Spaces:
Sleeping
Sleeping
File size: 2,431 Bytes
6a44cf0 09ade37 6a44cf0 6c9851e 6a44cf0 6c9851e 6a44cf0 6c9851e 6a44cf0 71fe120 6a44cf0 6c9851e 6a44cf0 6c9851e 6a44cf0 6c9851e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import streamlit as st
import pandas as pd
import numpy as np
from PIL import Image
from SVD_Model import Recommender_Model
@st.cache_resource
def load_model():
return Recommender_Model()
model = load_model()
def view_suggestions(movies_array: list, number_of_suggestions):
movie1 = model.find_nearest_movie(movies_array[0])[0]
movie2 = model.find_nearest_movie(movies_array[1])[0]
movie3 = model.find_nearest_movie(movies_array[2])[0]
suggestions = model.suggest([movie1, movie2, movie3], number_of_suggestions=number_of_suggestions)
for movie in [movie1, movie2, movie3]:
suggestions = suggestions[suggestions['title'] != movie]
suggestions = suggestions.to_numpy()
suggested_movies = []
for row in suggestions:
name = row[0]
suggested_movies.append(model.get_movie_info(name))
for idx, info in enumerate(suggested_movies):
if idx >= number_of_suggestions:
break
st.subheader(info['title'])
st.markdown(f"__Overview:__ {info['overview']}")
st.markdown(f"__Genres:__")
st.write(info['genres'], value='genre')
st.markdown(f"__Language:__ {info['language']}")
st.divider()
with st.sidebar:
logo = Image.open("MM Logo.jpeg")
st.image(logo, caption='MM Movie Recommender')
st.title("MM Movie Recommender")
st.subheader("Development Team:")
st.markdown("<a href='https://www.linkedin.com/in/mobin-nesari/'>Mobin Nesari</a>", unsafe_allow_html=True)
st.markdown("<a href='https://www.linkedin.com/in/m0hsnn/'>Seyed Mohsen Sadeghi</a>", unsafe_allow_html=True)
st.markdown("Huge shout-out to __Mohammad Reza Saheb__ & __Mirhossein Adnani Oskoui__ for reviewing and testing beta version!")
st.title("MM Movie Recommender")
st.header("Movie Names:")
st.subheader("Please specify three movies which you like them")
with st.form("input_form"):
movie1 = st.text_input('Movie 1', placeholder="Like Ironman 1")
movie2 = st.text_input('Movie 2', placeholder='Like Ironman 2')
movie3 = st.text_input('Movie 3', placeholder="Like Ironman 3")
number_of_suggestions = st.slider(label = 'How many movies do you want to be suggested?', min_value=1, max_value=10, step=1)
submitted = st.form_submit_button("Submit")
if submitted:
view_suggestions([movie1, movie2, movie3], number_of_suggestions=number_of_suggestions) |