Spaces:
Running
on
Zero
Running
on
Zero
Added rnd
Browse files- demo_rnd_generation.py +359 -0
- pyproject.toml +22 -0
- rnd/__init__.py +53 -0
- rnd/__pycache__/__init__.cpython-310.pyc +0 -0
- rnd/__pycache__/configuration_rnd.cpython-310.pyc +0 -0
- rnd/__pycache__/generation_config.cpython-310.pyc +0 -0
- rnd/__pycache__/generation_utils.cpython-310.pyc +0 -0
- rnd/__pycache__/modeling_rnd.cpython-310.pyc +0 -0
- rnd/__pycache__/sampling.cpython-310.pyc +0 -0
- rnd/__pycache__/terminal_visualizer.cpython-310.pyc +0 -0
- rnd/configuration_rnd.py +123 -0
- rnd/generation_config.py +77 -0
- rnd/generation_utils.py +196 -0
- rnd/modeling_rnd.py +534 -0
- rnd/sampling.py +259 -0
- rnd/terminal_visualizer.py +251 -0
demo_rnd_generation.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Demo script for RND1 generation.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import argparse
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
import random
|
11 |
+
import numpy as np
|
12 |
+
from transformers import AutoTokenizer
|
13 |
+
|
14 |
+
# Add RND1 module to path for local testing
|
15 |
+
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
|
16 |
+
|
17 |
+
|
18 |
+
def set_seed(seed: int):
|
19 |
+
"""Set random seed for reproducibility.
|
20 |
+
"""
|
21 |
+
random.seed(seed)
|
22 |
+
np.random.seed(seed)
|
23 |
+
torch.manual_seed(seed)
|
24 |
+
torch.cuda.manual_seed_all(seed)
|
25 |
+
|
26 |
+
|
27 |
+
def demo_completion(
|
28 |
+
model_path: str,
|
29 |
+
checkpoint_path: str = None,
|
30 |
+
device: str = "cuda:0",
|
31 |
+
use_bfloat16: bool = True,
|
32 |
+
show_visualization: bool = True,
|
33 |
+
num_steps: int = 64,
|
34 |
+
max_new_tokens: int = 256,
|
35 |
+
custom_prompt: str = None,
|
36 |
+
temperature: float = 1.0,
|
37 |
+
top_k: int = None,
|
38 |
+
top_p: float = None,
|
39 |
+
mask_token_id: int = 151669,
|
40 |
+
seed: int = 12345,
|
41 |
+
moe_backend: str = "hf",
|
42 |
+
mode: str = "task",
|
43 |
+
):
|
44 |
+
"""
|
45 |
+
Demonstrate text completion using RND1.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
model_path: Path to base model or HuggingFace model ID
|
49 |
+
checkpoint_path: Path to custom checkpoint (if any)
|
50 |
+
device: Device to run on (e.g., cuda:0, cpu)
|
51 |
+
use_bfloat16: Whether to use bfloat16 precision
|
52 |
+
show_visualization: Whether to show live visualization (requires rich)
|
53 |
+
num_steps: Number of diffusion steps
|
54 |
+
max_new_tokens: Maximum number of tokens to generate
|
55 |
+
custom_prompt: Custom prompt to use instead of default examples
|
56 |
+
temperature: Temperature for sampling (0.0 = greedy)
|
57 |
+
top_k: Top-k filtering for sampling (None = disabled)
|
58 |
+
top_p: Top-p (nucleus) filtering for sampling (None = disabled)
|
59 |
+
mask_token_id: Token ID for mask token
|
60 |
+
seed: Random seed for reproducibility
|
61 |
+
moe_backend: MoE backend to use ('hf' or 'flashinfer')
|
62 |
+
mode: Generation mode ('task' for Q&A format, 'completion' for continuation)
|
63 |
+
"""
|
64 |
+
set_seed(seed)
|
65 |
+
|
66 |
+
from rnd.configuration_rnd import RND1Config
|
67 |
+
from rnd.modeling_rnd import RND1LM
|
68 |
+
|
69 |
+
print("Loading tokenizer...")
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
71 |
+
|
72 |
+
dtype = torch.bfloat16 if use_bfloat16 else torch.float32
|
73 |
+
print(f"Using dtype: {dtype}")
|
74 |
+
|
75 |
+
if moe_backend == "hf":
|
76 |
+
print("\n⚠️ Note: HuggingFace backend is slower. Consider using --moe_backend flashinfer or sglang for better performance.\n")
|
77 |
+
|
78 |
+
# Load from checkpoint if provided, otherwise from model_path
|
79 |
+
load_path = checkpoint_path if checkpoint_path else model_path
|
80 |
+
|
81 |
+
print(f"Loading model from {load_path}...")
|
82 |
+
|
83 |
+
# Load config and set RND1-specific settings
|
84 |
+
cfg = RND1Config.from_pretrained(load_path)
|
85 |
+
cfg.model_type = "rnd1"
|
86 |
+
cfg.attn_implementation = "sdpa"
|
87 |
+
cfg.moe_backend = moe_backend
|
88 |
+
|
89 |
+
# Load model with RND1LM
|
90 |
+
model = RND1LM.from_pretrained(
|
91 |
+
load_path,
|
92 |
+
config=cfg,
|
93 |
+
torch_dtype=dtype,
|
94 |
+
device_map="auto" if device == "cuda:0" else device,
|
95 |
+
trust_remote_code=True,
|
96 |
+
use_safetensors=True,
|
97 |
+
low_cpu_mem_usage=True,
|
98 |
+
)
|
99 |
+
print("Model loaded")
|
100 |
+
model = model.eval()
|
101 |
+
|
102 |
+
if custom_prompt:
|
103 |
+
prompts = [custom_prompt]
|
104 |
+
else:
|
105 |
+
# Default prompts based on mode
|
106 |
+
if mode == "task":
|
107 |
+
prompts = ["Write a Python function that finds the longest common subsequence of two strings. Include comments explaining the algorithm."]
|
108 |
+
else:
|
109 |
+
prompts = ["The key to understanding quantum computing lies in"]
|
110 |
+
|
111 |
+
greedy = (temperature == 1.0)
|
112 |
+
|
113 |
+
generator = torch.Generator(device=device if device != "auto" else "cuda")
|
114 |
+
generator.manual_seed(seed)
|
115 |
+
|
116 |
+
for i, user_prompt in enumerate(prompts):
|
117 |
+
print(f"\n{'='*60}")
|
118 |
+
print(f"Mode: {mode.upper()}")
|
119 |
+
print(f"Prompt {i+1}: {user_prompt[:100]}...")
|
120 |
+
print(f"{'='*60}\n")
|
121 |
+
|
122 |
+
if mode == "task":
|
123 |
+
# Task mode: Add "Question: " prefix if not already present
|
124 |
+
if not user_prompt.strip().startswith("Question:"):
|
125 |
+
prompt = f"Question: {user_prompt}\n"
|
126 |
+
else:
|
127 |
+
prompt = user_prompt
|
128 |
+
else:
|
129 |
+
# Completion mode: Use prompt as-is for continuation
|
130 |
+
prompt = user_prompt
|
131 |
+
|
132 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
133 |
+
input_ids = inputs.input_ids.to(device if device != "auto" else "cuda")
|
134 |
+
attention_mask = inputs.attention_mask.to(device if device != "auto" else "cuda") if 'attention_mask' in inputs else None
|
135 |
+
|
136 |
+
print("Generation parameters:")
|
137 |
+
print(f" Prompt length: {input_ids.shape[1]} tokens")
|
138 |
+
print(f" Max new tokens: {max_new_tokens}")
|
139 |
+
print(f" Total sequence: {input_ids.shape[1] + max_new_tokens} tokens")
|
140 |
+
print(f" Diffusion steps: {num_steps}")
|
141 |
+
print(f" Temperature: {temperature}")
|
142 |
+
print(f" Greedy: {greedy}")
|
143 |
+
if top_k:
|
144 |
+
print(f" Top-k: {top_k}")
|
145 |
+
if top_p:
|
146 |
+
print(f" Top-p: {top_p}")
|
147 |
+
print()
|
148 |
+
|
149 |
+
# Create explicit generation config that takes priority over model defaults
|
150 |
+
from rnd.generation_config import RND1GenerationConfig
|
151 |
+
gen_config = RND1GenerationConfig(
|
152 |
+
max_new_tokens=max_new_tokens,
|
153 |
+
num_diffusion_steps=num_steps,
|
154 |
+
mask_token_id=mask_token_id,
|
155 |
+
temperature=temperature if not greedy else 1.0,
|
156 |
+
top_k=top_k,
|
157 |
+
top_p=top_p,
|
158 |
+
greedy=greedy,
|
159 |
+
eos_token_id=tokenizer.eos_token_id if tokenizer.eos_token_id else 151645,
|
160 |
+
pad_token_id=tokenizer.pad_token_id,
|
161 |
+
bos_token_id=tokenizer.bos_token_id,
|
162 |
+
)
|
163 |
+
|
164 |
+
with torch.no_grad():
|
165 |
+
if show_visualization and hasattr(model, 'generate_with_visualization'):
|
166 |
+
# Use method with visualization support (requires tokenizer)
|
167 |
+
output = model.generate_with_visualization(
|
168 |
+
tokenizer=tokenizer,
|
169 |
+
inputs=input_ids,
|
170 |
+
generation_config=gen_config,
|
171 |
+
generator=generator,
|
172 |
+
)
|
173 |
+
else:
|
174 |
+
# Use standard generate method with explicit config
|
175 |
+
output = model.generate(
|
176 |
+
inputs=input_ids,
|
177 |
+
generation_config=gen_config,
|
178 |
+
generator=generator,
|
179 |
+
)
|
180 |
+
|
181 |
+
generated_tokens = output[0][len(input_ids[0]):]
|
182 |
+
generation = tokenizer.decode(
|
183 |
+
generated_tokens.tolist(),
|
184 |
+
skip_special_tokens=True
|
185 |
+
)
|
186 |
+
|
187 |
+
print("\nGenerated response:")
|
188 |
+
print(generation)
|
189 |
+
|
190 |
+
print(f"\n(Generation completed in {num_steps} diffusion steps)")
|
191 |
+
|
192 |
+
|
193 |
+
def main():
|
194 |
+
parser = argparse.ArgumentParser(
|
195 |
+
description="RND1 diffusion model demo with live visualization",
|
196 |
+
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
197 |
+
)
|
198 |
+
|
199 |
+
# Model configuration
|
200 |
+
model_group = parser.add_argument_group('Model Configuration')
|
201 |
+
model_group.add_argument(
|
202 |
+
"--model_path",
|
203 |
+
type=str,
|
204 |
+
default="radicalnumerics/RND1-Base-0910",
|
205 |
+
help="Path to model or HuggingFace model ID"
|
206 |
+
)
|
207 |
+
