PDFtoAudio / app.py
Mi-Ni's picture
Update app.py
35287b3
# https://huggingface.co/spaces/Mi-Ni/PDFtoAudio
# Unfortunately I wasn´t able to create a running space. I couldn´t adapt my code to create a running app in a huggingface space. After solving a lot of issues I ended up with a problem I wasn´t able to solve. Nevertheless, you´ll find my code below. Sorry that
#here are the imports: other imports and modules see in requirements
import gradio as gr
import numpy as np
#here is the code
# Create a function to extract text
def text_extraction(element):
# Extracting the text from the in-line text element
line_text = element.get_text()
# Find the formats of the text
# Initialize the list with all the formats that appeared in the line of text
line_formats = []
for text_line in element:
if isinstance(text_line, LTTextContainer):
# Iterating through each character in the line of text
for character in text_line:
if isinstance(character, LTChar):
# Append the font name of the character
line_formats.append(character.fontname)
# Append the font size of the character
line_formats.append(character.size)
# Find the unique font sizes and names in the line
format_per_line = list(set(line_formats))
# Return a tuple with the text in each line along with its format
return (line_text, format_per_line)
def read_pdf(pdf_path):
# Use pdf_path.name to get the file name from the gr.File object
with open(pdf_path.name, 'rb') as pdfFileObj:
pdfReaded = PyPDF2.PdfReader(pdfFileObj)
# create a PDF file object
#pdfFileObj = open(pdf_path, 'rb')
# create a PDF reader object
#pdfReaded = PyPDF2.PdfReader(pdfFileObj)
# Create the dictionary to extract text from each image
text_per_page = {}
# We extract the pages from the PDF
for pagenum, page in enumerate(extract_pages(pdf_path)):
print("Elaborating Page_" +str(pagenum))
# Initialize the variables needed for the text extraction from the page
pageObj = pdfReaded.pages[pagenum]
page_text = []
line_format = []
text_from_images = []
text_from_tables = []
page_content = []
# Initialize the number of the examined tables
table_num = 0
first_element= True
table_extraction_flag= False
# Open the pdf file
pdf = pdfplumber.open(pdf_path)
# Find the examined page
page_tables = pdf.pages[pagenum]
# Find the number of tables on the page
tables = page_tables.find_tables()
# Find all the elements
page_elements = [(element.y1, element) for element in page._objs]
# Sort all the elements as they appear in the page
page_elements.sort(key=lambda a: a[0], reverse=True)
# Find the elements that composed a page
for i,component in enumerate(page_elements):
# Extract the position of the top side of the element in the PDF
pos= component[0]
# Extract the element of the page layout
element = component[1]
# Check if the element is a text element
if isinstance(element, LTTextContainer):
# Check if the text appeared in a table
if table_extraction_flag == False:
# Use the function to extract the text and format for each text element
(line_text, format_per_line) = text_extraction(element)
# Append the text of each line to the page text
page_text.append(line_text)
# Append the format for each line containing text
line_format.append(format_per_line)
page_content.append(line_text)
else:
# Omit the text that appeared in a table
pass
# Create the key of the dictionary
dctkey = 'Page_'+str(pagenum)
# Add the list of list as the value of the page key
text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content]
# Closing the pdf file object
pdfFileObj.close()
return text_per_page
#pdf_path = 'Article 11 Hidden Technical Debt in Machine Learning Systems'
pdf_path = gr.File()
text_per_page = read_pdf(pdf_path)
text_per_page.keys()
page_0 = text_per_page['Page_0']
page_1 = text_per_page['Page_1']
page_2 = text_per_page['Page_2']
page_3 = text_per_page['Page_3']
page_4 = text_per_page['Page_4']
page_5 = text_per_page['Page_5']
page_6 = text_per_page['Page_6']
page_7 = text_per_page['Page_7']
page_8 = text_per_page['Page_8']
page_all = page_0 + page_1 +page_2 + page_3 +page_4 + page_5 +page_6 + page_7 + page_8
# Flatten the nested lists
flattened_page_all = list(chain.from_iterable(page_all))
# Convert the flattened list to a string
page_all_string = ''.join(map(str, flattened_page_all))
# Use regular expression to find the abstract text including the delimiters
match = re.search(r'Abstract\n(.*?)(?=\d+\nIntroduction)', page_all_string, re.DOTALL)
# Check if a match is found
if match:
abstract_text = match.group(1)
#print(abstract_text)
else:
print("Abstract not found.")
