import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline # Load model and tokenizer from Hugging Face Hub tokenizer = AutoTokenizer.from_pretrained("Mhammad2023/bert-finetuned-ner-torch") model = AutoModelForTokenClassification.from_pretrained("Mhammad2023/bert-finetuned-ner-torch") # Use aggregation_strategy="simple" to group B/I tokens classifier = pipeline( "token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple" ) def predict(text): results = classifier(text) if not results: return "No entities found" output = [] for entity in results: output.append(f"{entity['word']}: {entity['entity_group']} ({round(entity['score']*100, 2)}%)") return "\n".join(output) gr.Interface( fn=predict, inputs="text", outputs="text", title="Named Entity Recognition" ).launch()