model_group.add_argument(
|
208 |
+
"--checkpoint",
|
209 |
+
type=str,
|
210 |
+
default=None,
|
211 |
+
help="Path to custom checkpoint file or directory"
|
212 |
+
)
|
213 |
+
model_group.add_argument(
|
214 |
+
"--device",
|
215 |
+
type=str,
|
216 |
+
default="cuda:0",
|
217 |
+
help="Device to run on (e.g., cuda:0, cpu)"
|
218 |
+
)
|
219 |
+
model_group.add_argument(
|
220 |
+
"--fp32",
|
221 |
+
action="store_true",
|
222 |
+
help="Use FP32 precision instead of BF16"
|
223 |
+
)
|
224 |
+
|
225 |
+
# Generation configuration
|
226 |
+
gen_group = parser.add_argument_group('Generation Settings')
|
227 |
+
gen_group.add_argument(
|
228 |
+
"--num_steps",
|
229 |
+
type=int,
|
230 |
+
default=256,
|
231 |
+
help="Number of diffusion steps"
|
232 |
+
)
|
233 |
+
gen_group.add_argument(
|
234 |
+
"--max_new_tokens",
|
235 |
+
type=int,
|
236 |
+
default=256,
|
237 |
+
help="Maximum number of tokens to generate"
|
238 |
+
)
|
239 |
+
gen_group.add_argument(
|
240 |
+
"--prompt",
|
241 |
+
type=str,
|
242 |
+
default=None,
|
243 |
+
help="Custom prompt to use for generation"
|
244 |
+
)
|
245 |
+
gen_group.add_argument(
|
246 |
+
"--mode",
|
247 |
+
type=str,
|
248 |
+
default="task",
|
249 |
+
choices=["task", "completion"],
|
250 |
+
help="Generation mode: 'task' (Q&A format for instructions) or 'completion' (text continuation)"
|
251 |
+
)
|
252 |
+
gen_group.add_argument(
|
253 |
+
"--mask_token_id",
|
254 |
+
type=int,
|
255 |
+
default=151669,
|
256 |
+
help="Token ID for mask token"
|
257 |
+
)
|
258 |
+
|
259 |
+
# Sampling configuration
|
260 |
+
sampling_group = parser.add_argument_group('Sampling Parameters')
|
261 |
+
sampling_group.add_argument(
|
262 |
+
"--temperature",
|
263 |
+
type=float,
|
264 |
+
default=1.0,
|
265 |
+
help="Temperature for sampling (1.0 = greedy/deterministic)"
|
266 |
+
)
|
267 |
+
sampling_group.add_argument(
|
268 |
+
"--top_k",
|
269 |
+
type=int,
|
270 |
+
default=None,
|
271 |
+
help="Top-k filtering: keep only k most likely tokens"
|
272 |
+
)
|
273 |
+
sampling_group.add_argument(
|
274 |
+
"--top_p",
|
275 |
+
type=float,
|
276 |
+
default=None,
|
277 |
+
help="Top-p (nucleus) filtering: keep tokens with cumulative probability <= p"
|
278 |
+
)
|
279 |
+
|
280 |
+
# Visualization
|
281 |
+
viz_group = parser.add_argument_group('Visualization')
|
282 |
+
viz_group.add_argument(
|
283 |
+
"--no_viz",
|
284 |
+
action="store_true",
|
285 |
+
help="Disable live visualization during generation (requires rich library)"
|
286 |
+
)
|
287 |
+
|
288 |
+
# Other settings
|
289 |
+
other_group = parser.add_argument_group('Other Settings')
|
290 |
+
other_group.add_argument(
|
291 |
+
"--seed",
|
292 |
+
type=int,
|
293 |
+
default=12345,
|
294 |
+
help="Random seed for reproducibility"
|
295 |
+
)
|
296 |
+
|
297 |
+
moe_backend_group = parser.add_argument_group('MoE Backend')
|
298 |
+
moe_backend_group.add_argument(
|
299 |
+
"--moe_backend",
|
300 |
+
type=str,
|
301 |
+
default="hf",
|
302 |
+
choices=["hf", "flashinfer", "sglang"],
|
303 |
+
help="MoE backend to use for sparse mixture of experts layers"
|
304 |
+
)
|
305 |
+
|
306 |
+
args = parser.parse_args()
|
307 |
+
|
308 |
+
if args.temperature < 0:
|
309 |
+
parser.error("Temperature must be non-negative")
|
310 |
+
if args.top_k is not None and args.top_k <= 0:
|
311 |
+
parser.error("Top-k must be positive")
|
312 |
+
if args.top_p is not None and (args.top_p <= 0 or args.top_p > 1):
|
313 |
+
parser.error("Top-p must be between 0 and 1")
|
314 |
+
|
315 |
+
|
316 |
+
print("\n" + "="*60)
|
317 |
+
print("RND1 Diffusion Language Model Demo")
|
318 |
+
print("="*60)
|
319 |
+
print("Configuration:")
|
320 |
+
print(f" Model: {args.model_path}")
|
321 |
+
if args.checkpoint:
|
322 |
+
print(f" Checkpoint: {args.checkpoint}")
|
323 |
+
print(f" Device: {args.device}")
|
324 |
+
print(f" Precision: {'FP32' if args.fp32 else 'BF16'}")
|
325 |
+
print(f" Mode: {args.mode.upper()} ({'Q&A format for instructions' if args.mode == 'task' else 'Text continuation'})")
|
326 |
+
print(f" Random seed: {args.seed}")
|
327 |
+
print(f" Diffusion steps: {args.num_steps}")
|
328 |
+
print(f" Max new tokens: {args.max_new_tokens}")
|
329 |
+
print(f" Algorithm: Entropy-based selection")
|
330 |
+
print(f" Temperature: {args.temperature}")
|
331 |
+
if args.top_k:
|
332 |
+
print(f" Top-k: {args.top_k}")
|
333 |
+
if args.top_p:
|
334 |
+
print(f" Top-p: {args.top_p}")
|
335 |
+
print(f" MoE Backend: {args.moe_backend}")
|
336 |
+
print(f" Visualization: {'Enabled' if not args.no_viz else 'Disabled'}")
|
337 |
+
print("="*60 + "\n")
|
338 |
+
|
339 |
+
demo_completion(
|
340 |
+
model_path=args.model_path,
|
341 |
+
checkpoint_path=args.checkpoint,
|
342 |
+
device=args.device,
|
343 |
+
use_bfloat16=not args.fp32,
|
344 |
+
show_visualization=not args.no_viz,
|
345 |
+
num_steps=args.num_steps,
|
346 |
+
max_new_tokens=args.max_new_tokens,
|
347 |
+
custom_prompt=args.prompt,
|
348 |
+
temperature=args.temperature,
|
349 |
+
top_k=args.top_k,
|
350 |
+
top_p=args.top_p,
|
351 |
+
mask_token_id=args.mask_token_id,
|
352 |
+
seed=args.seed,
|
353 |
+
moe_backend=args.moe_backend,
|
354 |
+
mode=args.mode,
|
355 |
+
)
|
356 |
+
|
357 |
+
|
358 |
+
if __name__ == "__main__":
|
359 |
+
main()
|
pyproject.toml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools>=61", "wheel"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "rnd"
|
7 |
+
version = "0.1.0"
|
8 |
+
dependencies = [
|
9 |
+
"accelerate",
|
10 |
+
"torch>=2.8",
|
11 |
+
"transformers",
|
12 |
+
"rich"
|
13 |
+
]
|
14 |
+
|
15 |
+
[project.optional-dependencies]
|
16 |
+
flashinfer = [
|
17 |
+
"flashinfer-python",
|
18 |
+
]
|
19 |
+
sglang = ["sglang[all]"]
|
20 |
+
|
21 |
+
[tool.setuptools]
|
22 |
+
packages = ["rnd"]
|
rnd/__init__.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2025 Radical Numerics Inc.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0, found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""
|
7 |
+
Radical Numerics Diffusion (RND1) - Diffusion-based Language Model.
|
8 |
+
"""
|
9 |
+
|
10 |
+
from .configuration_rnd import RND1Config
|
11 |
+
from .modeling_rnd import (
|
12 |
+
RND1LM,
|
13 |
+
RND1Model,
|
14 |
+
RND1PreTrainedModel,
|
15 |
+
RND1Attention,
|
16 |
+
RND1DecoderLayer,
|
17 |
+
RND1SparseMoeBlock,
|
18 |
+
)
|
19 |
+
from .generation_config import RND1GenerationConfig
|
20 |
+
from .generation_utils import RND1GenerationMixin
|
21 |
+
from .sampling import (
|
22 |
+
diffusion_sample,
|
23 |
+
apply_top_k_filtering,
|
24 |
+
apply_top_p_filtering,
|
25 |
+
)
|
26 |
+
from .terminal_visualizer import TerminalVisualizer, SimpleProgressBar
|
27 |
+
|
28 |
+
__version__ = "0.1.0"
|
29 |
+
|
30 |
+
__all__ = [
|
31 |
+
"RND1Config",
|
32 |
+
"RND1GenerationConfig",
|
33 |
+
"RND1LM",
|
34 |
+
"RND1Model",
|
35 |
+
"RND1PreTrainedModel",
|
36 |
+
"RND1Attention",
|
37 |
+
"RND1DecoderLayer",
|
38 |
+
"RND1SparseMoeBlock",
|
39 |
+
"RND1GenerationMixin",
|
40 |
+
"TerminalVisualizer",
|
41 |
+
"SimpleProgressBar",
|
42 |
+
]
|
43 |
+
|
44 |
+
# Register with HuggingFace Auto classes for local usage
|
45 |
+
try:
|
46 |
+
from transformers import AutoConfig, AutoModel, AutoModelForMaskedLM
|
47 |
+
|
48 |
+
AutoConfig.register("rnd1", RND1Config)
|
49 |
+
AutoModel.register(RND1Config, RND1Model)
|
50 |
+
AutoModelForMaskedLM.register(RND1Config, RND1LM)
|
51 |
+
except ImportError:
|
52 |
+
# transformers not available or Auto classes not imported
|
53 |
+
pass
|
rnd/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
rnd/__pycache__/configuration_rnd.cpython-310.pyc
ADDED
Binary file (3.49 kB). View file
|
|
rnd/__pycache__/generation_config.cpython-310.pyc
ADDED
Binary file (2.34 kB). View file
|
|
rnd/__pycache__/generation_utils.cpython-310.pyc
ADDED
Binary file (5.54 kB). View file
|
|
rnd/__pycache__/modeling_rnd.cpython-310.pyc
ADDED
Binary file (16.2 kB). View file
|
|
rnd/__pycache__/sampling.cpython-310.pyc
ADDED
Binary file (7.07 kB). View file
|
|
rnd/__pycache__/terminal_visualizer.cpython-310.pyc
ADDED
Binary file (7.31 kB). View file
|
|
rnd/configuration_rnd.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2025 Radical Numerics Inc.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0, found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""
|
7 |
+
RND1 Model Configuration.
|
8 |
+
|
9 |
+
This module defines the configuration class for RND1 models.
|
10 |
+
The default settings are derived from Qwen/Qwen3-30B-A3B and augmented
|
11 |
+
with RND1-specific parameters.
