File size: 18,683 Bytes
eddf5b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
#!/usr/bin/env python3
"""
Fine-tuning Script for PaddleOCR Text Recognition Models
Based on the Text Recognition Module Tutorial

This script provides a complete pipeline for fine-tuning text recognition models:
1. Dataset preparation and validation
2. Model training with custom configurations
3. Model evaluation
4. Model export for inference

Supported models: PP-OCRv5_server_rec, PP-OCRv5_mobile_rec, PP-OCRv4_server_rec, etc.
"""

import os
import sys
import argparse
import yaml
import wget
import tarfile
import subprocess
from pathlib import Path
import logging

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

class TextRecognitionFineTuner:
    def __init__(self, config_path=None, model_name="PP-OCRv5_server_rec", work_dir="./work_dir"):
        """
        Initialize the fine-tuner
        
        Args:
            config_path: Path to custom config file
            model_name: Name of the model to fine-tune
            work_dir: Working directory for outputs
        """
        self.model_name = model_name
        self.work_dir = Path(work_dir)
        self.work_dir.mkdir(exist_ok=True)
        
        # Model configurations mapping
        self.model_configs = {
            "PP-OCRv5_server_rec": {
                "config": "configs/rec/PP-OCRv5/PP-OCRv5_server_rec.yml",
                "pretrained_url": "https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_rec_pretrained.pdparams"
            },
            "PP-OCRv5_mobile_rec": {
                "config": "configs/rec/PP-OCRv5/PP-OCRv5_mobile_rec.yml",
                "pretrained_url": "https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_mobile_rec_pretrained.pdparams"
            },
            "PP-OCRv4_server_rec": {
                "config": "configs/rec/PP-OCRv4/PP-OCRv4_server_rec.yml",
                "pretrained_url": "https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_server_rec_pretrained.pdparams"
            },
            "PP-OCRv4_mobile_rec": {
                "config": "configs/rec/PP-OCRv4/PP-OCRv4_mobile_rec.yml",
                "pretrained_url": "https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv4_mobile_rec_pretrained.pdparams"
            }
        }
        
        self.config_path = config_path or self.model_configs[model_name]["config"]
        self.pretrained_path = self.work_dir / f"{model_name}_pretrained.pdparams"
        
    def prepare_demo_dataset(self):
        """Download and prepare demo dataset"""
        logger.info("Preparing demo dataset...")
        
        dataset_url = "https://paddle-model-ecology.bj.bcebos.com/paddlex/data/ocr_rec_dataset_examples.tar"
        dataset_path = self.work_dir / "ocr_rec_dataset_examples.tar"
        
        if not dataset_path.exists():
            logger.info(f"Downloading dataset from {dataset_url}...")
            wget.download(dataset_url, str(dataset_path))
            
        # Extract dataset
        extract_path = self.work_dir / "dataset"
        if not extract_path.exists():
            logger.info("Extracting dataset...")
            with tarfile.open(dataset_path, 'r') as tar:
                tar.extractall(self.work_dir)
            
            # Rename extracted folder
            extracted_folder = self.work_dir / "ocr_rec_dataset_examples"
            if extracted_folder.exists():
                extracted_folder.rename(extract_path)
                
        logger.info(f"Dataset prepared at {extract_path}")
        return extract_path
        
    def download_pretrained_model(self):
        """Download pretrained model weights"""
        if self.pretrained_path.exists():
            logger.info(f"Pretrained model already exists at {self.pretrained_path}")
            return self.pretrained_path
            
        logger.info(f"Downloading pretrained model for {self.model_name}...")
        pretrained_url = self.model_configs[self.model_name]["pretrained_url"]
        
        wget.download(pretrained_url, str(self.pretrained_path))
        logger.info(f"Pretrained model downloaded to {self.pretrained_path}")
        return self.pretrained_path
        
    def create_custom_config(self, dataset_path, custom_params=None):
        """
        Create custom training configuration
        
        Args:
            dataset_path: Path to training dataset
            custom_params: Dictionary of custom parameters to override
        """
        logger.info("Creating custom configuration...")
        
