import math import torch import torch.nn as nn import torch.nn.functional as F def _init_weights(module, std=0.041666666666666664): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) class RMSNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def forward(self, x): norm = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) return x * norm * self.weight class RotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, theta=10000.0): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base self.theta = theta inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer("inv_freq", inv_freq) t = torch.arange(self.max_position_embeddings).type_as(self.inv_freq) freqs = torch.einsum("i,j->ij", t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos()[None, None, :, :]) self.register_buffer("sin_cached", emb.sin()[None, None, :, :]) def forward(self, x, seq_len=None): if seq_len > self.max_position_embeddings: seq_len = self.max_position_embeddings return ( self.cos_cached[:,:,:seq_len,:], self.sin_cached[:,:,:seq_len,:] ) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin): # Ensure proper broadcasting cos = cos[:, :, :q.size(2), :] # [batch, 1, seq_len, dim] sin = sin[:, :, :q.size(2), :] # [batch, 1, seq_len, dim] q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class Attention(nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config["hidden_size"] self.num_attention_heads = config["num_attention_heads"] self.num_key_value_heads = config["num_key_value_heads"] self.head_dim = self.hidden_size // self.num_attention_heads self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.kv_cache = None def forward(self, hidden_states, cos, sin, attention_mask=None, use_cache=False): batch_size, seq_length, _ = hidden_states.shape q = self.q_proj(hidden_states) k = self.k_proj(hidden_states) v = self.v_proj(hidden_states) # Reshape for attention computation q = q.view(batch_size, seq_length, self.num_attention_heads, self.head_dim) k = k.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim) v = v.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim) # Transpose for attention computation q = q.transpose(1, 2) # [batch, num_heads, seq_len, head_dim] k = k.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim] v = v.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim] # Apply rotary embeddings q, k = apply_rotary_pos_emb(q, k, cos, sin) # Repeat k/v heads if num_key_value_heads < num_attention_heads if self.num_key_value_heads != self.num_attention_heads: k = k.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) v = v.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) # Compute attention attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim) if attention_mask is not None: attn_weights = attn_weights + attention_mask attn_weights = F.softmax(attn_weights, dim=-1) # Compute output output = torch.matmul(attn_weights, v) output = output.transpose(1, 2).contiguous() # [batch, seq_len, num_heads, head_dim] output = output.view(batch_size, seq_length, -1) return self.o_proj(output) class MLP(nn.Module): def __init__(self, config): super().__init__() self.gate_proj = nn.Linear(config["hidden_size"], config["intermediate_size"], bias=False) self.up_proj = nn.Linear(config["hidden_size"], config["intermediate_size"], bias=False) self.down_proj = nn.Linear(config["intermediate_size"], config["hidden_size"], bias=False) self.act_fn = nn.SiLU() def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) class DecoderLayer(nn.Module): def __init__(self, config): super().__init__() self.self_attn = Attention(config) self.mlp = MLP(config) self.input_layernorm = RMSNorm(config["hidden_size"], eps=config["rms_norm_eps"]) self.post_attention_layernorm = RMSNorm(config["hidden_size"], eps=config["rms_norm_eps"]) def forward(self, hidden_states, cos, sin, attention_mask=None, use_cache=False): residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states = self.self_attn(hidden_states, cos, sin, attention_mask, use_cache) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states class SmolLM2(nn.Module): def __init__(self, config): super().__init__() self.config = config self.embed_tokens = nn.Embedding(config["vocab_size"], config["hidden_size"]) self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config["num_hidden_layers"])]) self.norm = RMSNorm(config["hidden_size"], eps=config["rms_norm_eps"]) self.rotary_emb = RotaryEmbedding( config["hidden_size"] // config["num_attention_heads"], max_position_embeddings=config["max_position_embeddings"], theta=config.get("rope_theta", 10000.0) ) # Initialize weights self.apply(lambda p: _init_weights(p, std=config.get("initializer_range", 0.041666666666666664))) def forward(self, input_ids, attention_mask=None, use_cache=False): hidden_states = self.embed_tokens(input_ids) seq_length = input_ids.shape[1] cos, sin = self.rotary_emb(hidden_states, seq_length) for layer in self.layers: hidden_states = layer(hidden_states, cos, sin, attention_mask, use_cache) hidden_states = self.norm(hidden_states) # Use tied weights for the output projection if self.config.get("tie_word_embeddings", True): logits = F.linear(hidden_states, self.embed_tokens.weight) else: logits = self.lm_head(hidden_states) return logits def generate( self, input_ids, max_length, min_length=None, num_return_sequences=1, pad_token_id=None, do_sample=True, temperature=0.8, top_k=50, top_p=0.95 ): self.eval() batch_size = input_ids.shape[0] min_length = min_length if min_length is not None else input_ids.shape[1] # Clear KV cache for layer in self.layers: layer.self_attn.kv_cache = None with torch.no_grad(): for _ in range(max_length - input_ids.shape[1]): outputs = self(input_ids, use_cache=True) next_token_logits = outputs[:, -1, :] # Apply temperature next_token_logits = next_token_logits / temperature # Apply top-k filtering if top_k > 0: indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None] next_token_logits[indices_to_remove] = float('-inf') # Apply top-p (nucleus) filtering if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True) cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) next_token_logits[indices_to_remove] = float('-inf') # Sample from the filtered distribution if do_sample: probs = torch.softmax(next_token_logits, dim=-1) next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) else: next_tokens = torch.argmax(next_token_logits, dim=-1) input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=-1) # Stop if all sequences have hit the pad token if pad_token_id is not None and (next_tokens == pad_token_id).all(): break # Stop if we've reached min_length if input_ids.shape[1] < min_length: continue return input_ids