|
12 |
+
"""
|
13 |
+
|
14 |
+
from transformers.configuration_utils import PretrainedConfig
|
15 |
+
|
16 |
+
# Qwen3-30B-A3B / checkpoint defaults
|
17 |
+
CONFIG_DEFAULTS = {
|
18 |
+
"attention_bias": False,
|
19 |
+
"attention_dropout": 0.0,
|
20 |
+
"bos_token_id": 151643,
|
21 |
+
"decoder_sparse_step": 1,
|
22 |
+
"eos_token_id": 151645,
|
23 |
+
"head_dim": 128,
|
24 |
+
"hidden_act": "silu",
|
25 |
+
"hidden_size": 2048,
|
26 |
+
"initializer_range": 0.02,
|
27 |
+
"intermediate_size": 6144,
|
28 |
+
"max_position_embeddings": 40960,
|
29 |
+
"max_window_layers": 48,
|
30 |
+
"mlp_only_layers": [],
|
31 |
+
"moe_intermediate_size": 768,
|
32 |
+
"norm_topk_prob": True,
|
33 |
+
"num_attention_heads": 32,
|
34 |
+
"num_experts": 128,
|
35 |
+
"num_experts_per_tok": 8,
|
36 |
+
"num_hidden_layers": 48,
|
37 |
+
"num_key_value_heads": 4,
|
38 |
+
"output_router_logits": False,
|
39 |
+
"rms_norm_eps": 1e-06,
|
40 |
+
"rope_scaling": False,
|
41 |
+
"rope_theta": 1000000.0,
|
42 |
+
"router_aux_loss_coef": 0.001,
|
43 |
+
"sliding_window": False,
|
44 |
+
"tie_word_embeddings": False,
|
45 |
+
"torch_dtype": "bfloat16",
|
46 |
+
"use_cache": False,
|
47 |
+
"use_sliding_window": False,
|
48 |
+
"vocab_size": 151936,
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
class RND1Config(PretrainedConfig):
|
53 |
+
"""
|
54 |
+
Configuration class for RND1 models.
|
55 |
+
|
56 |
+
This configuration extends Qwen3MoeConfig with additional parameters
|
57 |
+
specific to the RND1 (Radical Numerics Diffusion v1) architecture.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
moe_backend: Backend for MoE computation ("hf", "flashinfer", or "sglang")
|
61 |
+
num_diffusion_steps: Default number of diffusion steps for generation
|
62 |
+
mask_token_id: Token ID used for masking (default: 151669 for Qwen)
|
63 |
+
**kwargs: Additional arguments passed to Qwen3MoeConfig
|
64 |
+
"""
|
65 |
+
|
66 |
+
model_type = "rnd1"
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
moe_backend: str = "hf",
|
71 |
+
num_diffusion_steps: int = 256,
|
72 |
+
mask_token_id: int = 151669,
|
73 |
+
**kwargs,
|
74 |
+
):
|
75 |
+
# Force non-causal and no caching for RND1
|
76 |
+
kwargs["use_cache"] = False
|
77 |
+
kwargs["is_causal"] = False
|
78 |
+
|
79 |
+
super().__init__(**kwargs)
|
80 |
+
|
81 |
+
# Set defaults after pretrained init to prevent overrides
|
82 |
+
self.set_config_defaults()
|
83 |
+
|
84 |
+
# QoL: set attn impl directly from config
|
85 |
+
if "attn_implementation" in kwargs:
|
86 |
+
self._attn_implementation = kwargs["attn_implementation"]
|
87 |
+
|
88 |
+
# RND1-specific parameters
|
89 |
+
self.moe_backend = moe_backend
|
90 |
+
self.num_diffusion_steps = num_diffusion_steps
|
91 |
+
self.mask_token_id = mask_token_id
|
92 |
+
|
93 |
+
# Ensure bidirectional attention and no caching
|
94 |
+
self.is_causal = False
|
95 |
+
self.use_cache = False
|
96 |
+
|
97 |
+
def set_config_defaults(self):
|
98 |
+
"""
|
99 |
+
Ensure model defaults are set according to final training checkpoint
|
100 |
+
|
101 |
+
Qwen3MoeConfig defaults don't match Qwen/Qwen3-30B-A3B settings from which
|
102 |
+
RND1 is derived.
|
103 |
+
"""
|
104 |
+
for k, v in CONFIG_DEFAULTS.items():
|
105 |
+
setattr(self, k, v)
|
106 |
+
|
107 |
+
def to_dict(self):
|
108 |
+
"""
|
109 |
+
Serializes configuration to dictionary with auto_map for Hub.
|
110 |
+
|
111 |
+
The auto_map ensures that when users load from HuggingFace Hub,
|
112 |
+
the correct custom classes are automatically resolved.
|
113 |
+
"""
|
114 |
+
data = super().to_dict()
|
115 |
+
data.setdefault(
|
116 |
+
"auto_map",
|
117 |
+
{
|
118 |
+
"AutoConfig": "configuration_rnd.RND1Config",
|
119 |
+
"AutoModel": "modeling_rnd.RND1Model",
|
120 |
+
"AutoModelForMaskedLM": "modeling_rnd.RND1LM",
|
121 |
+
},
|
122 |
+
)
|
123 |
+
return data
|
rnd/generation_config.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2025 Radical Numerics Inc.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0, found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""
|
7 |
+
RND1 Generation Configuration.
|
8 |
+
|
9 |
+
This module defines the generation configuration for RND1 models,
|
10 |
+
controlling the diffusion-based generation process.
|
11 |
+
"""
|
12 |
+
|
13 |
+
from typing import Optional
|
14 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
15 |
+
|
16 |
+
|
17 |
+
class RND1GenerationConfig(GenerationConfig):
|
18 |
+
"""
|
19 |
+
Configuration class for RND1 generation parameters.
|
20 |
+
|
21 |
+
This class extends the base GenerationConfig to include parameters
|
22 |
+
specific to diffusion-based language generation.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
max_length: Maximum sequence length
|
26 |
+
num_diffusion_steps: Number of denoising steps in the diffusion process
|
27 |
+
mask_token_id: Token ID used for masking during diffusion
|
28 |
+
temperature: Temperature for sampling (higher = more random)
|
29 |
+
top_k: Optional top-k filtering
|
30 |
+
top_p: Optional nucleus (top-p) filtering
|
31 |
+
greedy: Whether to use greedy decoding (True) or stochastic sampling (False)
|
32 |
+
**kwargs: Additional arguments passed to GenerationConfig
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
max_length: int = 256,
|
38 |
+
num_diffusion_steps: int = 256,
|
39 |
+
mask_token_id: int = 151669,
|
40 |
+
temperature: float = 1.0,
|
41 |
+
top_k: Optional[int] = None,
|
42 |
+
top_p: Optional[float] = None,
|
43 |
+
greedy: bool = True,
|
44 |
+
bos_token_id: int = None,
|
45 |
+
eos_token_id: int = None,
|
46 |
+
pad_token_id: int = None,
|
47 |
+
use_cache: bool = False,
|
48 |
+
**kwargs,
|
49 |
+
):
|
50 |
+
# Force no caching for RND generation
|
51 |
+
# kwargs['use_cache'] = False
|
52 |
+
kwargs.pop('use_cache', None)
|
53 |
+
super().__init__(
|
54 |
+
max_length=max_length,
|
55 |
+
bos_token_id=bos_token_id,
|
56 |
+
eos_token_id=eos_token_id,
|
57 |
+
pad_token_id=pad_token_id,
|
58 |
+
temperature=temperature,
|
59 |
+
top_k=top_k,
|
60 |
+
top_p=top_p,
|
61 |
+
do_sample=not greedy,
|
62 |
+
use_cache=False,
|
63 |
+
**kwargs,
|
64 |
+
)
|
65 |
+
|
66 |
+
# RND-specific parameters
|
67 |
+
self.num_diffusion_steps = num_diffusion_steps
|
68 |
+
self.mask_token_id = mask_token_id
|
69 |
+
self.greedy = greedy
|
70 |
+
|
71 |
+
def to_dict(self):
|
72 |
+
"""Convert configuration to dictionary."""
|
73 |
+
output = super().to_dict()
|
74 |
+
output["num_diffusion_steps"] = self.num_diffusion_steps
|
75 |
+
output["mask_token_id"] = self.mask_token_id
|
76 |
+
output["greedy"] = self.greedy
|
77 |
+
return output
|
rnd/generation_utils.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2025 Radical Numerics Inc.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0, found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""
|
7 |
+
RND1 Generation Utilities.
|
8 |
+
|
9 |
+
This module provides generation utilities and mixins for RND1 models,
|
10 |
+
including the main GenerationMixin class that integrates with HuggingFace.
|
11 |
+
"""
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
from typing import Optional, Union, Dict, Any
|
16 |
+
from transformers import GenerationMixin as HFGenerationMixin
|
17 |
+
from transformers.generation import GenerationConfig
|
18 |
+
|
19 |
+
from .sampling import diffusion_sample, apply_top_k_filtering, apply_top_p_filtering
|
20 |
+
|
21 |
+
|
22 |
+
class RND1GenerationMixin(HFGenerationMixin):
|
23 |
+
"""
|
24 |
+
Generation mixin for RND1 models.
|
25 |
+
|
26 |
+
This mixin provides generation methods compatible with HuggingFace's
|
27 |
+
generation API while using RND1's diffusion-based sampling internally.
|
28 |
+
"""
|
29 |
+
|
30 |
+
def generate(
|
31 |
+
self,
|
32 |
+
inputs: Optional[torch.LongTensor] = None,
|
33 |
+
generation_config: Optional[GenerationConfig] = None,
|
34 |
+
# RND1-specific parameters
|
35 |
+
prefix_ids: Optional[torch.LongTensor] = None,
|
36 |
+
suffix_ids: Optional[torch.LongTensor] = None,
|
37 |
+
infill_length: Optional[int] = None,
|
38 |
+
return_dict_in_generate: Optional[bool] = None,
|
39 |
+
**kwargs, # Accept all kwargs to be compatible with pipelines
|
40 |
+
) -> Union[torch.LongTensor, Dict[str, Any]]:
|
41 |
+
"""
|
42 |
+
Generate text using RND1's diffusion-based sampling.
