File size: 9,571 Bytes
3b3db42
8b1f7a0
 
3b3db42
8b1f7a0
 
 
 
 
 
0b8a8d2
8b1f7a0
 
 
 
 
5fe3b95
 
1ba1924
 
 
8b1f7a0
1ba1924
8b1f7a0
3d8dbe8
1ba1924
3d8dbe8
4f3c2a8
8b1f7a0
 
 
1ba1924
8b1f7a0
89c30b1
8b1f7a0
 
0b8a8d2
1ba1924
8b1f7a0
 
 
4f3c2a8
89c30b1
8b1f7a0
 
3d8dbe8
8b1f7a0
 
 
 
 
 
 
 
3d8dbe8
8b1f7a0
 
 
3d8dbe8
c875275
8b1f7a0
4f3c2a8
3d8dbe8
c875275
1ba1924
 
 
 
 
8b1f7a0
 
 
0b8a8d2
 
 
 
8b1f7a0
 
4f3c2a8
 
8b1f7a0
 
 
 
 
89c30b1
 
 
 
0b8a8d2
89c30b1
 
 
 
 
 
 
 
 
 
8b1f7a0
 
c875275
8b1f7a0
 
 
1ba1924
 
8b1f7a0
89c30b1
 
8b1f7a0
 
1ba1924
 
3d8dbe8
8b1f7a0
 
 
 
 
3d8dbe8
8b1f7a0
 
 
ceb2102
8b1f7a0
01ea22b
8b1f7a0
0b8a8d2
1ba1924
3da6495
0b8a8d2
 
89c30b1
3da6495
89c30b1
0b8a8d2
89c30b1
3da6495
 
 
 
 
 
8b1f7a0
 
f37f1d5
 
 
 
 
9b7b608
f37f1d5
8b1f7a0
f37f1d5
 
 
 
8b1f7a0
 
0b8a8d2
630e81b
 
 
 
8b1f7a0
 
 
 
1ba1924
 
8b1f7a0
1ba1924
8b1f7a0
 
 
 
 
 
 
 
 
 
 
3d8dbe8
8b1f7a0
 
 
 
 
 
0b8a8d2
1ba1924
0b8a8d2
1ba1924
8b1f7a0
 
 
0b8a8d2
 
 
 
8b1f7a0
 
 
 
 
 
 
 
 
 
1ba1924
8b1f7a0
 
1ba1924
8b1f7a0
0b8a8d2
e4dae69
 
1ba1924
8b1f7a0
 
 
 
 
 
 
 
 
 
 
ceb2102
 
3b3db42
8b1f7a0
e4dae69
 
8b1f7a0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import glob
import json
import math
import os
from dataclasses import dataclass

import dateutil
import numpy as np

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, SpeechTasks
from src.submission.check_validity import is_model_on_hub


@dataclass
class EvalResult:
    """Represents one full evaluation. Built from a combination of the result and request file for a given run.
    """
    eval_name: str # org_model_precision (uid)
    full_model: str # org/model (path on hub)
    org: str 
    model: str
    revision: str # commit hash, "" if main
    results: dict
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original # Original or Adapter
    architecture: str = "Unknown" 
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = "" # submission date of request file
    still_on_hub: bool = False
    regions: dict = None

    @classmethod
    def init_from_json_file(self, json_filepath, result_type='speech'):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        config = data.get("config")
        regions = data.get("regions", {})  # Parse regions from JSON

        # Precision
        precision = Precision.from_str(config.get("model_dtype"))

        # Get model and org
        org_and_model = config.get("model_name", config.get("model_args", None))
        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        still_on_hub, _, model_config = is_model_on_hub(
            full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
        )
        architecture = "?"
        if model_config is not None:
            architectures = getattr(model_config, "architectures", None)
            if architectures:
                architecture = ";".join(architectures)

        # Extract results available in this file (some results are split in several files)
        results = {}

        task_enum = Tasks if result_type == "text" else SpeechTasks

        for task in task_enum:
            task = task.value

            # We average all scores of a given metric (not all metrics are present in all files)
            accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
            if accs.size == 0 or any([acc is None for acc in accs]):
                continue

            mean_acc = np.mean(accs) * 100.0
            results[task.benchmark] = mean_acc

        regions_processed_results = {}
        for region, region_results in regions.items():
            processed = {}
            for task in task_enum:
                task = task.value

                # We average all scores of a given metric (not all metrics are present in all files)
                accs = np.array([v.get(task.metric, None) for k, v in region_results.items() if task.benchmark == k])
                if accs.size == 0 or any([acc is None for acc in accs]):
                    continue

                mean_acc = np.mean(accs) * 100.0
                processed[task.benchmark] = mean_acc
            regions_processed_results[region] = processed
        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,  
            revision= config.get("model_sha", ""),
            still_on_hub=still_on_hub,
            architecture=architecture,
            regions=regions_processed_results
        )

    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)

        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            self.model_type = ModelType.from_str(request.get("model_type", ""))
            self.weight_type = WeightType[request.get("weight_type", "Original")]
            self.license = request.get("license", "?")
            self.likes = request.get("likes", 0)
            self.num_params = request.get("params", 0)
            self.date = request.get("submitted_time", "")
        except Exception:
            print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")

    def to_dict(self, region=None, result_type='text'):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        # print(self.results)
        task_enum = Tasks if result_type == "text" else SpeechTasks

        results = self.results if region is None else self.regions.get(region, {})
        acc_values = [
            results[task.value.benchmark]
            for task in task_enum
            if task.value.metric == "acc" and task.value.benchmark in results
        ]
        # print(acc_values)

        average = sum(acc_values) / len(acc_values) if acc_values else None

        # average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            # AutoEvalColumn.precision.name: self.precision.value.name,
            # AutoEvalColumn.model_type.name: self.model_type.value.name,
            # # AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            # AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            # AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: self.full_model,
            # AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: average,
            # AutoEvalColumn.license.name: self.license,
            # AutoEvalColumn.likes.name: self.likes,
            # AutoEvalColumn.params.name: self.num_params,
            # AutoEvalColumn.still_on_hub.name: self.still_on_hub,
        }

        for task in task_enum:
            if task.value.benchmark in results:
                data_dict[task.value.col_name] = results[task.value.benchmark]
            else:
                data_dict[task.value.col_name] = None  # or np.nan if preferred

        return data_dict


def get_request_file_for_model(requests_path, model_name, precision):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if (
                req_content["status"] in ["FINISHED"]
                and req_content["precision"] == precision.split(".")[-1]
            ):
                request_file = tmp_request_file
    return request_file


def get_raw_eval_results(results_path: str, requests_path: str, result_type: str = "text") -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    # result type
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if result_type == "text" and "msteb_text_results" not in root:
            continue
        if result_type == "speech" and "msteb_speech_results" not in root:
            continue
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath,result_type)
        # print('testing this one')
        # print(eval_result)
        eval_result.update_with_request_file(requests_path)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            v.to_dict() # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue
    # print('results')
    # print(results)

    return results