# Initialize summarization pipeline
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
# Get the summary
summary_result = summarizer(abstract_text, max_length=100, min_length=30, do_sample=False)
# Extract the summary text from the result
summary_text = summary_result[0]['summary_text']
# Replace the dot between two sentences with a space and "and"
merged_summary = summary_text.replace('. ', ' and ', 1)
# Find the index of "and" in the merged summary
and_index = merged_summary.find('and')
# Replace the first letter after "and" with its lowercase equivalent
if and_index != -1 and and_index + 4 < len(merged_summary):
merged_summary = merged_summary[:and_index + 4] + merged_summary[and_index + 4].lower() + merged_summary[and_index + 5:]
# Print the merged summary
#print(merged_summary)
merged_summary_1 = "A"
synthesiser = pipeline("text-to-speech", "suno/bark")
speech = synthesiser(merged_summary_1, forward_params={"do_sample": True})
Audio(speech["audio"], rate=speech["sampling_rate"])
def PDF_abstract(audio):
#pdf_path = gr.File()
pdf_path = 'Article 11 Hidden Technical Debt in Machine Learning Systems'
text_per_page = read_pdf(pdf_path)
text_per_page.keys()
page_0 = text_per_page['Page_0']
page_1 = text_per_page['Page_1']
page_2 = text_per_page['Page_2']
page_3 = text_per_page['Page_3']
page_4 = text_per_page['Page_4']
page_5 = text_per_page['Page_5']
page_6 = text_per_page['Page_6']
page_7 = text_per_page['Page_7']
page_8 = text_per_page['Page_8']
page_all = page_0 + page_1 +page_2 + page_3 +page_4 + page_5 +page_6 + page_7 + page_8
# Flatten the nested lists
flattened_page_all = list(chain.from_iterable(page_all))
# Convert the flattened list to a string
page_all_string = ''.join(map(str, flattened_page_all))
# Use regular expression to find the abstract text including the delimiters
match = re.search(r'Abstract\n(.*?)(?=\d+\nIntroduction)', page_all_string, re.DOTALL)
# Check if a match is found
if match:
abstract_text = match.group(1)
#print(abstract_text)
else:
print("Abstract not found.")
# Initialize summarization pipeline
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
# Get the summary
summary_result = summarizer(abstract_text, max_length=100, min_length=30, do_sample=False)
# Extract the summary text from the result
summary_text = summary_result[0]['summary_text']
# Replace the dot between two sentences with a space and "and"
merged_summary = summary_text.replace('. ', ' and ', 1)
# Find the index of "and" in the merged summary
and_index = merged_summary.find('and')
# Replace the first letter after "and" with its lowercase equivalent
if and_index != -1 and and_index + 4 < len(merged_summary):
merged_summary = merged_summary[:and_index + 4] + merged_summary[and_index + 4].lower() + merged_summary[and_index + 5:]
# Print the merged summary
#print(merged_summary)
merged_summary_1 = "A"
synthesiser = pipeline("text-to-speech", "suno/bark")
speech = synthesiser(merged_summary_1, forward_params={"do_sample": True})
#Audio(speech["audio"], rate=speech["sampling_rate"])
# Convert audio bytes to playable format
audio_bytes = BytesIO(speech["audio"])
audio = Audio(audio_bytes, rate=speech["sampling_rate"])
return PDF_abstract() #({"sampling_rate": sr, "raw": y})["text"]
demo = gr.Interface(
PDF_abstract,
inputs="file",
outputs="audio",
live=True
)
demo.launch()