|
43 |
+
|
44 |
+
Follows HuggingFace's standard generate API, using diffusion sampling
|
45 |
+
internally. Supports both standard generation and infilling.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
inputs: Input token IDs to use as prefix (standard HF parameter)
|
49 |
+
generation_config: Generation configuration object
|
50 |
+
prefix_ids: Alternative to inputs for infilling tasks
|
51 |
+
suffix_ids: Optional suffix for infilling tasks
|
52 |
+
infill_length: Length of infill region (for infilling)
|
53 |
+
return_dict_in_generate: Whether to return GenerateDecoderOnlyOutput
|
54 |
+
**kwargs: Additional arguments (accepted for compatibility)
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
Generated token IDs or GenerateDecoderOnlyOutput
|
58 |
+
"""
|
59 |
+
if generation_config is not None:
|
60 |
+
gen_config = generation_config
|
61 |
+
model_kwargs = kwargs.copy()
|
62 |
+
else:
|
63 |
+
# Only prepare config from kwargs if no config was provided
|
64 |
+
gen_config, model_kwargs = self._prepare_generation_config(None, **kwargs)
|
65 |
+
|
66 |
+
device = next(self.parameters()).device
|
67 |
+
|
68 |
+
if inputs is not None:
|
69 |
+
prefix_ids = inputs.to(device)
|
70 |
+
elif prefix_ids is not None:
|
71 |
+
prefix_ids = prefix_ids.to(device)
|
72 |
+
else:
|
73 |
+
prefix_ids = None
|
74 |
+
|
75 |
+
if suffix_ids is not None:
|
76 |
+
suffix_ids = suffix_ids.to(device)
|
77 |
+
|
78 |
+
eos_token_id = gen_config.eos_token_id or getattr(self.config, "eos_token_id", 151645)
|
79 |
+
pad_token_id = gen_config.pad_token_id or getattr(self.config, "pad_token_id", None)
|
80 |
+
bos_token_id = gen_config.bos_token_id or getattr(self.config, "bos_token_id", None)
|
81 |
+
mask_token_id = getattr(gen_config, "mask_token_id", getattr(self.config, "mask_token_id", 151669))
|
82 |
+
|
83 |
+
if infill_length is not None and prefix_ids is not None:
|
84 |
+
# Infilling mode: use specified infill_length
|
85 |
+
prefix_len = prefix_ids.shape[1] if prefix_ids is not None else 0
|
86 |
+
suffix_len = suffix_ids.shape[1] if suffix_ids is not None else 0
|
87 |
+
seq_len = prefix_len + infill_length + suffix_len
|
88 |
+
else:
|
89 |
+
# Standard generation mode
|
90 |
+
if prefix_ids is not None:
|
91 |
+
prefix_len = prefix_ids.shape[1]
|
92 |
+
if gen_config.max_new_tokens is not None:
|
93 |
+
seq_len = prefix_len + gen_config.max_new_tokens
|
94 |
+
else:
|
95 |
+
seq_len = gen_config.max_length or self.config.max_position_embeddings
|
96 |
+
else:
|
97 |
+
seq_len = gen_config.max_length or self.config.max_position_embeddings
|
98 |
+
|
99 |
+
num_diffusion_steps = getattr(gen_config, "num_diffusion_steps",
|
100 |
+
getattr(self.config, "num_diffusion_steps", 256))
|
101 |
+
|
102 |
+
temperature = float(getattr(gen_config, "temperature", 1.0))
|
103 |
+
top_k = getattr(gen_config, "top_k", None)
|
104 |
+
top_p = getattr(gen_config, "top_p", None)
|
105 |
+
|
106 |
+
greedy = getattr(gen_config, "greedy",
|
107 |
+
not bool(gen_config.do_sample) if hasattr(gen_config, "do_sample") else True)
|
108 |
+
|
109 |
+
generator = model_kwargs.get("generator", None)
|
110 |
+
if generator is None:
|
111 |
+
seed = getattr(gen_config, 'seed', None)
|
112 |
+
if seed is not None:
|
113 |
+
generator = torch.Generator(device=device)
|
114 |
+
generator.manual_seed(seed)
|
115 |
+
|
116 |
+
with torch.inference_mode():
|
117 |
+
sequences = diffusion_sample(
|
118 |
+
model=self,
|
119 |
+
seq_len=seq_len,
|
120 |
+
num_steps=num_diffusion_steps,
|
121 |
+
mask_token_id=mask_token_id,
|
122 |
+
temperature=temperature,
|
123 |
+
top_k=top_k,
|
124 |
+
top_p=top_p,
|
125 |
+
greedy=greedy,
|
126 |
+
prefix_ids=prefix_ids,
|
127 |
+
suffix_ids=suffix_ids,
|
128 |
+
infill_length=infill_length,
|
129 |
+
eos_token_id=eos_token_id,
|
130 |
+
pad_token_id=pad_token_id,
|
131 |
+
bos_token_id=bos_token_id,
|
132 |
+
device=device,
|
133 |
+
generator=generator,
|
134 |
+
visualizer=model_kwargs.get("visualizer", None), # Optional visualizer from kwargs
|
135 |
+
)
|
136 |
+
|
137 |
+
if return_dict_in_generate or getattr(gen_config, "return_dict_in_generate", False):
|
138 |
+
from transformers.generation.utils import GenerateDecoderOnlyOutput
|
139 |
+
return GenerateDecoderOnlyOutput(sequences=sequences)
|
140 |
+
|
141 |
+
return sequences
|
142 |
+
|
143 |
+
def generate_with_visualization(
|
144 |
+
self,
|
145 |
+
tokenizer,
|
146 |
+
inputs: Optional[torch.LongTensor] = None,
|
147 |
+
generation_config: Optional[GenerationConfig] = None,
|
148 |
+
suffix_ids: Optional[torch.LongTensor] = None,
|
149 |
+
infill_length: Optional[int] = None,
|
150 |
+
generator: Optional[torch.Generator] = None,
|
151 |
+
**kwargs,
|
152 |
+
) -> torch.LongTensor:
|
153 |
+
"""
|
154 |
+
Generate with live visualization (for demos).
|
155 |
+
|
156 |
+
This method requires a tokenizer to display the generation process.
|
157 |
+
For production use, prefer `generate()`.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
tokenizer: Tokenizer for decoding tokens to text
|
161 |
+
inputs: Input token IDs to use as prefix
|
162 |
+
generation_config: Generation configuration object
|
163 |
+
suffix_ids: Optional suffix token IDs
|
164 |
+
infill_length: Length of infill region
|
165 |
+
generator: Random generator for reproducibility
|
166 |
+
**kwargs: Additional arguments for backward compatibility
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
Generated token IDs as LongTensor
|
170 |
+
"""
|
171 |
+
from .terminal_visualizer import TerminalVisualizer
|
172 |
+
visualizer = TerminalVisualizer(tokenizer, show_visualization=True)
|
173 |
+
|
174 |
+
return self.generate(
|
175 |
+
inputs=inputs,
|
176 |
+
generation_config=generation_config,
|
177 |
+
suffix_ids=suffix_ids,
|
178 |
+
infill_length=infill_length,
|
179 |
+
generator=generator,
|
180 |
+
visualizer=visualizer,
|
181 |
+
return_dict_in_generate=False,
|
182 |
+
**kwargs,
|
183 |
+
)
|
184 |
+
|
185 |
+
def prepare_inputs_for_generation(
|
186 |
+
self,
|
187 |
+
input_ids: torch.LongTensor,
|
188 |
+
**kwargs,
|
189 |
+
) -> Dict[str, Any]:
|
190 |
+
"""
|
191 |
+
Prepare inputs for generation (required by HuggingFace).
|
192 |
+
|
193 |
+
For RND1, we don't use the standard autoregressive generation,
|
194 |
+
so this just returns the input_ids.
|
195 |
+
"""
|
196 |
+
return {"input_ids": input_ids}
|
rnd/modeling_rnd.py
ADDED
@@ -0,0 +1,534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2025 Radical Numerics Inc.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0, found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""
|
7 |
+
RND1 model implementation.
|
8 |
+
|
9 |
+
This module implements the RND1 architecture with bidirectional attention for
|
10 |
+
diffusion-based language modeling. Includes support for Mixture of Experts (MoE)
|
11 |
+
with multiple backend options (HF, FlashInfer, SGLang).
|
12 |
+
|
13 |
+
Based on the Qwen3Moe architecture:
|
14 |
+
https://github.com/huggingface/transformers/blob/v4.57.0/src/transformers/models/qwen3_moe/modeling_qwen3_moe.py
|
15 |
+
"""
|
16 |
+
|
17 |
+
from __future__ import annotations
|
18 |
+
|
19 |
+
import os
|
20 |
+
from typing import Optional, Tuple, List, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from transformers.utils import logging
|
26 |
+
from transformers.cache_utils import Cache
|
27 |
+
from transformers.modeling_outputs import (
|
28 |
+
MoeModelOutputWithPast,
|
29 |
+
MaskedLMOutput,
|
30 |
+
)
|
31 |
+
from transformers.modeling_utils import PreTrainedModel
|
32 |
+
from transformers.configuration_utils import PretrainedConfig
|
33 |
+
from transformers.generation import GenerationConfig
|
34 |
+
|
35 |
+
from .configuration_rnd import RND1Config
|
36 |
+
from .generation_utils import RND1GenerationMixin
|
37 |
+
from .generation_config import RND1GenerationConfig
|
38 |
+
|
39 |
+
from transformers.models.qwen3_moe.modeling_qwen3_moe import (
|
40 |
+
Qwen3MoeConfig,
|
41 |
+
Qwen3MoeRMSNorm,
|
42 |
+
Qwen3MoeRotaryEmbedding,
|
43 |
+
Qwen3MoeSparseMoeBlock,
|
44 |
+
Qwen3MoeMLP,
|
45 |
+
apply_rotary_pos_emb
|
46 |
+
)
|
47 |
+
import torch.nn.functional as F
|
48 |
+
|
49 |
+
try:
|
50 |
+
import flashinfer.fused_moe as fused_moe
|
51 |
+
except Exception:
|
52 |
+
fused_moe = None
|
53 |
+
|
54 |
+
try:
|
55 |
+
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_moe as sglang_fused_moe
|
56 |
+
from sglang.srt.layers.moe.topk import StandardTopKOutput
|
57 |
+
except Exception:
|
58 |
+
sglang_fused_moe = None
|
59 |
+
StandardTopKOutput = None
|
60 |
+
|
61 |
+
logger = logging.get_logger(__name__)
|
62 |
+
|
63 |
+
|
64 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
65 |
+
"""Expand key/value heads to match query heads for grouped-query attention."""
|
66 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
67 |
+
if n_rep == 1:
|
68 |
+
return hidden_states
|
69 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
70 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
71 |
+
)
|
72 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
73 |
+
|
74 |
+
|
75 |
+
class RND1Attention(nn.Module):
|
76 |
+
"""RND1 attention layer with bidirectional attention for diffusion modeling."""
