Spaces:
Running
Running
Use gradio-leaderboard component for clickable author links
Browse files- app.py +25 -66
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import os
|
|
|
|
| 4 |
|
| 5 |
# Load data from CSV files
|
| 6 |
DATA_DIR = "data"
|
|
@@ -40,39 +41,6 @@ def filter_and_search(df, search, datasets, models, organizations, columns):
|
|
| 40 |
return filtered
|
| 41 |
|
| 42 |
|
| 43 |
-
def df_to_html(df):
|
| 44 |
-
"""Convert DataFrame to HTML table with clickable links in First Author column"""
|
| 45 |
-
if df.empty:
|
| 46 |
-
return "<p>No data to display</p>"
|
| 47 |
-
|
| 48 |
-
html = '<table class="dataframe">\n<thead>\n<tr>'
|
| 49 |
-
|
| 50 |
-
# Add headers
|
| 51 |
-
for col in df.columns:
|
| 52 |
-
if col != "Author Link": # Skip Author Link column in display
|
| 53 |
-
html += f'<th>{col}</th>'
|
| 54 |
-
html += '</tr>\n</thead>\n<tbody>\n'
|
| 55 |
-
|
| 56 |
-
# Add rows
|
| 57 |
-
for _, row in df.iterrows():
|
| 58 |
-
html += '<tr>'
|
| 59 |
-
for col in df.columns:
|
| 60 |
-
if col != "Author Link": # Skip Author Link column in display
|
| 61 |
-
if col == "First Author" and "Author Link" in df.columns:
|
| 62 |
-
# Create clickable link for First Author
|
| 63 |
-
author_link = row["Author Link"]
|
| 64 |
-
if pd.notna(author_link) and author_link.strip():
|
| 65 |
-
html += f'<td><a href="{author_link}" target="_blank">{row[col]}</a></td>'
|
| 66 |
-
else:
|
| 67 |
-
html += f'<td>{row[col]}</td>'
|
| 68 |
-
else:
|
| 69 |
-
html += f'<td>{row[col]}</td>'
|
| 70 |
-
html += '</tr>\n'
|
| 71 |
-
|
| 72 |
-
html += '</tbody>\n</table>'
|
| 73 |
-
return html
|
| 74 |
-
|
| 75 |
-
|
| 76 |
def build_tab(df, name):
|
| 77 |
"""Build a leaderboard tab from a DataFrame"""
|
| 78 |
if df.empty:
|
|
@@ -94,7 +62,13 @@ def build_tab(df, name):
|
|
| 94 |
first_author = model_org_data["First Author"].values[0]
|
| 95 |
author_link = model_org_data["Author Link"].values[0]
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
for dataset in datasets:
|
| 99 |
dataset_data = model_org_data[model_org_data["Dataset"] == dataset]
|
| 100 |
if not dataset_data.empty:
|
|
@@ -117,9 +91,6 @@ def build_tab(df, name):
|
|
| 117 |
|
| 118 |
all_cols = ["Model", "Organization", "First Author"] + metric_combo_cols
|
| 119 |
|
| 120 |
-
# Keep Author Link for internal use but don't show in column selector
|
| 121 |
-
display_cols_for_selector = [col for col in all_cols if col != "Author Link"]
|
| 122 |
-
|
| 123 |
with gr.TabItem(name, elem_id="llm-benchmark-tab-table"):
|
| 124 |
with gr.Row():
|
| 125 |
with gr.Column(scale=4):
|
|
@@ -130,15 +101,17 @@ def build_tab(df, name):
|
|
| 130 |
)
|
| 131 |
|
| 132 |
col_selector = gr.CheckboxGroup(
|
| 133 |
-
choices=
|
| 134 |
-
value=
|
| 135 |
label="Select Columns to Display:",
|
| 136 |
elem_classes="column-select"
|
| 137 |
)
|
| 138 |
|
| 139 |
-
table =
|
| 140 |
-
value=
|
| 141 |
-
elem_id="leaderboard-table"
|
|
|
|
|
|
|
| 142 |
)
|
| 143 |
|
| 144 |
with gr.Column(scale=1):
|
|
@@ -171,13 +144,10 @@ def build_tab(df, name):