        # Default custom parameters
        default_params = {
            "Global": {
                "epoch_num": 20,
                "log_smooth_window": 20,
                "print_batch_step": 10,
                "save_model_dir": str(self.work_dir / "output"),
                "save_epoch_step": 5,
                "eval_batch_step": [0, 2000],
                "cal_metric_during_train": True,
                "pretrained_model": str(self.pretrained_path),
                "checkpoints": None,
                "use_visualdl": False,
                "infer_img": str(dataset_path / "test_imgs"),
                "character_dict_path": str(dataset_path / "character_dict.txt"),
                "character_type": "ch",
                "max_text_length": 25,
                "infer_mode": False,
                "use_space_char": True,
                "distributed": False,
                "save_res_path": str(self.work_dir / "output" / "predicts_rec.txt")
            },
            "Train": {
                "dataset": {
                    "name": "SimpleDataSet",
                    "data_dir": str(dataset_path),
                    "label_file_list": [str(dataset_path / "train_list.txt")],
                    "transforms": [
                        {"DecodeImage": {"img_mode": "BGR", "channel_first": False}},
                        {"RecConAug": {"prob": 0.5, "ext_data_num": 2, "image_shape": [48, 320, 3]}},
                        {"RecAug": {}},
                        {"MultiLabelEncode": {}},
                        {"RecResizeImg": {"image_shape": [3, 48, 320]}},
                        {"KeepKeys": {"keep_keys": ["image", "label_list", "length"]}}
                    ]
                },
                "loader": {
                    "shuffle": True,
                    "batch_size_per_card": 256,
                    "drop_last": True,
                    "num_workers": 4
                }
            },
            "Eval": {
                "dataset": {
                    "name": "SimpleDataSet",
                    "data_dir": str(dataset_path),
                    "label_file_list": [str(dataset_path / "val_list.txt")],
                    "transforms": [
                        {"DecodeImage": {"img_mode": "BGR", "channel_first": False}},
                        {"MultiLabelEncode": {}},
                        {"RecResizeImg": {"image_shape": [3, 48, 320]}},
                        {"KeepKeys": {"keep_keys": ["image", "label_list", "length"]}}
                    ]
                },
                "loader": {
                    "shuffle": False,
                    "drop_last": False,
                    "batch_size_per_card": 256,
                    "num_workers": 4
                }
            }
        }
        
        # Merge with custom parameters
        if custom_params:
            self._deep_update(default_params, custom_params)
            
        # Save custom config
        custom_config_path = self.work_dir / f"{self.model_name}_custom.yml"
        with open(custom_config_path, 'w', encoding='utf-8') as f:
            yaml.dump(default_params, f, default_flow_style=False, allow_unicode=True)
            
        logger.info(f"Custom configuration saved to {custom_config_path}")
        return custom_config_path
        
    def _deep_update(self, base_dict, update_dict):
        """Recursively update nested dictionary"""
        for key, value in update_dict.items():
            if isinstance(value, dict) and key in base_dict and isinstance(base_dict[key], dict):
                self._deep_update(base_dict[key], value)
            else:
                base_dict[key] = value
                
    def train(self, config_path, gpus="0", resume_from=None):
        """
        Train the model
        
        Args:
            config_path: Path to configuration file
            gpus: GPU IDs to use (e.g., "0" or "0,1,2,3")
            resume_from: Path to checkpoint to resume from
        """
        logger.info(f"Starting training with GPUs: {gpus}")
        
        # Prepare training command
        if len(gpus.split(',')) > 1:
            # Multi-GPU training
            cmd = [
                "python3", "-m", "paddle.distributed.launch",
                "--gpus", gpus,
                "tools/train.py",
                "-c", str(config_path)
            ]
        else:
            # Single GPU training
            cmd = [
                "python3", "tools/train.py",
                "-c", str(config_path)
            ]
            
        # Add resume option if provided
        if resume_from:
            cmd.extend(["-o", f"Global.checkpoints={resume_from}"])
            