|
77 |
+
|
78 |
+
def __init__(self, config: RND1Config, layer_idx: int):
|
79 |
+
super().__init__()
|
80 |
+
self.config = config
|
81 |
+
self.layer_idx = layer_idx
|
82 |
+
|
83 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
84 |
+
self.num_heads = config.num_attention_heads
|
85 |
+
self.num_key_value_heads = config.num_key_value_heads
|
86 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
87 |
+
|
88 |
+
self.scaling = self.head_dim ** -0.5
|
89 |
+
self.attention_dropout = config.attention_dropout
|
90 |
+
self.is_causal = False
|
91 |
+
|
92 |
+
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
93 |
+
self.k_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
94 |
+
self.v_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
95 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=config.attention_bias)
|
96 |
+
|
97 |
+
self.q_norm = Qwen3MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
98 |
+
self.k_norm = Qwen3MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
99 |
+
|
100 |
+
self.sliding_window = getattr(config, "sliding_window", None)
|
101 |
+
|
102 |
+
self.rotary_emb = Qwen3MoeRotaryEmbedding(config=config)
|
103 |
+
|
104 |
+
def forward(
|
105 |
+
self,
|
106 |
+
hidden_states: torch.Tensor,
|
107 |
+
attention_mask: Optional[torch.Tensor] = None,
|
108 |
+
position_ids: Optional[torch.LongTensor] = None,
|
109 |
+
past_key_values: Optional[Union[Cache, Tuple[torch.Tensor, torch.Tensor]]] = None,
|
110 |
+
cache_position: Optional[torch.LongTensor] = None,
|
111 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
112 |
+
dual_cache: Optional[bool] = False,
|
113 |
+
replace_position: Optional[torch.Tensor] = None,
|
114 |
+
**kwargs,
|
115 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Union[Cache, Tuple[torch.Tensor, torch.Tensor]]]]:
|
116 |
+
|
117 |
+
bsz, q_len, _ = hidden_states.size()
|
118 |
+
input_shape = hidden_states.shape[:-1]
|
119 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
120 |
+
|
121 |
+
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
|
122 |
+
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
|
123 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
124 |
+
|
125 |
+
cos, sin = position_embeddings
|
126 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
127 |
+
|
128 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
129 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
130 |
+
|
131 |
+
use_sdpa = (getattr(self.config, "_attn_implementation", "eager") == "sdpa")
|
132 |
+
|
133 |
+
if use_sdpa:
|
134 |
+
if attention_mask is not None and isinstance(attention_mask, torch.Tensor):
|
135 |
+
if attention_mask.dtype not in [torch.bool, torch.float32, torch.float16, torch.bfloat16]:
|
136 |
+
attention_mask = attention_mask.to(dtype=query_states.dtype)
|
137 |
+
|
138 |
+
assert not self.is_causal, f"Attention layer {self.layer_idx} is causal"
|
139 |
+
attn_out = torch.nn.functional.scaled_dot_product_attention(
|
140 |
+
query_states, key_states, value_states,
|
141 |
+
attn_mask=attention_mask if isinstance(attention_mask, torch.Tensor) else None,
|
142 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
143 |
+
is_causal=self.is_causal,
|
144 |
+
)
|
145 |
+
attn_out = attn_out.transpose(1, 2).contiguous()
|
146 |
+
attn_out = attn_out.view(bsz, q_len, self.num_heads * self.head_dim)
|
147 |
+
attn_out = self.o_proj(attn_out)
|
148 |
+
return attn_out, None
|
149 |
+
|
150 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
|
151 |
+
|
152 |
+
if attention_mask is not None:
|
153 |
+
attn_weights = attn_weights + attention_mask[:, :, :, : key_states.shape[-2]]
|
154 |
+
|
155 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
156 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
157 |
+
|
158 |
+
attn_out = torch.matmul(attn_weights, value_states)
|
159 |
+
attn_out = attn_out.transpose(1, 2).contiguous().view(hidden_states.size(0), hidden_states.size(1), -1)
|
160 |
+
attn_out = self.o_proj(attn_out)
|
161 |
+
|
162 |
+
return attn_out, None
|
163 |
+
|
164 |
+
|
165 |
+
class RND1DecoderLayer(nn.Module):
|
166 |
+
"""RND1 decoder layer with bidirectional attention for diffusion language modeling."""
|
167 |
+
|
168 |
+
def __init__(self, config: RND1Config, layer_idx: int):
|
169 |
+
super().__init__()
|
170 |
+
self.self_attn = RND1Attention(config, layer_idx)
|
171 |
+
self.mlp = RND1SparseMoeBlock(config)
|
172 |
+
self.input_layernorm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
173 |
+
self.post_attention_layernorm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
174 |
+
|
175 |
+
def forward(
|
176 |
+
self,
|
177 |
+
hidden_states: torch.Tensor,
|
178 |
+
attention_mask: Optional[torch.Tensor] = None,
|
179 |
+
position_ids: Optional[torch.LongTensor] = None,
|
180 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
181 |
+
replace_position: Optional[torch.Tensor] = None,
|
182 |
+
**kwargs,
|
183 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.Tensor]]:
|
184 |
+
residual = hidden_states
|
185 |
+
hidden_states = self.input_layernorm(hidden_states)
|
186 |
+
|
187 |
+
attn_out, attn_weights = self.self_attn(
|
188 |
+
hidden_states,
|
189 |
+
attention_mask=attention_mask,
|
190 |
+
position_ids=position_ids,
|
191 |
+
position_embeddings=position_embeddings,
|
192 |
+
replace_position=replace_position,
|
193 |
+
)
|
194 |
+
hidden_states = residual + attn_out
|
195 |
+
|
196 |
+
residual = hidden_states
|
197 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
198 |
+
ff_out = self.mlp(hidden_states)
|
199 |
+
if isinstance(ff_out, tuple):
|
200 |
+
ff_out = ff_out[0]
|
201 |
+
hidden_states = residual + ff_out
|
202 |
+
|
203 |
+
return hidden_states, attn_weights
|
204 |
+
|
205 |
+
|
206 |
+
class RND1SparseMoeBlock(nn.Module):
|
207 |
+
"""RND1 Sparse MoE block with multiple backend support (HF, FlashInfer, SGLang)."""
|
208 |
+
|
209 |
+
def __init__(self, config: RND1Config):
|
210 |
+
super().__init__()
|
211 |
+
self.config = config
|
212 |
+
self.backend = getattr(config, "moe_backend", "hf")
|
213 |
+
self.num_experts = config.num_experts
|
214 |
+
self.top_k = config.num_experts_per_tok
|
215 |
+
self.norm_topk_prob = config.norm_topk_prob
|
216 |
+
self.hidden_size = config.hidden_size
|
217 |
+
self.intermediate_size = getattr(config, "moe_intermediate_size", config.intermediate_size)
|
218 |
+
|
219 |
+
self.gate = nn.Linear(self.hidden_size, self.num_experts, bias=False)
|
220 |
+
self.experts = nn.ModuleList(
|
221 |
+
[Qwen3MoeMLP(config, intermediate_size=self.intermediate_size) for _ in range(self.num_experts)]
|
222 |
+
)
|
223 |
+
|
224 |
+
# Cached weight tensors for optimized backends
|
225 |
+
self._flashinfer_fc1_weights = None
|
226 |
+
self._flashinfer_fc2_weights = None
|
227 |
+
self._sglang_w1 = None
|
228 |
+
self._sglang_w2 = None
|
229 |
+
if self.backend == "sglang":
|
230 |
+
if sglang_fused_moe is None or StandardTopKOutput is None:
|
231 |
+
raise RuntimeError("sglang is not available, cannot use sglang backend")
|
232 |
+
elif self.backend == "flashinfer":
|
233 |
+
if fused_moe is None:
|
234 |
+
raise RuntimeError("flashinfer is not available, cannot use flashinfer backend")
|
235 |
+
|
236 |
+
def _initialize_flashinfer_weights(self):
|
237 |
+
"""Initialize FlashInfer-compatible weight format."""
|
238 |
+
fc1_list = []
|
239 |
+
fc2_list = []
|
240 |
+
|
241 |
+
for expert in self.experts:
|
242 |
+
gate_w = expert.gate_proj.weight # [I, H]
|
243 |
+
up_w = expert.up_proj.weight # [I, H]
|
244 |
+
down_w = expert.down_proj.weight # [H, I]
|
245 |
+
# FlashInfer expects [up; gate] ordering
|
246 |
+
fc1_list.append(torch.cat([up_w, gate_w], dim=0)) # [2I, H]
|
247 |
+
fc2_list.append(down_w) # [H, I]
|
248 |
+
|
249 |
+
self._flashinfer_fc1_weights = torch.stack(fc1_list, dim=0).contiguous()
|
250 |
+
self._flashinfer_fc2_weights = torch.stack(fc2_list, dim=0).contiguous()
|
251 |
+
|
252 |
+
def _initialize_sglang_weights(self):
|
253 |
+
"""Initialize SGLang-compatible weight format."""
|
254 |
+
w1_list = []
|
255 |
+
w2_list = []
|
256 |
+
|
257 |
+
for expert in self.experts:
|
258 |
+
gate_w = expert.gate_proj.weight # [I, H]
|
259 |
+
up_w = expert.up_proj.weight # [I, H]
|
260 |
+
down_w = expert.down_proj.weight # [H, I]
|
261 |
+
w1 = torch.cat([gate_w, up_w], dim=0) # [2I, H]
|
262 |
+
w1_list.append(w1)
|
263 |
+
w2_list.append(down_w)
|
264 |
+
|
265 |
+
self._sglang_w1 = torch.stack(w1_list, dim=0).contiguous()
|
266 |
+
self._sglang_w2 = torch.stack(w2_list, dim=0).contiguous()
|
267 |
+
|
268 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
269 |
+
"""Forward pass with expert routing and computation."""
|
270 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
271 |
+
x = hidden_states.view(-1, hidden_dim)
|
272 |
+
|
273 |
+
# Expert routing
|
274 |
+
router_logits = self.gate(x)
|
275 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
276 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
277 |
+
if self.norm_topk_prob:
|
278 |
+
routing_weights = routing_weights / routing_weights.sum(dim=-1, keepdim=True)
|
279 |
+
|
280 |
+
if self.backend == "hf":
|
281 |
+
final_hidden_states = torch.zeros(
|
282 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
283 |
+
)
|
284 |
+
|
285 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
286 |
+
expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
|
287 |
+
|
288 |
+
for expert_idx in expert_hit:
|
289 |
+
expert_layer = self.experts[expert_idx]
|
290 |
+
idx, top_x = torch.where(expert_mask[expert_idx].squeeze(0))
|
291 |
+
current_state = x[top_x]
|
292 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
293 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
294 |
+
out = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
295 |
+
return out, router_logits.view(batch_size, sequence_length, -1)
|
296 |
+
|
297 |
+
elif self.backend == "flashinfer":
|
298 |
+
if self._flashinfer_fc1_weights is None or self._flashinfer_fc2_weights is None:
|
299 |
+
self._initialize_flashinfer_weights()
|
300 |
+
|
301 |
+
result = fused_moe.cutlass_fused_moe(
|
302 |
+
input=x,
|
303 |
+
token_selected_experts=selected_experts.to(torch.int),
|
304 |
+
token_final_scales=routing_weights.to(torch.float32),
|
305 |
+
fc1_expert_weights=self._flashinfer_fc1_weights,
|
306 |
+
fc2_expert_weights=self._flashinfer_fc2_weights,
|
307 |
+
output_dtype=x.dtype,
|
308 |
+
quant_scales=None,
|
309 |
+
)
|
310 |
+
if isinstance(result, (list, tuple)):
|
311 |
+
out_flat = result[0]
|
312 |
+
else:
|
313 |
+
out_flat = result
|
314 |
+
out = out_flat.view(batch_size, sequence_length, hidden_dim)
|
315 |
+
return out, router_logits.view(batch_size, sequence_length, -1)
|
316 |
+
|
317 |
+
elif self.backend == "sglang":
|
318 |
+
if self._sglang_w1 is None or self._sglang_w2 is None:
|
319 |
+
self._initialize_sglang_weights()
|
320 |
+
|
321 |
+
topk_output = StandardTopKOutput(
|
322 |
+
topk_weights=routing_weights,
|
323 |
+
topk_ids=selected_experts,
|
324 |
+
router_logits=router_logits,
|
325 |
+
)
|
326 |
+
|
327 |
+
out_flat = sglang_fused_moe(
|
328 |
+
hidden_states=x,
|
329 |
+
w1=self._sglang_w1,
|
330 |
+
w2=self._sglang_w2,
|
331 |
+
topk_output=topk_output,
|
332 |
+
)
|
333 |
+
out = out_flat.view(batch_size, sequence_length, hidden_dim)
|
334 |
+
return out, router_logits.view(batch_size, sequence_length, -1)
|
335 |
+
|
336 |
+
else:
|
337 |
+
raise ValueError(f"Invalid backend: {self.backend}")
|
338 |
+
|
339 |
+
|
340 |
+
class RND1PreTrainedModel(PreTrainedModel):
|
341 |
+
"""Base class for RND1 models with weight initialization and loading support."""
