File size: 1,189 Bytes
c23107d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input
# Load the trained model
model = load_model("models/flower_model.h5")
# Class labels
class_names = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']
# Preprocessing + prediction
def predict_flower(img):
img = img.resize((224, 224))
img_array = image.img_to_array(img) # raw [0, 255]
img_array = preprocess_input(img_array) # normalize to [-1, 1]
img_array = np.expand_dims(img_array, axis=0)
preds = model.predict(img_array)[0]
return {
f"{class_names[i]} ({preds[i]:.4f})": float(preds[i])
for i in range(len(class_names))
}
# Gradio interface
demo = gr.Interface(
fn=predict_flower,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=5),
title="🌸 Flower Classifier",
description="Upload a flower image to classify it into one of the five categories: daisy, dandelion, roses, sunflowers, or tulips.",
)
if __name__ == "__main__":
demo.launch()
|