        # Set environment variable for GPU
        env = os.environ.copy()
        env["CUDA_VISIBLE_DEVICES"] = gpus
        
        logger.info(f"Training command: {' '.join(cmd)}")
        
        try:
            result = subprocess.run(cmd, env=env, check=True, capture_output=False)
            logger.info("Training completed successfully!")
            return True
        except subprocess.CalledProcessError as e:
            logger.error(f"Training failed with error: {e}")
            return False
            
    def evaluate(self, config_path, checkpoint_path, gpus="0"):
        """
        Evaluate the trained model
        
        Args:
            config_path: Path to configuration file
            checkpoint_path: Path to model checkpoint
            gpus: GPU IDs to use
        """
        logger.info(f"Starting evaluation...")
        
        cmd = [
            "python3", "tools/eval.py",
            "-c", str(config_path),
            "-o", f"Global.pretrained_model={checkpoint_path}"
        ]
        
        # Set environment variable for GPU
        env = os.environ.copy()
        env["CUDA_VISIBLE_DEVICES"] = gpus
        
        logger.info(f"Evaluation command: {' '.join(cmd)}")
        
        try:
            result = subprocess.run(cmd, env=env, check=True, capture_output=True, text=True)
            logger.info("Evaluation completed successfully!")
            logger.info(f"Evaluation results:\n{result.stdout}")
            return True
        except subprocess.CalledProcessError as e:
            logger.error(f"Evaluation failed with error: {e}")
            logger.error(f"Error output: {e.stderr}")
            return False
            
    def export_model(self, config_path, checkpoint_path, output_dir=None):
        """
        Export trained model for inference
        
        Args:
            config_path: Path to configuration file
            checkpoint_path: Path to trained model checkpoint
            output_dir: Directory to save exported model
        """
        if output_dir is None:
            output_dir = self.work_dir / f"{self.model_name}_infer"
            
        logger.info(f"Exporting model to {output_dir}")
        
        cmd = [
            "python3", "tools/export_model.py",
            "-c", str(config_path),
            "-o", f"Global.pretrained_model={checkpoint_path}",
            "-o", f"Global.save_inference_dir={output_dir}"
        ]
        
        logger.info(f"Export command: {' '.join(cmd)}")
        
        try:
            result = subprocess.run(cmd, check=True, capture_output=True, text=True)
            logger.info("Model export completed successfully!")
            logger.info(f"Exported model saved to {output_dir}")
            
            # List exported files
            if Path(output_dir).exists():
                exported_files = list(Path(output_dir).glob("*"))
                logger.info(f"Exported files: {[f.name for f in exported_files]}")
                
            return True
        except subprocess.CalledProcessError as e:
            logger.error(f"Model export failed with error: {e}")
            logger.error(f"Error output: {e.stderr}")
            return False
            
    def run_complete_pipeline(self, custom_params=None, gpus="0", skip_demo_data=False):
        """
        Run the complete fine-tuning pipeline
        
        Args:
            custom_params: Custom parameters to override defaults
            gpus: GPU IDs to use
            skip_demo_data: Whether to skip demo data preparation
        """
        logger.info("=== Starting Complete Fine-tuning Pipeline ===")
        
        try:
            # Step 1: Prepare dataset
            if not skip_demo_data:
                dataset_path = self.prepare_demo_dataset()
            else:
                dataset_path = Path(custom_params.get("dataset_path", "./dataset"))  # Use custom dataset path
                
            # Step 2: Download pretrained model
            self.download_pretrained_model()
            
            # Step 3: Create custom configuration
            config_path = self.create_custom_config(dataset_path, custom_params)
            
            # Step 4: Train model
            logger.info("=== Starting Training ===")
            training_success = self.train(config_path, gpus)
            
            if not training_success:
                logger.error("Training failed. Stopping pipeline.")
                return False
                
            # Step 5: Find best checkpoint
            output_dir = self.work_dir / "output"
            checkpoints = list(output_dir.glob("**/best_accuracy.pdparams"))
            
            if not checkpoints:
                # Try to find latest checkpoint
                checkpoints = list(output_dir.glob("**/latest.pdparams"))
                
            if not checkpoints:
                logger.error("No checkpoint found for evaluation and export.")
                return False
                
            best_checkpoint = checkpoints[0]
            logger.info(f"Using checkpoint: {best_checkpoint}")
            
