Update app.py
Browse files
app.py
CHANGED
|
@@ -65,18 +65,19 @@ def diarize_audio(wav_audio):
|
|
| 65 |
diarization = pipeline(wav_audio)
|
| 66 |
return diarization
|
| 67 |
|
| 68 |
-
def transcribe_audio_stream(audio, model_name
|
| 69 |
wav_audio = convert_audio_to_wav(audio)
|
| 70 |
speech, rate = librosa.load(wav_audio, sr=16000)
|
| 71 |
duration = len(speech) / rate
|
| 72 |
|
|
|
|
|
|
|
| 73 |
if "whisper" in model_name:
|
| 74 |
processor = WhisperProcessor.from_pretrained(model_name)
|
| 75 |
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
| 76 |
|
| 77 |
chunk_duration = 30 # seconds
|
| 78 |
|
| 79 |
-
transcriptions = []
|
| 80 |
for i in range(0, int(duration), chunk_duration):
|
| 81 |
end = min(i + chunk_duration, duration)
|
| 82 |
chunk = speech[int(i * rate):int(end * rate)]
|
|
@@ -94,7 +95,6 @@ def transcribe_audio_stream(audio, model_name, diarization):
|
|
| 94 |
|
| 95 |
chunk_duration = 10 # seconds
|
| 96 |
|
| 97 |
-
transcriptions = []
|
| 98 |
for i in range(0, int(duration), chunk_duration):
|
| 99 |
end = min(i + chunk_duration, duration)
|
| 100 |
chunk = speech[int(i * rate):int(end * rate)]
|
|
@@ -105,7 +105,7 @@ def transcribe_audio_stream(audio, model_name, diarization):
|
|
| 105 |
transcriptions.append((timestamp, result["text"]))
|
| 106 |
yield transcriptions, progress
|
| 107 |
|
| 108 |
-
|
| 109 |
speaker_transcriptions = []
|
| 110 |
for segment in diarization.itertracks(yield_label=True):
|
| 111 |
start, end, speaker = segment
|
|
@@ -116,7 +116,6 @@ def transcribe_audio_stream(audio, model_name, diarization):
|
|
| 116 |
if start_time <= ts <= end_time:
|
| 117 |
text_segment += text + " "
|
| 118 |
speaker_transcriptions.append((start_time, end_time, speaker, text_segment.strip()))
|
| 119 |
-
|
| 120 |
return speaker_transcriptions
|
| 121 |
|
| 122 |
def detect_and_select_model(audio):
|
|
@@ -127,39 +126,48 @@ def detect_and_select_model(audio):
|
|
| 127 |
|
| 128 |
def save_transcription(transcriptions, file_format):
|
| 129 |
if file_format == "txt":
|
| 130 |
-
|
|
|
|
| 131 |
for start, end, speaker, text in transcriptions:
|
| 132 |
-
f.write(f"[{start}-{end}] {speaker}: {text}\n")
|
| 133 |
-
return
|
| 134 |
elif file_format == "json":
|
| 135 |
-
|
|
|
|
| 136 |
json.dump(transcriptions, f)
|
| 137 |
-
return
|
| 138 |
|
| 139 |
def combined_interface(audio):
|
| 140 |
try:
|
| 141 |
language, model_options = detect_and_select_model(audio)
|
| 142 |
selected_model = model_options[0]
|
| 143 |
|
| 144 |
-
yield language, model_options, selected_model,
|
| 145 |
|
| 146 |
wav_audio = convert_audio_to_wav(audio)
|
| 147 |
diarization = diarize_audio(wav_audio)
|
| 148 |
transcriptions = []
|
| 149 |
-
|
|
|
|
| 150 |
transcriptions = partial_transcriptions
|
| 151 |
-
transcriptions_text = "\n".join([f"[{start}-{end}] {
|
| 152 |
progress_int = math.floor(progress)
|
| 153 |
status = f"Transcribing... {progress_int}% complete"
|
| 154 |
-
yield language, model_options, selected_model, transcriptions_text, progress_int, status
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
| 158 |
|
| 159 |
-
yield language, model_options, selected_model, transcriptions_text, 100, "Transcription complete!"