|
|
| 171 |
filtered = filtered[filtered["Organization"].isin(org)]
|
| 172 |
|
| 173 |
if cols:
|
| 174 |
-
# Always include "Author Link" for rendering, even if not in selection
|
| 175 |
display_cols = [col for col in cols if col in filtered.columns]
|
| 176 |
-
if "First Author" in display_cols and "Author Link" in filtered.columns:
|
| 177 |
-
display_cols.append("Author Link")
|
| 178 |
filtered = filtered[display_cols]
|
| 179 |
|
| 180 |
-
return
|
| 181 |
|
| 182 |
search_bar.change(update, [search_bar, model_filter, org_filter, col_selector], table)
|
| 183 |
model_filter.change(update, [search_bar, model_filter, org_filter, col_selector], table)
|
|
@@ -192,39 +162,29 @@ custom_css = """
|
|
| 192 |
|
| 193 |
#leaderboard-table {
|
| 194 |
margin-top: 15px;
|
| 195 |
-
max-height: 600px;
|
| 196 |
-
overflow-y: auto;
|
| 197 |
-
overflow-x: auto;
|
| 198 |
}
|
| 199 |
|
| 200 |
-
#leaderboard-table table
|
| 201 |
width: 100%;
|
| 202 |
-
border-collapse: collapse;
|
| 203 |
table-layout: auto;
|
| 204 |
}
|
| 205 |
|
| 206 |
-
#leaderboard-table
|
| 207 |
font-weight: bold;
|
| 208 |
text-align: center;
|
| 209 |
padding: 12px 8px;
|
| 210 |
white-space: normal;
|
| 211 |
word-wrap: break-word;
|
| 212 |
-
border-bottom: 2px solid #ddd;
|
| 213 |
}
|
| 214 |
|
| 215 |
-
#leaderboard-table
|
| 216 |
text-align: center;
|
| 217 |
padding: 10px 8px;
|
| 218 |
white-space: nowrap;
|
| 219 |
-
border-bottom: 1px solid #eee;
|
| 220 |
-
}
|
| 221 |
-
|
| 222 |
-
#leaderboard-table table.dataframe tbody tr:hover {
|
| 223 |
-
background-color: #f5f5f5;
|
| 224 |
}
|
| 225 |
|
| 226 |
-
#leaderboard-table
|
| 227 |
-
#leaderboard-table
|
| 228 |
text-align: left;
|
| 229 |
font-weight: 500;
|
| 230 |
min-width: 120px;
|
|
@@ -232,14 +192,14 @@ custom_css = """
|
|
| 232 |
white-space: nowrap;
|
| 233 |
}
|
| 234 |
|
| 235 |
-
#leaderboard-table
|
| 236 |
-
#leaderboard-table
|
| 237 |
text-align: left;
|
| 238 |
min-width: 100px;
|
| 239 |
}
|
| 240 |
|
| 241 |
-
#leaderboard-table
|
| 242 |
-
#leaderboard-table
|
| 243 |
text-align: left;
|
| 244 |
min-width: 120px;
|
| 245 |
}
|
|
@@ -252,7 +212,6 @@ custom_css = """
|
|
| 252 |
|
| 253 |
#leaderboard-table a:hover {
|
| 254 |
text-decoration: underline;
|
| 255 |
-
color: #004499;
|
| 256 |
}
|
| 257 |
|
| 258 |
#search-bar {
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import os
|
| 4 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
| 5 |
|
| 6 |
# Load data from CSV files
|
| 7 |
DATA_DIR = "data"
|
|
|
|
| 41 |
return filtered
|
| 42 |
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def build_tab(df, name):
|
| 45 |
"""Build a leaderboard tab from a DataFrame"""
|
| 46 |
if df.empty:
|
|
|
|
| 62 |
first_author = model_org_data["First Author"].values[0]
|
| 63 |
author_link = model_org_data["Author Link"].values[0]
|
| 64 |
|
| 65 |
+
# Format as markdown link if author_link exists
|
| 66 |
+
if pd.notna(author_link) and author_link.strip():
|
| 67 |
+
author_display = f"[{first_author}]({author_link})"
|
| 68 |
+
else:
|
