File size: 10,886 Bytes
6a44cf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bdd98b
6a44cf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c9851e
6a44cf0
 
 
 
 
 
 
 
 
 
 
 
03f534d
 
 
 
 
 
 
6a44cf0
 
 
 
 
 
11266dc
6a44cf0
6c9851e
6a44cf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c9851e
6a44cf0
6c9851e
6a44cf0
 
 
 
 
 
 
 
 
 
11266dc
 
 
 
 
 
6a44cf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from ast import literal_eval
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
from nltk.stem.snowball import SnowballStemmer
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.corpus import wordnet
from surprise import Reader, Dataset, SVD
from surprise import NormalPredictor
from surprise.model_selection import cross_validate
from Levenshtein import distance
import warnings; warnings.simplefilter('ignore')

class Recommender_Model:
    def __init__(self):
        self.cleaned_data = None
        self.cleaned_data1 = None
        self.cosine_sim = None
        self.titles = None
        self.indices = None
        self.index_movie_id = None
        self.SVD = None
        self.id_map = None
        self.preprocessing()

    def preprocessing(self):
        movie_data = pd.read_csv("Datasets/movies_metadata.csv")
        self.user_rating = pd.read_csv("Datasets/ratings_small.csv")
        vote_counts = movie_data[movie_data['vote_count'].notnull()]['vote_count'].astype('int')
        vote_averages = movie_data[movie_data['vote_average'].notnull()]['vote_average'].astype('int')
        average_vote_score = vote_averages.mean()
        percentile_80_cutoff = np.percentile(vote_counts,80)

        cleand_data1 = movie_data[movie_data['vote_average']>=average_vote_score]
        cleand_data1 = cleand_data1[cleand_data1['vote_count']>percentile_80_cutoff]
        
        movie_data = movie_data.drop([19730, 29503, 35587])
        links_small = pd.read_csv('Datasets/links_small.csv')
        only_subset_movies = list(links_small['tmdbId'])
        cleand_data1['id'] = cleand_data1['id'].astype('int')
        self.cleaned_data = cleand_data1[cleand_data1['id'].isin(only_subset_movies)]
        self.cleaned_data['tagline'] = self.cleaned_data['tagline'].fillna('')
        
        ### genres   
        self.cleaned_data['genres'] = self.cleaned_data['genres'].apply(literal_eval)
        self.cleaned_data['genres'] = self.cleaned_data['genres'].apply(lambda x : [i['name'] for i in x])


        stemmer = SnowballStemmer('english')
        self.cleaned_data['genres'] = self.cleaned_data['genres'].apply(lambda x: [stemmer.stem(i) for i in x])
        self.cleaned_data['genres'] = self.cleaned_data['genres'].apply(lambda x: [str.lower(i.replace(" ", "")) for i in x])
        
        self.cleaned_data['genres'] = self.cleaned_data['genres'].apply(lambda x : list(set(x)))
        
        # original_language  
        self.cleaned_data['original_language'].unique()
        
        credits = pd.read_csv('Datasets/credits.csv')
        keywords = pd.read_csv('Datasets/keywords.csv')
        
        self.cleaned_data = self.cleaned_data.merge(credits, on='id')
        self.cleaned_data = self.cleaned_data.merge(keywords, on='id')
        
        self.cleaned_data['keywords'] = self.cleaned_data['keywords'].apply(literal_eval)
        
        self.cleaned_data['keywords'] = self.cleaned_data['keywords'].apply(lambda x : [i['name'] for i in x])
        
        self.cleaned_data['keywords'] = self.cleaned_data['keywords'].apply(lambda x: [stemmer.stem(i) for i in x])
        self.cleaned_data['keywords'] = self.cleaned_data['keywords'].apply(lambda x: [str.lower(i.replace(" ", "")) for i in x])
        self.cleaned_data['keywords'] = self.cleaned_data['keywords'].apply(lambda x : list(set(x)))
        
        self.cleaned_data['cast'] = self.cleaned_data['cast'].apply(literal_eval)
        
        self.cleaned_data['crew'] = self.cleaned_data['crew'].apply(literal_eval)
        
        self.cleaned_data['top_crew'] = self.cleaned_data['cast'].apply(lambda x : [i['name'] for i in x])
        
        self.cleaned_data['top_crew'] = self.cleaned_data['top_crew'].apply(lambda x : x[:2])
        
        self.cleaned_data['director'] = self.cleaned_data['crew'].apply(get_director)
        
        imp_cols = ['tagline', 'genres' ,'original_language' ,'keywords' ,'top_crew','director']
        
        self.cleaned_data1 = self.cleaned_data[imp_cols]

        self.cleaned_data1['tagline'] = self.cleaned_data1['tagline'].apply(lambda x : [x])
        self.cleaned_data1['original_language'] = self.cleaned_data1['original_language'].apply(lambda x : [x])
        self.cleaned_data1['director'] = self.cleaned_data1['director'].apply(lambda x : [x])


        self.cleaned_data1['combine'] = self.cleaned_data1['genres'] + self.cleaned_data1['original_language'] +\
                                self.cleaned_data1['keywords'] + self.cleaned_data1['top_crew'] +\
                                self.cleaned_data1['director']
        self.cleaned_data1['combine'] = self.cleaned_data1['combine'].apply(lambda x: ' '.join(x))
        
        count = CountVectorizer(analyzer='word',ngram_range=(1, 2),min_df=0.01, stop_words='english')
        count_matrix = count.fit_transform(self.cleaned_data1['combine'])
        
        self.cosine_sim = cosine_similarity(count_matrix, count_matrix)
        
        self.cleaned_data = self.cleaned_data.reset_index()
        self.titles = self.cleaned_data['title']
        self.indices = pd.Series(self.cleaned_data.index, index=self.cleaned_data['title'])
        
