Spaces:
Runtime error
Runtime error
# https://huggingface.co/spaces/Mi-Ni/PDFtoAudio | |
# Unfortunately I wasn´t able to create a running space. I couldn´t adapt my code to create a running app in a huggingface space. After solving a lot of issues I ended up with a problem I wasn´t able to solve. Nevertheless, you´ll find my code below. Sorry that | |
#here are the imports: other imports and modules see in requirements | |
import gradio as gr | |
import numpy as np | |
#here is the code | |
# Create a function to extract text | |
def text_extraction(element): | |
# Extracting the text from the in-line text element | |
line_text = element.get_text() | |
# Find the formats of the text | |
# Initialize the list with all the formats that appeared in the line of text | |
line_formats = [] | |
for text_line in element: | |
if isinstance(text_line, LTTextContainer): | |
# Iterating through each character in the line of text | |
for character in text_line: | |
if isinstance(character, LTChar): | |
# Append the font name of the character | |
line_formats.append(character.fontname) | |
# Append the font size of the character | |
line_formats.append(character.size) | |
# Find the unique font sizes and names in the line | |
format_per_line = list(set(line_formats)) | |
# Return a tuple with the text in each line along with its format | |
return (line_text, format_per_line) | |
def read_pdf(pdf_path): | |
# Use pdf_path.name to get the file name from the gr.File object | |
with open(pdf_path.name, 'rb') as pdfFileObj: | |
pdfReaded = PyPDF2.PdfReader(pdfFileObj) | |
# create a PDF file object | |
#pdfFileObj = open(pdf_path, 'rb') | |
# create a PDF reader object | |
#pdfReaded = PyPDF2.PdfReader(pdfFileObj) | |
# Create the dictionary to extract text from each image | |
text_per_page = {} | |
# We extract the pages from the PDF | |
for pagenum, page in enumerate(extract_pages(pdf_path)): | |
print("Elaborating Page_" +str(pagenum)) | |
# Initialize the variables needed for the text extraction from the page | |
pageObj = pdfReaded.pages[pagenum] | |
page_text = [] | |
line_format = [] | |
text_from_images = [] | |
text_from_tables = [] | |
page_content = [] | |
# Initialize the number of the examined tables | |
table_num = 0 | |
first_element= True | |
table_extraction_flag= False | |
# Open the pdf file | |
pdf = pdfplumber.open(pdf_path) | |
# Find the examined page | |
page_tables = pdf.pages[pagenum] | |
# Find the number of tables on the page | |
tables = page_tables.find_tables() | |
# Find all the elements | |
page_elements = [(element.y1, element) for element in page._objs] | |
# Sort all the elements as they appear in the page | |
page_elements.sort(key=lambda a: a[0], reverse=True) | |
# Find the elements that composed a page | |
for i,component in enumerate(page_elements): | |
# Extract the position of the top side of the element in the PDF | |
pos= component[0] | |
# Extract the element of the page layout | |
element = component[1] | |
# Check if the element is a text element | |
if isinstance(element, LTTextContainer): | |
# Check if the text appeared in a table | |
if table_extraction_flag == False: | |
# Use the function to extract the text and format for each text element | |
(line_text, format_per_line) = text_extraction(element) | |
# Append the text of each line to the page text | |
page_text.append(line_text) | |
# Append the format for each line containing text | |
line_format.append(format_per_line) | |
page_content.append(line_text) | |
else: | |
# Omit the text that appeared in a table | |
pass | |
# Create the key of the dictionary | |
dctkey = 'Page_'+str(pagenum) | |
# Add the list of list as the value of the page key | |
text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content] | |
# Closing the pdf file object | |
pdfFileObj.close() | |
return text_per_page | |
#pdf_path = 'Article 11 Hidden Technical Debt in Machine Learning Systems' | |
pdf_path = gr.File() | |
text_per_page = read_pdf(pdf_path) | |
text_per_page.keys() | |
page_0 = text_per_page['Page_0'] | |
page_1 = text_per_page['Page_1'] | |
page_2 = text_per_page['Page_2'] | |
page_3 = text_per_page['Page_3'] | |
page_4 = text_per_page['Page_4'] | |
page_5 = text_per_page['Page_5'] | |
page_6 = text_per_page['Page_6'] | |