|
| 160 |
|
| 161 |
except Exception as e:
|
| 162 |
-
yield str(e), [], "", "An error occurred during processing.", 0, "Error"
|
| 163 |
|
| 164 |
iface = gr.Interface(
|
| 165 |
fn=combined_interface,
|
|
@@ -171,8 +179,8 @@ iface = gr.Interface(
|
|
| 171 |
gr.Textbox(label="Transcription", lines=10),
|
| 172 |
gr.Slider(minimum=0, maximum=100, label="Progress", interactive=False),
|
| 173 |
gr.Textbox(label="Status"),
|
| 174 |
-
gr.File(label="Download Transcription (TXT)", type="filepath"
|
| 175 |
-
gr.File(label="Download Transcription (JSON)", type="filepath"
|
| 176 |
],
|
| 177 |
title="Multilingual Audio Transcriber with Real-time Display, Timestamps, and Speaker Diarization",
|
| 178 |
description="Upload an audio file to detect the language, select the transcription model, and get the transcription with timestamps and speaker labels in real-time. Download the transcription as TXT or JSON. Optimized for Spanish, English, and Portuguese.",
|
|
|
|
| 65 |
diarization = pipeline(wav_audio)
|
| 66 |
return diarization
|
| 67 |
|
| 68 |
+
def transcribe_audio_stream(audio, model_name):
|
| 69 |
wav_audio = convert_audio_to_wav(audio)
|
| 70 |
speech, rate = librosa.load(wav_audio, sr=16000)
|
| 71 |
duration = len(speech) / rate
|
| 72 |
|
| 73 |
+
transcriptions = []
|
| 74 |
+
|
| 75 |
if "whisper" in model_name:
|
| 76 |
processor = WhisperProcessor.from_pretrained(model_name)
|
| 77 |
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
| 78 |
|
| 79 |
chunk_duration = 30 # seconds
|
| 80 |
|
|
|
|
| 81 |
for i in range(0, int(duration), chunk_duration):
|
| 82 |
end = min(i + chunk_duration, duration)
|
| 83 |
chunk = speech[int(i * rate):int(end * rate)]
|
|
|
|
| 95 |
|
| 96 |
chunk_duration = 10 # seconds
|
| 97 |
|
|
|
|
| 98 |
for i in range(0, int(duration), chunk_duration):
|
| 99 |
end = min(i + chunk_duration, duration)
|
| 100 |
chunk = speech[int(i * rate):int(end * rate)]
|
|
|
|
| 105 |
transcriptions.append((timestamp, result["text"]))
|
| 106 |
yield transcriptions, progress
|
| 107 |
|
| 108 |
+
def merge_diarization_with_transcription(transcriptions, diarization, rate):
|
| 109 |
speaker_transcriptions = []
|
| 110 |
for segment in diarization.itertracks(yield_label=True):
|
| 111 |
start, end, speaker = segment
|
|
|
|
| 116 |
if start_time <= ts <= end_time:
|
| 117 |
text_segment += text + " "
|
| 118 |
speaker_transcriptions.append((start_time, end_time, speaker, text_segment.strip()))
|
|
|
|
| 119 |
return speaker_transcriptions
|
| 120 |
|
| 121 |
def detect_and_select_model(audio):
|
|
|
|
| 126 |
|
| 127 |
def save_transcription(transcriptions, file_format):
|
| 128 |
if file_format == "txt":
|
| 129 |
+
file_path = "/tmp/transcription.txt"
|
| 130 |
+
with open(file_path, "w") as f:
|
| 131 |
for start, end, speaker, text in transcriptions:
|
| 132 |
+
f.write(f"[{start:.2f}-{end:.2f}] {speaker}: {text}\n")
|
| 133 |
+
return file_path
|
| 134 |
elif file_format == "json":
|
| 135 |
+
file_path = "/tmp/transcription.json"
|
| 136 |
+
with open(file_path, "w") as f:
|
| 137 |
json.dump(transcriptions, f)
|
| 138 |
+
return file_path
|
| 139 |
|
| 140 |
def combined_interface(audio):
|
| 141 |
try:
|
| 142 |
language, model_options = detect_and_select_model(audio)
|
| 143 |
selected_model = model_options[0]
|
| 144 |
|
| 145 |
+
yield language, model_options, selected_model, "", 0, "Initializing...", None, None
|
| 146 |
|
| 147 |
wav_audio = convert_audio_to_wav(audio)
|
| 148 |
diarization = diarize_audio(wav_audio)
|
| 149 |
transcriptions = []
|
| 150 |
+
|
| 151 |
+
for partial_transcriptions, progress in transcribe_audio_stream(audio, selected_model):
|
| 152 |
transcriptions = partial_transcriptions
|
| 153 |
+
transcriptions_text = "\n".join([f"[{start}-{end}] {text}" for start, end, text in transcriptions])
|
| 154 |
progress_int = math.floor(progress)
|
| 155 |
status = f"Transcribing... {progress_int}% complete"
|
| 156 |
+
yield language, model_options, selected_model, transcriptions_text, progress_int, status, None, None
|
| 157 |
+
|
| 158 |
+
rate = librosa.get_samplerate(wav_audio)
|
| 159 |
+
speaker_transcriptions = merge_diarization_with_transcription(transcriptions, diarization, rate)
|
| 160 |
+
transcriptions_text = "\n".join([f"[{start:.2f}-{end:.2f}] {speaker}: {text}" for start, end, speaker, text in speaker_transcriptions])
|
| 161 |
|
| 162 |
+
txt_file_path = save_transcription(speaker_transcriptions, "txt")
|
| 163 |
+
json_file_path = save_transcription(speaker_transcriptions, "json")
|
| 164 |
+
|
| 165 |
+
os.remove(wav_audio)
|
| 166 |
|
| 167 |
+
yield language, model_options, selected_model, transcriptions_text, 100, "Transcription complete!", txt_file_path, json_file_path
|
| 168 |
|
| 169 |
except Exception as e:
|
| 170 |
+
yield str(e), [], "", "An error occurred during processing.", 0, "Error", None, None
|
| 171 |
|
| 172 |
iface = gr.Interface(
|
| 173 |
fn=combined_interface,
|
|
|
|
| 179 |
gr.Textbox(label="Transcription", lines=10),
|
| 180 |
gr.Slider(minimum=0, maximum=100, label="Progress", interactive=False),
|
| 181 |
gr.Textbox(label="Status"),
|
| 182 |
+
gr.File(label="Download Transcription (TXT)", type="filepath"),
|
| 183 |
+
gr.File(label="Download Transcription (JSON)", type="filepath")
|
| 184 |
],
|
| 185 |
title="Multilingual Audio Transcriber with Real-time Display, Timestamps, and Speaker Diarization",
|
| 186 |
description="Upload an audio file to detect the language, select the transcription model, and get the transcription with timestamps and speaker labels in real-time. Download the transcription as TXT or JSON. Optimized for Spanish, English, and Portuguese.",
|