File size: 3,814 Bytes
c23107d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
title: πΌ EfficientNetV2B0 Flower Classifier
emoji: πΈ
colorFrom: yellow
colorTo: pink
sdk: gradio
app_file: app.py
pinned: true
---
[](https://huggingface.co/spaces/McKlay/efficientnet-flower-classifier)
[](https://www.gradio.app/)
[](https://opensource.org/licenses/MIT)





# πΌ EfficientNetV2B0 Flower Classifier
An elegant and efficient image classifier trained to recognize 5 flower types: **daisy**, **dandelion**, **roses**, **sunflowers**, and **tulips**.
Powered by **TensorFlow**, fine-tuned using **EfficientNetV2B0**, and deployed with **Gradio** on **Hugging Face Spaces**.



---
## Live Demo
π **Try the app here**: [Hugging Face Space](https://huggingface.co/spaces/McKlay/efficientnet-flower-classifier)
Upload a flower image and get the top 5 predictions with confidence scores.
---
## Model Details
- **Backbone**: EfficientNetV2B0 (`keras.applications`)
- **Framework**: TensorFlow 2.x
- **Dataset**: TensorFlow Flowers (~3,700 images, 5 classes)
- **Classes**: `daisy`, `dandelion`, `roses`, `sunflowers`, `tulips`
- **Validation Accuracy**: **91.28%**
- **Training Strategy**:
- Stage 1: 5 epochs (base frozen)
- Stage 2: 5 epochs (fine-tuning all layers)
- **Preprocessing**: `preprocess_input()` scaled to [-1, 1]
---
## π Training Notebooks
β
Kaggle: [Flower Recognition β Fine-Tuning EfficientNetV2B0](https://www.kaggle.com/code/claymarksarte/flower-recognition-fine-tuning)
Full training notebook with dataset loading, preprocessing, model building, and evaluation.
β οΈ Colab: (Archived) Training started in [Google Colab](https://colab.research.google.com/) but was moved to Kaggle due to GPU quota limitations.
You can still view the original Colab notebook here: [Colab Fine-Tuning](https://colab.research.google.com/drive/1fSrxw2Pi48Adu25s1BcQFr2MnkLOCNzH?usp=sharing)
---
## ## π Project Structure
efficientnet-flower-classifier/
βββ app.py # Gradio app (entry point)
βββ models/
β βββ flower_model.h5 # Trained Keras model
βββ requirements.txt
βββ README.md
---
## Run Locally
```bash
git clone https://github.com/YOUR_USERNAME/8_FlowerRecognition-HF.git
cd 8_FlowerRecognition-HF
pip install -r requirements.txt
python app.py
```
---
## Dependencies
- tensorflow
- gradio
- numpy
- pillow
---
## Acknowledgments
- [TensorFlow Flower Dataset](https://www.tensorflow.org/datasets/catalog/tf_flowers)
- [EfficientNetV2 Paper](https://arxiv.org/abs/2104.00298) β Tan & Le
---
## π§βπ» Author
Clay Mark Sarte
[GitHub](https://github.com/McKlay) | [LinkedIn](https://www.linkedin.com/in/clay-mark-sarte-283855147/)
|