page_7 = text_per_page['Page_7'] | |
page_8 = text_per_page['Page_8'] | |
page_all = page_0 + page_1 +page_2 + page_3 +page_4 + page_5 +page_6 + page_7 + page_8 | |
# Flatten the nested lists | |
flattened_page_all = list(chain.from_iterable(page_all)) | |
# Convert the flattened list to a string | |
page_all_string = ''.join(map(str, flattened_page_all)) | |
# Use regular expression to find the abstract text including the delimiters | |
match = re.search(r'Abstract\n(.*?)(?=\d+\nIntroduction)', page_all_string, re.DOTALL) | |
# Check if a match is found | |
if match: | |
abstract_text = match.group(1) | |
#print(abstract_text) | |
else: | |
print("Abstract not found.") | |
# Initialize summarization pipeline | |
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") | |
# Get the summary | |
summary_result = summarizer(abstract_text, max_length=100, min_length=30, do_sample=False) | |
# Extract the summary text from the result | |
summary_text = summary_result[0]['summary_text'] | |
# Replace the dot between two sentences with a space and "and" | |
merged_summary = summary_text.replace('. ', ' and ', 1) | |
# Find the index of "and" in the merged summary | |
and_index = merged_summary.find('and') | |
# Replace the first letter after "and" with its lowercase equivalent | |
if and_index != -1 and and_index + 4 < len(merged_summary): | |
merged_summary = merged_summary[:and_index + 4] + merged_summary[and_index + 4].lower() + merged_summary[and_index + 5:] | |
# Print the merged summary | |
#print(merged_summary) | |
merged_summary_1 = "A" | |
synthesiser = pipeline("text-to-speech", "suno/bark") | |
speech = synthesiser(merged_summary_1, forward_params={"do_sample": True}) | |
Audio(speech["audio"], rate=speech["sampling_rate"]) | |
def PDF_abstract(audio): | |
#pdf_path = gr.File() | |
pdf_path = 'Article 11 Hidden Technical Debt in Machine Learning Systems' | |
text_per_page = read_pdf(pdf_path) | |
text_per_page.keys() | |
page_0 = text_per_page['Page_0'] | |
page_1 = text_per_page['Page_1'] | |
page_2 = text_per_page['Page_2'] | |
page_3 = text_per_page['Page_3'] | |
page_4 = text_per_page['Page_4'] | |
page_5 = text_per_page['Page_5'] | |
page_6 = text_per_page['Page_6'] | |
page_7 = text_per_page['Page_7'] | |
page_8 = text_per_page['Page_8'] | |
page_all = page_0 + page_1 +page_2 + page_3 +page_4 + page_5 +page_6 + page_7 + page_8 | |
# Flatten the nested lists | |
flattened_page_all = list(chain.from_iterable(page_all)) | |
# Convert the flattened list to a string | |
page_all_string = ''.join(map(str, flattened_page_all)) | |
# Use regular expression to find the abstract text including the delimiters | |
match = re.search(r'Abstract\n(.*?)(?=\d+\nIntroduction)', page_all_string, re.DOTALL) | |
# Check if a match is found | |
if match: | |
abstract_text = match.group(1) | |
#print(abstract_text) | |
else: | |
print("Abstract not found.") | |
# Initialize summarization pipeline | |
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") | |
# Get the summary | |
summary_result = summarizer(abstract_text, max_length=100, min_length=30, do_sample=False) | |
# Extract the summary text from the result | |
summary_text = summary_result[0]['summary_text'] | |
# Replace the dot between two sentences with a space and "and" | |
merged_summary = summary_text.replace('. ', ' and ', 1) | |
# Find the index of "and" in the merged summary | |
and_index = merged_summary.find('and') | |
# Replace the first letter after "and" with its lowercase equivalent | |
if and_index != -1 and and_index + 4 < len(merged_summary): | |
merged_summary = merged_summary[:and_index + 4] + merged_summary[and_index + 4].lower() + merged_summary[and_index + 5:] | |
# Print the merged summary | |
#print(merged_summary) | |
merged_summary_1 = "A" | |
synthesiser = pipeline("text-to-speech", "suno/bark") | |
speech = synthesiser(merged_summary_1, forward_params={"do_sample": True}) | |
#Audio(speech["audio"], rate=speech["sampling_rate"]) | |
# Convert audio bytes to playable format | |
audio_bytes = BytesIO(speech["audio"]) | |
audio = Audio(audio_bytes, rate=speech["sampling_rate"]) | |
return PDF_abstract() #({"sampling_rate": sr, "raw": y})["text"] | |
demo = gr.Interface( | |
PDF_abstract, | |
inputs="file", | |
outputs="audio", | |
live=True | |
) | |
demo.launch() |