Mendoza33 commited on
Commit
ce12c26
·
verified ·
1 Parent(s): 2477fc4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -5
app.py CHANGED
@@ -4,17 +4,24 @@ import gradio as gr
4
  # Load pre-trained models
5
  stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
6
  nlp_model = pipeline("text-generation", model="sshleifer/tiny-gpt2")
7
- tts_model = pipeline("text-to-speech", model="facebook/fastspeech2-en-ljspeech")
8
-
9
 
10
  # Define a function to handle the workflow
11
  def conversation(audio):
12
  # Step 1: Convert speech to text
13
  text = stt_model(audio)["text"]
14
- # Step 2: Generate a response
15
- response = nlp_model(text, max_length=50)[0]["generated_text"]
16
- # Step 3: Convert response text to speech
 
 
 
 
 
 
 
17
  audio_response = tts_model(response)
 
18
  return text, response, audio_response
19
 
20
  # Create Gradio Interface
 
4
  # Load pre-trained models
5
  stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
6
  nlp_model = pipeline("text-generation", model="sshleifer/tiny-gpt2")
7
+ tts_model = pipeline("text-to-speech", model="coqui/XTTS-v2")
 
8
 
9
  # Define a function to handle the workflow
10
  def conversation(audio):
11
  # Step 1: Convert speech to text
12
  text = stt_model(audio)["text"]
13
+
14
+ # Step 2: Generate a response (contextual supermarket-related training)
15
+ if "supermarket" in text.lower():
16
+ # Simple supermarket-based response; this can be expanded with more specific data
17
+ response = "Are you looking for something in particular at the supermarket?"
18
+ else:
19
+ # Default response generation (using GPT-2 model)
20
+ response = nlp_model(text, max_length=50)[0]["generated_text"]
21
+
22
+ # Step 3: Convert response text to speech using XTTS-v2
23
  audio_response = tts_model(response)
24
+
25
  return text, response, audio_response
26
 
27
  # Create Gradio Interface