |
|
|
|
|
|
|
|
|
|
|
|
with open('testo.txt', 'r', encoding='utf-8') as file: |
|
text = file.read() |
|
|
|
|
|
doc = nlp(text) |
|
sentences = [sent.text for sent in doc.sents] |
|
|
|
|
|
embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True) |
|
|
|
|
|
image_folder = "images" |
|
|
|
def extract_figure_numbers(text): |
|
"""Estrae tutti i numeri delle figure da una frase.""" |
|
matches = re.findall(r"\(Figure (\d+)\)", text, re.IGNORECASE) |
|
if matches: |
|
return matches |
|
return [] |
|
|
|
|
|
def generate_figure_mapping(folder): |
|
"""Genera la mappatura delle figure dal nome dei file immagini.""" |
|
mapping = {} |
|
for file_name in os.listdir(folder): |
|
if file_name.lower().endswith((".jpg", ".png", ".jpeg")): |
|
figure_reference = file_name.split(".")[0].replace("_", " ") |
|
mapping[figure_reference] = file_name |
|
return mapping |
|
|
|
figure_mapping = generate_figure_mapping(image_folder) |
|
|
|
|
|
def format_sentences(sentences): |
|
""" |
|
Converte la lista in una stringa, sostituendo i delimitatori '|' con un a capo senza aggiungere spazi extra. |
|
Interrompe il processo se trova '.end'. |
|
""" |
|
|
|
sentences_str = " ".join(sentences) |
|
|
|
|
|
if ".end" in sentences_str: |
|
sentences_str = sentences_str.split(".end")[0] |
|
|
|
|
|
formatted_response = sentences_str.replace(" |", "\n").replace("|", "\n") |
|
|
|
return formatted_response |
|
|
|
def find_relevant_sentences(query, threshold=0.2, top_n=6): |
|
"""Trova le frasi più rilevanti e le immagini collegate.""" |
|
global sentences |
|
query_embedding = model.encode([query]) |
|
similarities = cosine_similarity(query_embedding, embeddings).flatten() |
|
|
|
filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold] |
|
filtered_results.sort(key=lambda x: x[1], reverse=True) |
|
|
|
if not filtered_results: |
|
return "**RESPONSE:**\nNo relevant sentences found for your query.", None |
|
|
|
relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]] |
|
relevant_images = set() |
|
|
|
for sent in relevant_sentences: |
|
figure_numbers = extract_figure_numbers(sent) |
|
for figure_number in figure_numbers: |
|
if figure_number in figure_mapping: |
|
image_path = os.path.join(image_folder, figure_mapping[figure_number]) |
|
if os.path.exists(image_path): |
|
relevant_images.add(image_path) |
|
|
|
|
|
formatted_response = "****\n" + format_sentences(relevant_sentences) |
|
return formatted_response, list(relevant_images) |
|
|
|
|
|
|
|
|
|
examples = [ |
|
["irresponsible use of the machine?"], |
|
["If I have a problem how can I get help?"], |
|
["precautions when using the cutting machine"], |
|
["How do I DRILL BIT REPLACEMENT ?"], |
|
["instructions for changing the knife"], |
|
["lubrication for the knife holder cylinder"] |
|
] |
|
|
|
iface = gr.Interface( |
|
fn=find_relevant_sentences, |
|
inputs=gr.Textbox(label="Insert your query"), |
|
outputs=[ |
|
gr.Textbox(label="Relevant sentences"), |
|
gr.Gallery(label="Relevant figures", value=[os.path.join(image_folder, "4b.jpg")]) |
|
], |
|
examples=examples, |
|
title="Manual Querying System", |
|
description="Enter a question about the machine, and this tool will find the most relevant sentences and associated figures from the manual.", |
|
) |
|
|
|
iface.launch() |