            # Step 6: Evaluate model
            logger.info("=== Starting Evaluation ===")
            self.evaluate(config_path, best_checkpoint, gpus)
            
            # Step 7: Export model
            logger.info("=== Starting Model Export ===")
            self.export_model(config_path, best_checkpoint)
            
            logger.info("=== Complete Pipeline Finished Successfully ===")
            return True
            
        except Exception as e:
            logger.error(f"Pipeline failed with error: {e}")
            return False


def main():
    parser = argparse.ArgumentParser(description="Fine-tune PaddleOCR Text Recognition Models")
    parser.add_argument("--model_name", type=str, default="PP-OCRv5_server_rec",
                       choices=["PP-OCRv5_server_rec", "PP-OCRv5_mobile_rec", 
                               "PP-OCRv4_server_rec", "PP-OCRv4_mobile_rec"],
                       help="Model name to fine-tune")
    parser.add_argument("--work_dir", type=str, default="./work_dir",
                       help="Working directory for outputs")
    parser.add_argument("--gpus", type=str, default="0",
                       help="GPU IDs to use (e.g., '0' or '0,1,2,3')")
    parser.add_argument("--config", type=str, default=None,
                       help="Path to custom config file")
    parser.add_argument("--skip_demo_data", action="store_true",
                       help="Skip demo data preparation (use your own dataset)")
    parser.add_argument("--dataset_path", type=str, default="./dataset",
                       help="Path to custom dataset directory")
    parser.add_argument("--mode", type=str, default="complete",
                       choices=["complete", "train", "eval", "export"],
                       help="Mode to run")
    parser.add_argument("--checkpoint", type=str, default=None,
                       help="Checkpoint path for evaluation/export")
    
    args = parser.parse_args()
    
    # Initialize fine-tuner
    fine_tuner = TextRecognitionFineTuner(
        config_path=args.config,
        model_name=args.model_name,
        work_dir=args.work_dir
    )
    
    # Example custom parameters (you can modify these)
    custom_params = {
        "dataset_path": args.dataset_path,  # Add dataset path to custom params
        "Global": {
            "epoch_num": 10,  # Reduce epochs for faster training
            "save_epoch_step": 2,
            "eval_batch_step": [0, 1000]
        },
        "Train": {
            "loader": {
                "batch_size_per_card": 128  # Reduce batch size if GPU memory is limited
            }
        }
    }
    
    if args.mode == "complete":
        # Run complete pipeline
        success = fine_tuner.run_complete_pipeline(
            custom_params=custom_params,
            gpus=args.gpus,
            skip_demo_data=args.skip_demo_data
        )
        sys.exit(0 if success else 1)
        
    elif args.mode == "train":
        # Training only
        if not args.skip_demo_data:
            dataset_path = fine_tuner.prepare_demo_dataset()
        else:
            dataset_path = Path(args.dataset_path)
            
        fine_tuner.download_pretrained_model()
        config_path = fine_tuner.create_custom_config(dataset_path, custom_params)
        success = fine_tuner.train(config_path, args.gpus)
        sys.exit(0 if success else 1)
        
    elif args.mode == "eval":
        # Evaluation only
        if not args.checkpoint:
            logger.error("Checkpoint path required for evaluation mode")
            sys.exit(1)
        config_path = args.config or fine_tuner.config_path
        success = fine_tuner.evaluate(config_path, args.checkpoint, args.gpus)
        sys.exit(0 if success else 1)
        
    elif args.mode == "export":
        # Export only
        if not args.checkpoint:
            logger.error("Checkpoint path required for export mode")
            sys.exit(1)
        config_path = args.config or fine_tuner.config_path
        success = fine_tuner.export_model(config_path, args.checkpoint)
        sys.exit(0 if success else 1)


if __name__ == "__main__":
    main()