Spaces:
Running
Running
File size: 8,963 Bytes
9346f1c 4103566 9346f1c 4596a70 8b1f7a0 01ea22b b98f07f 54eae7e 3b3db42 0b8a8d2 3b3db42 0b8a8d2 3b3db42 0b8a8d2 3b3db42 3d8dbe8 8fc70f8 3b3db42 bbd72ab 3b3db42 fed47e0 b98f07f fed47e0 2a73469 8fc70f8 10f9b3c 30dede7 fabb601 8fc70f8 4103566 fabb601 8fc70f8 fabb601 8fc70f8 fabb601 1b8a36b a885f09 ffefe11 818f024 614ee1f 8fc70f8 4103566 0b8a8d2 4103566 0b8a8d2 4103566 0b8a8d2 4103566 f37f1d5 0b8a8d2 4103566 c12bb36 f37f1d5 9b7b608 4103566 beaaa9e 630e81b 0b8a8d2 8fc70f8 0b8a8d2 630e81b 8fc70f8 630e81b eae0069 e4dae69 eae0069 e4dae69 eae0069 07f9614 eae0069 630e81b 01233b7 58733e4 d4ccaf3 10f9b3c 8daa060 6d848c3 89c30b1 564342c e4dae69 564342c 630e81b eae0069 e4dae69 eae0069 e4dae69 0b8a8d2 eae0069 0b8a8d2 8fc70f8 0b8a8d2 65af9f4 d4ccaf3 e7226cc 65af9f4 21ce100 e7226cc 21ce100 d4ccaf3 c6f7010 fed47e0 d4ccaf3 fed47e0 e7226cc fed47e0 8daa060 d4ccaf3 fed47e0 d4ccaf3 fed47e0 d4ccaf3 fed47e0 d4ccaf3 8daa060 f7d1b51 71f25ab f7d1b51 818f024 f7d1b51 10f9b3c 511c060 10f9b3c 8fc70f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
SPEECH_BENCHMARK_COLS,
COLS,
COLS_SPEECH,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
AutoEvalColumnSpeech,
ModelType,
fields,
WeightType,
Precision, REGION_MAP
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import handle_csv_submission
text_sample_path = "src/submission_samples/model_name_text.csv"
speech_sample_path = "src/submission_samples/model_name_speech.csv"
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
token=TOKEN
)
except Exception:
restart_space()
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe, result_type='text'):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
column_class = AutoEvalColumn if result_type == "text" else AutoEvalColumnSpeech
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(column_class)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(column_class) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(column_class) if c.never_hidden],
label="Select Columns to Display:",
),
# search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
search_columns=[column_class.model.name],
hide_columns=[c.name for c in fields(column_class) if c.hidden],
filter_columns=[
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
# ColumnFilter(
# AutoEvalColumn.params.name,
# type="slider",
# min=0.01,
# max=150,
# label="Select the number of parameters (B)",
# ),
# ColumnFilter(
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
# ),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
leaderboard_dataframes = {
region: get_leaderboard_df(
EVAL_RESULTS_PATH,
EVAL_REQUESTS_PATH,
COLS,
BENCHMARK_COLS,
region if region != "All" else None,
result_type="text"
)
for region in REGION_MAP.values()
}
leaderboard_dataframes_speech = {
region: get_leaderboard_df(
EVAL_RESULTS_PATH,
EVAL_REQUESTS_PATH,
COLS_SPEECH,
SPEECH_BENCHMARK_COLS,
region if region != "All" else None,
result_type="speech"
)
for region in REGION_MAP.values()
}
# Preload leaderboard blocks
js_switch_code = """
(displayRegion) => {
const regionMap = {
"All": "All",
"Africa": "Africa",
"Americas/Oceania": "Americas_Oceania",
"Asia (S)": "Asia_S",
"Asia (SE)": "Asia_SE",
"Asia (W, C)": "Asia_W_C",
"Asia (E)": "Asia_E",
"Europe (W, N, S)": "Europe_W_N_S",
"Europe (E)": "Europe_E"
};
const region = regionMap[displayRegion];
document.querySelectorAll('[id^="leaderboard-"]').forEach(el => el.classList.remove("visible"));
const target = document.getElementById("leaderboard-" + region);
if (target) {
target.classList.add("visible");
// π§ Trigger reflow to fix row cutoff
void target.offsetHeight; // Trigger reflow
target.style.display = "none"; // Hide momentarily
requestAnimationFrame(() => {
target.style.display = "";
});
}
}
"""
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
mSTEB Text Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
region_dropdown = gr.Dropdown(
choices=list(REGION_MAP.keys()),
label="Select Region",
value="All",
interactive=True,
)
# Region-specific leaderboard containers
for display_name, region_key in REGION_MAP.items():
with gr.Column(
elem_id=f"leaderboard-{region_key}",
elem_classes=["visible"] if region_key == "All" else []
):
init_leaderboard(leaderboard_dataframes[region_key], result_type="text")
# JS hook to toggle visible leaderboard
region_dropdown.change(None, js=js_switch_code, inputs=[region_dropdown])
with gr.TabItem("π£οΈ mSTEB Speech Benchmark", elem_id="speech-benchmark-tab-table", id=1):
with gr.Row():
speech_region_dropdown = gr.Dropdown(
choices=list(REGION_MAP.keys()),
label="Select Region",
value="All",
interactive=True,
)
for display_name, region_key in REGION_MAP.items():
with gr.Column(
elem_id=f"speech-leaderboard-{region_key}",
elem_classes=["visible"] if region_key == "All" else []
):
init_leaderboard(leaderboard_dataframes_speech[region_key], result_type='speech')
speech_region_dropdown.change(
None,
js=js_switch_code.replace("leaderboard-", "speech-leaderboard-"),
inputs=[speech_region_dropdown]
)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.File(
label="π Sample Text CSV",
value=text_sample_path,
interactive=False,
file_types=[".csv"]
)
gr.File(
label="π Sample Speech CSV",
value=speech_sample_path,
interactive=False,
file_types=[".csv"]
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
result_type = gr.Radio(choices=["text", "speech"], label="Result Type", value="text")
csv_file = gr.File(label="Upload CSV File", file_types=[".csv"])
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
handle_csv_submission,
[
model_name_textbox,
csv_file,
result_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|