Midnightar's picture
Create app.py
d0f8a9c verified
import gradio as gr
import torch
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
# Load model + processor (auto cached inside Spaces)
processor = AutoImageProcessor.from_pretrained("prithivMLmods/Realistic-Gender-Classification")
model = AutoModelForImageClassification.from_pretrained("prithivMLmods/Realistic-Gender-Classification")
def predict(image):
# Preprocess
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)[0].cpu().numpy()
# Labels
labels = list(model.config.id2label.values())
# Clean dict for FlutterFlow
result = {
"female": float(probs[labels.index("female portrait")]),
"male": float(probs[labels.index("male portrait")])
}
return result
# Gradio interface (Spaces auto-hosts this)
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.JSON()
)
if __name__ == "__main__":
demo.launch()