| 69 |
+
author_display = first_author
|
| 70 |
+
|
| 71 |
+
row = {"Model": model, "Organization": org, "First Author": author_display}
|
| 72 |
for dataset in datasets:
|
| 73 |
dataset_data = model_org_data[model_org_data["Dataset"] == dataset]
|
| 74 |
if not dataset_data.empty:
|
|
|
|
| 91 |
|
| 92 |
all_cols = ["Model", "Organization", "First Author"] + metric_combo_cols
|
| 93 |
|
|
|
|
|
|
|
|
|
|
| 94 |
with gr.TabItem(name, elem_id="llm-benchmark-tab-table"):
|
| 95 |
with gr.Row():
|
| 96 |
with gr.Column(scale=4):
|
|
|
|
| 101 |
)
|
| 102 |
|
| 103 |
col_selector = gr.CheckboxGroup(
|
| 104 |
+
choices=all_cols,
|
| 105 |
+
value=all_cols,
|
| 106 |
label="Select Columns to Display:",
|
| 107 |
elem_classes="column-select"
|
| 108 |
)
|
| 109 |
|
| 110 |
+
table = Leaderboard(
|
| 111 |
+
value=pivoted_df,
|
| 112 |
+
elem_id="leaderboard-table",
|
| 113 |
+
interactive=False,
|
| 114 |
+
select_columns=False
|
| 115 |
)
|
| 116 |
|
| 117 |
with gr.Column(scale=1):
|
|
|
|
| 144 |
filtered = filtered[filtered["Organization"].isin(org)]
|
| 145 |
|
| 146 |
if cols:
|
|
|
|
| 147 |
display_cols = [col for col in cols if col in filtered.columns]
|
|
|
|
|
|
|
| 148 |
filtered = filtered[display_cols]
|
| 149 |
|
| 150 |
+
return filtered
|
| 151 |
|
| 152 |
search_bar.change(update, [search_bar, model_filter, org_filter, col_selector], table)
|
| 153 |
model_filter.change(update, [search_bar, model_filter, org_filter, col_selector], table)
|
|
|
|
| 162 |
|
| 163 |
#leaderboard-table {
|
| 164 |
margin-top: 15px;
|
|
|
|
|
|
|
|
|
|
| 165 |
}
|
| 166 |
|
| 167 |
+
#leaderboard-table table {
|
| 168 |
width: 100%;
|
|
|
|
| 169 |
table-layout: auto;
|
| 170 |
}
|
| 171 |
|
| 172 |
+
#leaderboard-table thead th {
|
| 173 |
font-weight: bold;
|
| 174 |
text-align: center;
|
| 175 |
padding: 12px 8px;
|
| 176 |
white-space: normal;
|
| 177 |
word-wrap: break-word;
|
|
|
|
| 178 |
}
|
| 179 |
|
| 180 |
+
#leaderboard-table tbody td {
|
| 181 |
text-align: center;
|
| 182 |
padding: 10px 8px;
|
| 183 |
white-space: nowrap;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
}
|
| 185 |
|
| 186 |
+
#leaderboard-table tbody td:first-child,
|
| 187 |
+
#leaderboard-table thead th:first-child {
|
| 188 |
text-align: left;
|
| 189 |
font-weight: 500;
|
| 190 |
min-width: 120px;
|
|
|
|
| 192 |
white-space: nowrap;
|
| 193 |
}
|
| 194 |
|
| 195 |
+
#leaderboard-table tbody td:nth-child(2),
|
| 196 |
+
#leaderboard-table thead th:nth-child(2) {
|
| 197 |
text-align: left;
|
| 198 |
min-width: 100px;
|
| 199 |
}
|
| 200 |
|
| 201 |
+
#leaderboard-table tbody td:nth-child(3),
|
| 202 |
+
#leaderboard-table thead th:nth-child(3) {
|
| 203 |
text-align: left;
|
| 204 |
min-width: 120px;
|
| 205 |
}
|
|
|
|
| 212 |
|
| 213 |
#leaderboard-table a:hover {
|
| 214 |
text-decoration: underline;
|
|
|
|
| 215 |
}
|
| 216 |
|
| 217 |
#search-bar {
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
gradio>=4.0.0
|
| 2 |
pandas>=2.0.0
|
|
|
|
|
|
| 1 |
gradio>=4.0.0
|
| 2 |
pandas>=2.0.0
|
| 3 |
+
gradio-leaderboard
|