|
342 |
+
config_class = RND1Config
|
343 |
+
base_model_prefix = "model"
|
344 |
+
supports_gradient_checkpointing = True
|
345 |
+
_no_split_modules = ["RND1DecoderLayer"]
|
346 |
+
_skip_keys_device_placement = "past_key_values"
|
347 |
+
_supports_flash_attn_2 = True
|
348 |
+
_supports_sdpa = True
|
349 |
+
_supports_cache_class = True
|
350 |
+
_supports_quantized_cache = True
|
351 |
+
_supports_static_cache = True
|
352 |
+
|
353 |
+
def _init_weights(self, module):
|
354 |
+
"""Initialize weights using normal distribution."""
|
355 |
+
std = self.config.initializer_range
|
356 |
+
if isinstance(module, nn.Linear):
|
357 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
358 |
+
if module.bias is not None:
|
359 |
+
module.bias.data.zero_()
|
360 |
+
elif isinstance(module, nn.Embedding):
|
361 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
362 |
+
if module.padding_idx is not None:
|
363 |
+
module.weight.data[module.padding_idx].zero_()
|
364 |
+
|
365 |
+
@classmethod
|
366 |
+
def from_pretrained(
|
367 |
+
cls,
|
368 |
+
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
369 |
+
*model_args,
|
370 |
+
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
371 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
372 |
+
ignore_mismatched_sizes: bool = False,
|
373 |
+
force_download: bool = False,
|
374 |
+
local_files_only: bool = False,
|
375 |
+
token: Optional[Union[str, bool]] = None,
|
376 |
+
revision: str = "main",
|
377 |
+
use_safetensors: Optional[bool] = None,
|
378 |
+
weights_only: bool = True,
|
379 |
+
**kwargs,
|
380 |
+
):
|
381 |
+
"""Load pretrained model with generation config."""
|
382 |
+
_model = super().from_pretrained(
|
383 |
+
pretrained_model_name_or_path,
|
384 |
+
*model_args,
|
385 |
+
config=config,
|
386 |
+
cache_dir=cache_dir,
|
387 |
+
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
388 |
+
force_download=force_download,
|
389 |
+
local_files_only=local_files_only,
|
390 |
+
token=token,
|
391 |
+
revision=revision,
|
392 |
+
use_safetensors=use_safetensors,
|
393 |
+
weights_only=weights_only,
|
394 |
+
**kwargs,
|
395 |
+
)
|
396 |
+
|
397 |
+
resume_download = kwargs.get("resume_download", None)
|
398 |
+
proxies = kwargs.get("proxies", None)
|
399 |
+
subfolder = kwargs.get("subfolder", "")
|
400 |
+
from_auto_class = kwargs.get("_from_auto", False)
|
401 |
+
from_pipeline = kwargs.get("_from_pipeline", None)
|
402 |
+
|
403 |
+
_model.generation_config = GenerationConfig.from_pretrained(
|
404 |
+
pretrained_model_name_or_path,
|
405 |
+
cache_dir=cache_dir,
|
406 |
+
force_download=force_download,
|
407 |
+
resume_download=resume_download,
|
408 |
+
proxies=proxies,
|
409 |
+
local_files_only=local_files_only,
|
410 |
+
token=token,
|
411 |
+
revision=revision,
|
412 |
+
subfolder=subfolder,
|
413 |
+
_from_auto=from_auto_class,
|
414 |
+
_from_pipeline=from_pipeline,
|
415 |
+
)
|
416 |
+
|
417 |
+
return _model
|
418 |
+
|
419 |
+
|
420 |
+
class RND1Model(RND1PreTrainedModel):
|
421 |
+
"""RND1 transformer model with bidirectional attention for diffusion language modeling."""
|
422 |
+
|
423 |
+
def __init__(self, config: RND1Config):
|
424 |
+
super().__init__(config)
|
425 |
+
|
426 |
+
self.padding_idx = config.pad_token_id
|
427 |
+
self.vocab_size = config.vocab_size
|
428 |
+
|
429 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
430 |
+
self.layers = nn.ModuleList([RND1DecoderLayer(config, i) for i in range(config.num_hidden_layers)])
|
431 |
+
self.norm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
432 |
+
|
433 |
+
self.rotary_emb = Qwen3MoeRotaryEmbedding(config=config)
|
434 |
+
|
435 |
+
self.post_init()
|
436 |
+
|
437 |
+
|
438 |
+
def forward(
|
439 |
+
self,
|
440 |
+
input_ids: Optional[torch.LongTensor] = None,
|
441 |
+
attention_mask: Optional[torch.Tensor] = None,
|
442 |
+
position_ids: Optional[torch.LongTensor] = None,
|
443 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
444 |
+
**kwargs,
|
445 |
+
) -> MoeModelOutputWithPast:
|
446 |
+
"""Forward pass through the RND1 model."""
|
447 |
+
|
448 |
+
if (input_ids is None) == (inputs_embeds is None):
|
449 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
450 |
+
|
451 |
+
if inputs_embeds is None:
|
452 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
453 |
+
|
454 |
+
if position_ids is None:
|
455 |
+
position_ids = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device).unsqueeze(0)
|
456 |
+
|
457 |
+
position_embeddings = self.rotary_emb(inputs_embeds, position_ids)
|
458 |
+
|
459 |
+
hidden_states = inputs_embeds
|
460 |
+
|
461 |
+
for layer in self.layers:
|
462 |
+
hidden_states, _ = layer(
|
463 |
+
hidden_states,
|
464 |
+
attention_mask=attention_mask,
|
465 |
+
position_ids=position_ids,
|
466 |
+
position_embeddings=position_embeddings,
|
467 |
+
)
|
468 |
+
|
469 |
+
hidden_states = self.norm(hidden_states)
|
470 |
+
|
471 |
+
return MoeModelOutputWithPast(
|
472 |
+
last_hidden_state=hidden_states,
|
473 |
+
router_logits=None,
|
474 |
+
)
|
475 |
+
|
476 |
+
|
477 |
+
class RND1LM(RND1PreTrainedModel, RND1GenerationMixin):
|
478 |
+
"""Radical Numerics Diffusion Language Model with bidirectional attention."""
|
479 |
+
|
480 |
+
def __init__(self, config: RND1Config):
|
481 |
+
super().__init__(config)
|
482 |
+
self.model = RND1Model(config)
|
483 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
484 |
+
self.post_init()
|
485 |
+
|
486 |
+
def get_input_embeddings(self):
|
487 |
+
"""Get the input embeddings layer."""
|
488 |
+
return self.model.embed_tokens
|
489 |
+
|
490 |
+
def set_input_embeddings(self, value):
|
491 |
+
"""Set the input embeddings layer."""
|
492 |
+
self.model.embed_tokens = value
|
493 |
+
|
494 |
+
def get_output_embeddings(self):
|
495 |
+
"""Get the output embeddings layer (lm_head)."""
|
496 |
+
return self.lm_head
|
497 |
+
|
498 |
+
def set_output_embeddings(self, new_embeddings):
|
499 |
+
"""Set the output embeddings layer (lm_head)."""
|
500 |
+
self.lm_head = new_embeddings
|
501 |
+
|
502 |
+
@classmethod
|
503 |
+
def can_generate(cls) -> bool:
|
504 |
+
"""Indicates this model can generate text."""
|
505 |
+
return True
|
506 |
+
|
507 |
+
def forward(
|
508 |
+
self,
|
509 |
+
input_ids: Optional[torch.LongTensor] = None,
|
510 |
+
attention_mask: Optional[torch.Tensor] = None,
|
511 |
+
position_ids: Optional[torch.LongTensor] = None,
|
512 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
513 |
+
labels: Optional[torch.LongTensor] = None,
|
514 |
+
**kwargs,
|
515 |
+
) -> MaskedLMOutput:
|
516 |
+
"""Forward pass with optional loss computation."""
|
517 |
+
outputs = self.model(
|
518 |
+
input_ids=input_ids,
|
519 |
+
attention_mask=attention_mask,
|
520 |
+
position_ids=position_ids,
|
521 |
+
inputs_embeds=inputs_embeds,
|
522 |
+
**kwargs,
|
523 |
+
)
|
524 |
+
logits = self.lm_head(outputs.last_hidden_state)
|
525 |
+
|
526 |
+
loss = None
|
527 |
+
if labels is not None:
|
528 |
+
loss_fct = nn.CrossEntropyLoss()
|
529 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
530 |
+
|
531 |
+
return MaskedLMOutput(
|
532 |
+
loss=loss,
|
533 |
+
logits=logits,
|
534 |
+
)
|
rnd/sampling.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2025 Radical Numerics Inc.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0, found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""
|
7 |
+
RND1 sampling module for masked diffusion generation.
