Spaces:
Sleeping
Sleeping
File size: 10,376 Bytes
e5e63f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def _init_weights(module, std=0.041666666666666664):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
class RMSNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
norm = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
return x * norm * self.weight
class RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, theta=10000.0):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
self.theta = theta
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
t = torch.arange(self.max_position_embeddings).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :])
self.register_buffer("sin_cached", emb.sin()[None, None, :, :])
def forward(self, x, seq_len=None):
if seq_len > self.max_position_embeddings:
seq_len = self.max_position_embeddings
return (
self.cos_cached[:,:,:seq_len,:],
self.sin_cached[:,:,:seq_len,:]
)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin):
# Ensure proper broadcasting
cos = cos[:, :, :q.size(2), :] # [batch, 1, seq_len, dim]
sin = sin[:, :, :q.size(2), :] # [batch, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config["hidden_size"]
self.num_attention_heads = config["num_attention_heads"]
self.num_key_value_heads = config["num_key_value_heads"]
self.head_dim = self.hidden_size // self.num_attention_heads
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.kv_cache = None
def forward(self, hidden_states, cos, sin, attention_mask=None, use_cache=False):
batch_size, seq_length, _ = hidden_states.shape
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
# Reshape for attention computation
q = q.view(batch_size, seq_length, self.num_attention_heads, self.head_dim)
k = k.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim)
v = v.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim)
# Transpose for attention computation
q = q.transpose(1, 2) # [batch, num_heads, seq_len, head_dim]
k = k.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim]
v = v.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim]
# Apply rotary embeddings
q, k = apply_rotary_pos_emb(q, k, cos, sin)
# Repeat k/v heads if num_key_value_heads < num_attention_heads
if self.num_key_value_heads != self.num_attention_heads:
k = k.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1)
v = v.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1)
# Compute attention
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = F.softmax(attn_weights, dim=-1)
# Compute output
output = torch.matmul(attn_weights, v)
output = output.transpose(1, 2).contiguous() # [batch, seq_len, num_heads, head_dim]
output = output.view(batch_size, seq_length, -1)
return self.o_proj(output)
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(config["hidden_size"], config["intermediate_size"], bias=False)
self.up_proj = nn.Linear(config["hidden_size"], config["intermediate_size"], bias=False)
self.down_proj = nn.Linear(config["intermediate_size"], config["hidden_size"], bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class DecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.self_attn = Attention(config)
self.mlp = MLP(config)
self.input_layernorm = RMSNorm(config["hidden_size"], eps=config["rms_norm_eps"])
self.post_attention_layernorm = RMSNorm(config["hidden_size"], eps=config["rms_norm_eps"])
def forward(self, hidden_states, cos, sin, attention_mask=None, use_cache=False):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(hidden_states, cos, sin, attention_mask, use_cache)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class SmolLM2(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.embed_tokens = nn.Embedding(config["vocab_size"], config["hidden_size"])
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config["num_hidden_layers"])])
self.norm = RMSNorm(config["hidden_size"], eps=config["rms_norm_eps"])
self.rotary_emb = RotaryEmbedding(
config["hidden_size"] // config["num_attention_heads"],
max_position_embeddings=config["max_position_embeddings"],
theta=config.get("rope_theta", 10000.0)
)
# Initialize weights
self.apply(lambda p: _init_weights(p, std=config.get("initializer_range", 0.041666666666666664)))
def forward(self, input_ids, attention_mask=None, use_cache=False):
hidden_states = self.embed_tokens(input_ids)
seq_length = input_ids.shape[1]
cos, sin = self.rotary_emb(hidden_states, seq_length)
for layer in self.layers:
hidden_states = layer(hidden_states, cos, sin, attention_mask, use_cache)
hidden_states = self.norm(hidden_states)
# Use tied weights for the output projection
if self.config.get("tie_word_embeddings", True):
logits = F.linear(hidden_states, self.embed_tokens.weight)
else:
logits = self.lm_head(hidden_states)
return logits
def generate(
self,
input_ids,
max_length,
min_length=None,
num_return_sequences=1,
pad_token_id=None,
do_sample=True,
temperature=0.8,
top_k=50,
top_p=0.95
):
self.eval()
batch_size = input_ids.shape[0]
min_length = min_length if min_length is not None else input_ids.shape[1]
# Clear KV cache
for layer in self.layers:
layer.self_attn.kv_cache = None
with torch.no_grad():
for _ in range(max_length - input_ids.shape[1]):
outputs = self(input_ids, use_cache=True)
next_token_logits = outputs[:, -1, :]
# Apply temperature
next_token_logits = next_token_logits / temperature
# Apply top-k filtering
if top_k > 0:
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
next_token_logits[indices_to_remove] = float('-inf')
# Apply top-p (nucleus) filtering
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
next_token_logits[indices_to_remove] = float('-inf')
# Sample from the filtered distribution
if do_sample:
probs = torch.softmax(next_token_logits, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(next_token_logits, dim=-1)
input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=-1)
# Stop if all sequences have hit the pad token
if pad_token_id is not None and (next_tokens == pad_token_id).all():
break
# Stop if we've reached min_length
if input_ids.shape[1] < min_length:
continue
return input_ids |