        self.index_movie_id = self.cleaned_data[['index','id']]
        
        reader = Reader()
        data = Dataset.load_from_df(self.user_rating[['userId', 'movieId', 'rating']], reader)
        cross_validate(NormalPredictor(), data, cv=4)
        
        self.SVD = SVD()
        trainset = data.build_full_trainset()
        self.SVD.fit(trainset)
        
        self.id_map = pd.read_csv('Datasets/links_small.csv')[['movieId', 'tmdbId']]
        self.id_map['tmdbId'] = self.id_map['tmdbId'].apply(convert_int)
        self.id_map.columns = ['movieId', 'id']
        self.id_map = self.id_map.merge(self.cleaned_data[['title', 'id']], on='id').set_index('title')
        self.indices_map = self.id_map.set_index('id')
        self.user_rating.drop(columns=['timestamp'], inplace=True)
    
    def hybrid2(self, userId, title1, title2, title3, number_of_suggestions: int):
        idx1 = self.indices[title1]
        idx2 = self.indices[title2]
        idx3 = self.indices[title3]

        tmdbId1 = self.id_map.loc[title1]['id']
        tmdbId2 = self.id_map.loc[title2]['id']
        tmdbId3 = self.id_map.loc[title3]['id']

        movie_id1 = self.id_map.loc[title1]['movieId']
        movie_id2 = self.id_map.loc[title2]['movieId']
        movie_id3 = self.id_map.loc[title3]['movieId']

        if type(idx1) == pd.Series:
            idx1 = idx1.iloc[0]
        if type(idx2) == pd.Series:
            idx2 = idx2.iloc[0]
        if type(idx3) == pd.Series:
            idx3 = idx3.iloc[0]
        
        sim_scores = list(enumerate(self.cosine_sim[int(idx1)] + self.cosine_sim[int(idx2)] + self.cosine_sim[int(idx3)]))
        sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
        sim_scores = sim_scores[1:56]
        movie_indices = [i[0] for i in sim_scores]

        movies = self.cleaned_data.iloc[movie_indices][['title', 'vote_count', 'vote_average', 'id']]
        movies['est'] = movies['id'].apply(lambda x: self.SVD.predict(userId, self.indices_smoother(x)).est)
        movies = movies.sort_values('est', ascending=False)
        return movies.head(number_of_suggestions + 3)
    
    def get_similar_users(self, movie_names):
        movie_ids = [self.cleaned_data.loc[self.cleaned_data['title'] == movie]['id'].iloc[0] for movie in movie_names]
        new_user_ratings = pd.DataFrame({
            'userId': [max(self.user_rating['userId']) + 1] * len(movie_ids),
            'movieId': movie_ids,
            'rating': [5.0] * len(movie_ids)
        })

        merged_ratings = pd.concat([self.user_rating, new_user_ratings], ignore_index=True)

        user_item_matrix = merged_ratings.pivot_table(index='userId', columns='movieId', values='rating', fill_value=0)

        new_user_vector = user_item_matrix.loc[user_item_matrix.index[-1]].values.reshape(1, -1)
        user_similarity = cosine_similarity(user_item_matrix.values[:-1], new_user_vector)

        similar_users_indices = user_similarity.argsort(axis=0)[-10:].flatten()[::-1]

        similar_users_similarity = user_similarity[similar_users_indices].flatten()
        similar_users = user_item_matrix.iloc[similar_users_indices]

        similar_users_df = pd.DataFrame({'userId': similar_users.index, 'Similarity': similar_users_similarity})
        return similar_users_df
        
    def suggest(self, movies, number_of_suggestions) -> pd.DataFrame:
        similar_id = self.get_similar_users(movies).iloc[0, 0]
        return self.hybrid2(similar_id, movies[0], movies[1], movies[2], number_of_suggestions=number_of_suggestions)
    
    def get_movie_info(self, movie_name: str) -> dict:
        movie_info = {}
        record = self.cleaned_data[self.cleaned_data['title'] == movie_name]
        movie_info['title'] = record['title'].to_numpy()[0]
        movie_info['overview'] = record['overview'].to_numpy()[0]
        movie_info['language'] = get_language_name(record['original_language'].to_numpy()[0])
        movie_info['genres'] = record['genres'].to_numpy()
        return movie_info
    
    def indices_smoother(self, ids):
        if type(self.indices_map.loc[ids]['movieId']) == pd.Series:
            return self.indices_map.loc[ids]['movieId'].iloc[0]
        else:
            return self.indices_map.loc[ids]['movieId']
    
    def find_nearest_movie(self, movie_name: str) -> tuple:
        lowest_distance = float('inf')
        closest_movie = ''
        for movie in self.cleaned_data['title']:
            current_distance = levenshtein_distance(movie_name.replace(" ", '').lower(), movie.replace(" ", '').lower())
            if current_distance < lowest_distance:
                lowest_distance = current_distance
                closest_movie = movie
        return (closest_movie, lowest_distance)
    
def get_director(x):
    for i in x:
        if i['job'] == 'Director':
            return i['name']
    return ""

def convert_int(x):
    try:
        return int(x)
    except:
        return np.nan

def levenshtein_distance(name1: str, name2: str) -> int:
    return distance(name1, name2)

def get_language_name(code:str) -> str:
    language_dict = {
        'en': 'English',
        'fr': 'French',
        'es': 'Spanish',
        'de': 'German',
        'ja': 'Japanese',
        'zh-cn': 'Chinese',
        'ru': 'Russian',
        'pt': 'Portuguese',
        'ar': 'Arabic',
        'hi': 'Hindi'
    }
    
    if code in language_dict:
        return language_dict[code]
    else:
        return 'Unknown Language'