|
8 |
+
|
9 |
+
This module implements entropy-based token selection for iterative denoising
|
10 |
+
in diffusion language models. Supports both greedy and stochastic sampling
|
11 |
+
with optional prefix/suffix constraints and infilling.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from typing import Optional, Tuple, Union
|
18 |
+
|
19 |
+
|
20 |
+
def apply_top_k_filtering(logits: torch.Tensor, k: int) -> torch.Tensor:
|
21 |
+
"""
|
22 |
+
Apply top-k filtering to logits: with non-top-k values set to -inf
|
23 |
+
"""
|
24 |
+
top_k_values, top_k_indices = torch.topk(logits, min(k, logits.size(-1)), dim=-1)
|
25 |
+
filtered_logits = torch.full_like(logits, float('-inf'))
|
26 |
+
filtered_logits.scatter_(-1, top_k_indices, top_k_values)
|
27 |
+
return filtered_logits
|
28 |
+
|
29 |
+
|
30 |
+
def apply_top_p_filtering(logits: torch.Tensor, p: float) -> torch.Tensor:
|
31 |
+
"""
|
32 |
+
Apply top-p (nucleus) filtering to logits: with tokens beyond threshold set to -inf
|
33 |
+
"""
|
34 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
35 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
36 |
+
|
37 |
+
# Remove tokens with cumulative probability above threshold
|
38 |
+
sorted_indices_to_remove = cumulative_probs > p
|
39 |
+
sorted_indices_to_remove[..., 0] = False # Keep at least one token
|
40 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
41 |
+
|
42 |
+
indices_to_remove = sorted_indices_to_remove.scatter(-1, sorted_indices, sorted_indices_to_remove)
|
43 |
+
return logits.masked_fill(indices_to_remove, float('-inf'))
|
44 |
+
|
45 |
+
|
46 |
+
@torch.no_grad()
|
47 |
+
def diffusion_sample(
|
48 |
+
model: nn.Module,
|
49 |
+
seq_len: int = 256,
|
50 |
+
num_steps: int = 256,
|
51 |
+
top_k: Optional[int] = None,
|
52 |
+
top_p: Optional[float] = None,
|
53 |
+
temperature: float = 1.0,
|
54 |
+
greedy: bool = True,
|
55 |
+
mask_token_id: int = 151669,
|
56 |
+
prefix_ids: Optional[torch.LongTensor] = None,
|
57 |
+
suffix_ids: Optional[torch.LongTensor] = None,
|
58 |
+
infill_length: Optional[int] = None,
|
59 |
+
eos_token_id: int = 151645,
|
60 |
+
pad_token_id: Optional[int] = None,
|
61 |
+
bos_token_id: Optional[int] = None,
|
62 |
+
device: Optional[Union[str, torch.device]] = None,
|
63 |
+
generator: Optional[torch.Generator] = None,
|
64 |
+
visualizer: Optional['TerminalVisualizer'] = None,
|
65 |
+
) -> torch.LongTensor:
|
66 |
+
"""
|
67 |
+
Perform masked diffusion sampling with entropy-based token selection.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
model: The RND1 language model
|
71 |
+
seq_len: Target sequence length
|
72 |
+
num_steps: Number of denoising steps
|
73 |
+
top_k: Optional top-k filtering for sampling (None = no filtering)
|
74 |
+
top_p: Optional nucleus (top-p) filtering for sampling (None = no filtering)
|
75 |
+
When both top_k and top_p are set, top_k is applied first, then top_p
|
76 |
+
temperature: Temperature for sampling (higher = more random, lower = more deterministic)
|
77 |
+
Values close to 0 are clamped to 1e-8 to avoid division by zero
|
78 |
+
greedy: Whether to use greedy sampling (True) or stochastic (False)
|
79 |
+
mask_token_id: Token ID for masked positions (default: 151669)
|
80 |
+
prefix_ids: Optional prefix token IDs to preserve
|
81 |
+
suffix_ids: Optional suffix token IDs to preserve
|
82 |
+
infill_length: Length of infill region between prefix/suffix
|
83 |
+
eos_token_id: End of sequence token ID (default: 151645)
|
84 |
+
pad_token_id: Padding token ID (default: None, uses 0 if needed)
|
85 |
+
bos_token_id: Beginning of sequence token ID (default: None)
|
86 |
+
device: Device for computation (None = infer from model)
|
87 |
+
generator: Optional torch generator for reproducible sampling
|
88 |
+
visualizer: Optional TerminalVisualizer for live visualization
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
Generated token IDs as LongTensor
|
92 |
+
"""
|
93 |
+
model.eval()
|
94 |
+
|
95 |
+
if device is None:
|
96 |
+
device = next(model.parameters()).device
|
97 |
+
else:
|
98 |
+
device = torch.device(device)
|
99 |
+
dtype = next(model.parameters()).dtype
|
100 |
+
|
101 |
+
if pad_token_id is None:
|
102 |
+
pad_token_id = 0
|
103 |
+
|
104 |
+
# Build initial masked sequence
|
105 |
+
# When prefix_ids is provided, we create a sequence of length seq_len where:
|
106 |
+
# - The prefix occupies the first pre_len positions
|
107 |
+
# - The remaining (seq_len - pre_len) positions are filled with mask tokens to be generated
|
108 |
+
if prefix_ids is not None or suffix_ids is not None:
|
109 |
+
if prefix_ids is not None:
|
110 |
+
prefix_ids = prefix_ids.to(device) if isinstance(prefix_ids, torch.Tensor) else torch.tensor(prefix_ids, device=device)
|
111 |
+
pre_len = prefix_ids.shape[-1] if prefix_ids.dim() > 0 else 0
|
112 |
+
else:
|
113 |
+
pre_len = 0
|
114 |
+
|
115 |
+
if suffix_ids is not None:
|
116 |
+
suffix_ids = suffix_ids.to(device) if isinstance(suffix_ids, torch.Tensor) else torch.tensor(suffix_ids, device=device)
|
117 |
+
suf_len = suffix_ids.shape[-1] if suffix_ids.dim() > 0 else 0
|
118 |
+
else:
|
119 |
+
suf_len = 0
|
120 |
+
|
121 |
+
reserved = (1 if bos_token_id is not None else 0) + (1 if eos_token_id is not None else 0)
|
122 |
+
used = pre_len + suf_len + reserved
|
123 |
+
|
124 |
+
if used > seq_len:
|
125 |
+
raise ValueError(
|
126 |
+
f"Combined length of prefix ({pre_len}), suffix ({suf_len}), "
|
127 |
+
f"and special tokens ({reserved}) = {used} exceeds seq_len ({seq_len}). "
|
128 |
+
f"Please increase seq_len or reduce input lengths."
|
129 |
+
)
|
130 |
+
elif used == seq_len:
|
131 |
+
raise ValueError(
|
132 |
+
f"No space for generation: prefix ({pre_len}) + suffix ({suf_len}) "
|
133 |
+
f"+ special tokens ({reserved}) = seq_len ({seq_len}). "
|
134 |
+
f"Need at least 1 position for generation."
|
135 |
+
)
|
136 |
+
|
137 |
+
infill_length = min(infill_length or (seq_len - used), seq_len - used)
|
138 |
+
|
139 |
+
x = torch.full((1, seq_len), pad_token_id, dtype=torch.long, device=device)
|
140 |
+
pos = 0
|
141 |
+
if bos_token_id is not None:
|
142 |
+
x[0, pos] = bos_token_id; pos += 1
|
143 |
+
if pre_len > 0:
|
144 |
+
x[0, pos:pos+pre_len] = prefix_ids.flatten()[:pre_len]; pos += pre_len
|
145 |
+
fill_start, fill_end = pos, pos + infill_length
|
146 |
+
x[0, fill_start:fill_end] = mask_token_id
|
147 |
+
pos = fill_end
|
148 |
+
if suf_len > 0:
|
149 |
+
x[0, pos:pos+suf_len] = suffix_ids.flatten()[:suf_len]; pos += suf_len
|
150 |
+
|
151 |
+
init_maskable = torch.zeros_like(x, dtype=torch.bool)
|
152 |
+
init_maskable[0, fill_start:fill_end] = True
|
153 |
+
else:
|
154 |
+
x = torch.full((1, seq_len), mask_token_id, dtype=torch.long, device=device)
|
155 |
+
if bos_token_id is not None:
|
156 |
+
x[0, 0] = bos_token_id
|
157 |
+
if eos_token_id is not None:
|
158 |
+
x[0, -1] = eos_token_id
|
159 |
+
init_maskable = x.eq(mask_token_id)
|
160 |
+
|
161 |
+
if bos_token_id is not None:
|
162 |
+
init_maskable[:, 0] = False
|
163 |
+
if eos_token_id is not None:
|
164 |
+
init_maskable &= x.ne(eos_token_id)
|
165 |
+
init_maskable &= x.ne(pad_token_id)
|
166 |
+
|
167 |
+
maskable = init_maskable.clone()
|
168 |
+
xt = x.clone()
|
169 |
+
|
170 |
+
if visualizer:
|
171 |
+
visualizer.start_visualization(xt, maskable, num_steps)
|
172 |
+
|
173 |
+
def forward_scores(tokens):
|
174 |
+
"""Compute predictions and entropy scores for next tokens."""
|
175 |
+
# Try with input_ids parameter first (standard HF models)
|
176 |
+
try:
|
177 |
+
model_output = model(input_ids=tokens)
|
178 |
+
except TypeError:
|
179 |
+
# Fall back to positional argument
|
180 |
+
model_output = model(tokens)
|
181 |
+
|
182 |
+
# Apply temperature scaling (with safety for near-zero temperature)
|
183 |
+
safe_temperature = max(temperature, 1e-8) # Prevent division by zero
|
184 |
+
logits = model_output.logits / safe_temperature
|
185 |
+
|
186 |
+
# Apply filtering strategies
|
187 |
+
# Note: When both top_k and top_p are provided, they are applied sequentially:
|
188 |
+
# First top_k filters to k tokens, then top_p filters from those k tokens
|
189 |
+
if top_k is not None and top_k > 0:
|
190 |
+
logits = apply_top_k_filtering(logits, top_k)
|
191 |
+
|
192 |
+
if top_p is not None and 0 < top_p < 1.0:
|
193 |
+
logits = apply_top_p_filtering(logits, top_p)
|
194 |
+
|
195 |
+
# Convert to log probabilities
|
196 |
+
logp = torch.log_softmax(logits, dim=-1)
|
197 |
+
|
198 |
+
# Greedy or stochastic sampling
|
199 |
+
if greedy:
|
200 |
+
pred_next = logp.argmax(-1)
|
201 |
+
else:
|
202 |
+
pred_next = torch.distributions.Categorical(logits=logp).sample(generator=generator)
|
203 |
+
|
204 |
+
conf_next = torch.gather(logp, -1, pred_next.unsqueeze(-1)).squeeze(-1)
|
205 |
+
|
206 |
+
p = logp.exp()
|
207 |
+
ent_next = -(p * logp).sum(-1)
|
208 |
+
|
209 |
+
# Shift predictions: pos i predicts token i+1
|
210 |
+
pred_i = tokens.clone()
|
211 |
+
conf_i = torch.full_like(conf_next, torch.finfo(conf_next.dtype).min)
|
212 |
+
ent_i = torch.zeros_like(ent_next)
|
213 |
+
|
214 |
+
pred_i[:, 1:] = pred_next[:, :-1]
|
215 |
+
conf_i[:, 1:] = conf_next[:, :-1]
|
216 |
+
ent_i[:, 1:] = ent_next[:, :-1]
|
217 |
+
|
218 |
+
return pred_i, conf_i, ent_i
|
219 |
+
|
220 |
+
pred_i, conf_i, ent_i = forward_scores(xt)
|
221 |
+
total_masked = init_maskable.sum(1, keepdim=True)
|
222 |
+
finf = torch.finfo(conf_i.dtype)
|
223 |
+
|
224 |
+
for step in range(num_steps - 1, 0, -1):
|
225 |
+
rate = step / num_steps
|
226 |
+
cutoff_len = (total_masked * rate).long().clamp(min=0)
|
227 |
+
|
228 |
+
# Choose HIGH-entropy tokens to keep masked
|
229 |
+
sel_scores = ent_i.masked_fill(~maskable, -finf.max)
|
230 |
+
B, L = sel_scores.shape
|
231 |
+
k_max = cutoff_len.max().item()
|
232 |
+
if k_max > 0:
|
233 |
+
sss, idx = torch.topk(sel_scores, k_max, dim=-1, largest=True)
|
234 |
+
keep_mask = torch.zeros_like(sel_scores, dtype=torch.bool)
|
235 |
+
for b in range(B):
|
236 |
+
k_b = int(cutoff_len[b].item())
|
237 |
+
if k_b > 0:
|
238 |
+
keep_mask[b, idx[b, :k_b]] = True
|
239 |
+
else:
|
240 |
+
keep_mask = torch.zeros_like(sel_scores, dtype=torch.bool)
|
241 |
+
|
242 |
+
to_unmask = maskable & ~keep_mask
|
243 |
+
if to_unmask.any():
|
244 |
+
xt[to_unmask] = pred_i[to_unmask]
|
245 |
+
maskable[to_unmask] = False
|
246 |
+
|
247 |
+
if visualizer:
|
248 |
+
visualizer.update_step(xt, maskable, num_steps - step, ent_i, conf_i)
|
249 |
+
|
250 |
+
if maskable.any():
|
251 |
+
pred_i, conf_i, ent_i = forward_scores(xt)
|
252 |
+
|
253 |
+
if maskable.any():
|
254 |
+
xt[maskable] = pred_i[maskable]
|
255 |
+
|
256 |
+
if visualizer:
|
257 |
+
visualizer.stop_visualization()
|
258 |
+
|
259 |
+
return xt
|
rnd/terminal_visualizer.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2025 Radical Numerics Inc.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0, found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""
|
7 |
+
Terminal visualization for RND1 generation.
|
8 |
+
|
9 |
+
This module provides real-time visualization of the diffusion denoising process,
|
10 |
+
showing token evolution and generation progress in the terminal using rich
|
11 |
+
formatting when available.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from typing import Optional
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
try:
|
19 |
+
from rich.console import Console
|
20 |
+
from rich.live import Live
|
21 |
+
from rich.text import Text
|
22 |
+
from rich.panel import Panel
|
23 |
+
from rich.progress import Progress, BarColumn, TextColumn, TimeRemainingColumn, MofNCompleteColumn
|
24 |
+
from rich.layout import Layout
|
25 |
+
RICH_AVAILABLE = True
|
26 |
+
except ImportError:
|
27 |
+
RICH_AVAILABLE = False
|
28 |
+
|
29 |
+
|
30 |
+
class TerminalVisualizer:
|
31 |
+
"""
|
32 |
+
Rich-based visualization for diffusion process with live updates.
|
33 |
+
|
34 |
+
Provides real-time visualization of the token denoising process during
|
35 |
+
diffusion-based language generation, with colored highlighting of masked
|
36 |
+
positions and progress tracking.
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self, tokenizer, show_visualization: bool = True):
|
40 |
+
"""
|
41 |
+
Initialize the terminal visualizer.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
tokenizer: The tokenizer for decoding tokens to text
|
45 |
+
show_visualization: Whether to show visualization (requires rich)
|
46 |
+
"""
|
47 |
+
self.tokenizer = tokenizer
|
48 |
+
self.show_visualization = show_visualization and RICH_AVAILABLE
|
49 |
+
if not RICH_AVAILABLE and show_visualization:
|
50 |
+
print("Warning: Install 'rich' for better visualization. Falling back to simple progress bar.")
|
51 |
+
self.show_visualization = False
|
52 |
+
|
53 |
+
if self.show_visualization:
|
54 |
+
self.console = Console()
|
55 |
+
self.live = None
|
56 |
+
self.progress = None
|
57 |
+
self.layout = None
|
58 |
+
else:
|
59 |
+
self.pbar = None
|
60 |
+
|
61 |
+
self.current_tokens = None
|
62 |
+
self.mask_positions = None
|
63 |
+
self.total_steps = 0
|
64 |
+
self.current_step = 0
|
65 |
+
|
66 |
+
def start_visualization(self, initial_tokens: torch.LongTensor, mask_positions: torch.BoolTensor, total_steps: int):
|
67 |
+
"""
|
68 |
+
Start the visualization.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
initial_tokens: Initial token IDs (possibly masked)
|
72 |
+
mask_positions: Boolean mask indicating which positions are masked
|
73 |
+
total_steps: Total number of diffusion steps
|
74 |
+
"""
|
75 |
+
if not self.show_visualization:
|
76 |
+
self.pbar = tqdm(total=total_steps, desc="Diffusion")
|
77 |
+
return
|
78 |
+
|
79 |
+
self.current_tokens = initial_tokens.clone()
|
80 |
+
self.mask_positions = mask_positions
|
81 |
+
self.total_steps = total_steps
|
82 |
+
self.current_step = 0
|
83 |
+
|
84 |
+
self.layout = Layout()
|
85 |
+
self.layout.split_column(
|
86 |
+
Layout(name="header", size=3),
|
87 |
+
Layout(name="text", ratio=1),
|
88 |
+
Layout(name="progress", size=3)
|
89 |
+
)
|
90 |
+
|
91 |
+
self.progress = Progress(
|
92 |
+
TextColumn("[bold blue]Diffusion"),
|
93 |
+
BarColumn(),
|
94 |
+
MofNCompleteColumn(),
|
95 |
+
TextColumn("•"),
|
96 |
+
TextColumn("[cyan]Masks: {task.fields[masks]}"),
|
97 |
+
TimeRemainingColumn(),
|
98 |
+
)
|
99 |
+
self.progress_task = self.progress.add_task(
|
100 |
+
"Generating",
|
101 |
+
total=total_steps,
|
102 |
+
masks=mask_positions.sum().item()
|
103 |
+
)
|
104 |
+
|
105 |
+
self.live = Live(self.layout, console=self.console, refresh_per_second=4)
|
106 |
+
self.live.start()
|
107 |
+
self._update_display()
|
108 |
+
|
109 |
+
def update_step(self, tokens: torch.LongTensor, maskable: Optional[torch.BoolTensor], step: int,
|
110 |
+
entropy: Optional[torch.FloatTensor] = None, confidence: Optional[torch.FloatTensor] = None):
|
111 |
+
"""
|
112 |
+
Update visualization for current step.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
tokens: Current token IDs
|
116 |
+
maskable: Boolean mask of remaining masked positions
|
117 |
+
step: Current step number
|
118 |
+
entropy: Optional entropy scores for each position
|
119 |
+
confidence: Optional confidence scores for each position
|
120 |
+
"""
|
121 |
+
if not self.show_visualization:
|
122 |
+
if self.pbar:
|
123 |
+
self.pbar.update(1)
|
124 |
+
masks = maskable.sum().item() if maskable is not None else 0
|
125 |
+
self.pbar.set_postfix({'masks': masks})
|
126 |
+
return
|
127 |
+
|
128 |
+
self.current_tokens = tokens.clone()
|
129 |
+
self.mask_positions = maskable
|
130 |
+
self.current_step = step
|
131 |
+
|
132 |
+
masks_remaining = maskable.sum().item() if maskable is not None else 0
|
133 |
+
self.progress.update(
|
134 |
+
self.progress_task,
|
135 |
+
advance=1,
|
136 |
+
masks=masks_remaining
|
137 |
+
)
|
138 |
+
|
139 |
+
self._update_display()
|
140 |
+
|
141 |
+
def _update_display(self):
|
142 |
+
"""Update the live display."""
|
143 |
+
if not self.live:
|
144 |
+
return
|
145 |
+
|
146 |
+
header = Text("RND1-Base Generation", style="bold magenta", justify="center")
|
147 |
+
self.layout["header"].update(Panel(header, border_style="bright_blue"))
|
148 |
+
|
149 |
+
text_display = self._format_text_with_masks()
|
150 |
+
self.layout["text"].update(
|
151 |
+
Panel(
|
152 |
+
text_display,
|
153 |
+
title="[bold]Generated Text",
|
154 |
+
subtitle=f"[dim]Step {self.current_step}/{self.total_steps}[/dim]",
|
155 |
+
border_style="cyan"
|
156 |
+
)
|
157 |
+
)
|
158 |
+
|
159 |
+
self.layout["progress"].update(Panel(self.progress))
|
160 |
+
|
161 |
+
def _format_text_with_masks(self) -> Text:
|
162 |
+
"""
|
163 |
+
Format text with colored masks.
|
164 |
+
|
165 |
+
Returns:
|
166 |
+
Rich Text object with formatted tokens
|
167 |
+
"""
|
168 |
+
text = Text()
|
169 |
+
|
170 |
+
if self.current_tokens is None:
|
171 |
+
return text
|
172 |
+
|
173 |
+
token_ids = self.current_tokens[0] if self.current_tokens.dim() > 1 else self.current_tokens
|
174 |
+
mask_flags = self.mask_positions[0] if self.mask_positions is not None and self.mask_positions.dim() > 1 else self.mask_positions
|
175 |
+
|
176 |
+
for i, token_id in enumerate(token_ids):
|
177 |
+
if mask_flags is not None and i < len(mask_flags) and mask_flags[i]:
|
178 |
+
# Alternate colors for visual effect
|
179 |
+
text.append("[MASK]", style="bold red on yellow" if self.current_step % 2 == 0 else "bold yellow on red")
|
180 |
+
else:
|
181 |
+
try:
|
182 |
+
token_str = self.tokenizer.decode([token_id.item()], skip_special_tokens=False)
|
183 |
+
# Skip special tokens in display
|
184 |
+
if token_str not in ["<|endoftext|>", "<|im_start|>", "<|im_end|>", "<s>", "</s>"]:
|
185 |
+
# Color based on position
|
186 |
+
text.append(token_str, style="green" if i < len(token_ids) // 2 else "cyan")
|
187 |
+
except:
|
188 |
+
continue
|
189 |
+
|
190 |
+
return text
|
191 |
+
|
192 |
+
def stop_visualization(self):
|
193 |
+
"""Stop the visualization and display final result."""
|
194 |
+
if not self.show_visualization:
|
195 |
+
if self.pbar:
|
196 |
+
self.pbar.close()
|
197 |
+
print("\n✨ Generation complete!\n")
|
198 |
+
return
|
199 |
+
|
200 |
+
if self.live:
|
201 |
+
self.live.stop()
|
202 |
+
|
203 |
+
self.console.print("\n[bold green]✨ Generation complete![/bold green]\n")
|
204 |
+
|
205 |
+
# Display final text
|
206 |
+
if self.current_tokens is not None:
|
207 |
+
try:
|
208 |
+
token_ids = self.current_tokens[0] if self.current_tokens.dim() > 1 else self.current_tokens
|
209 |
+
final_text = self.tokenizer.decode(token_ids, skip_special_tokens=True)
|
210 |
+
|
211 |
+
self.console.print(Panel(
|
212 |
+
final_text,
|
213 |
+
title="[bold]Final Generated Text",
|
214 |
+
border_style="green",
|
215 |
+
padding=(1, 2)
|
216 |
+
))
|
217 |
+
except:
|
218 |
+
pass
|
219 |
+
|
220 |
+
|
221 |
+
class SimpleProgressBar:
|
222 |
+
"""
|
223 |
+
Simple progress bar fallback when rich is not available.
|
224 |
+
|
225 |
+
Provides basic progress tracking using tqdm when the rich library
|
226 |
+
is not installed.
|
227 |
+
"""
|
228 |
+
|
229 |
+
def __init__(self, total_steps: int):
|
230 |
+
"""
|
231 |
+
Initialize simple progress bar.
|
232 |
+
|
233 |
+
Args:
|
234 |
+
total_steps: Total number of steps
|
235 |
+
"""
|
236 |
+
self.pbar = tqdm(total=total_steps, desc="Diffusion")
|
237 |
+
|
238 |
+
def update(self, masks_remaining: int = 0):
|
239 |
+
"""
|
240 |
+
Update progress bar.
|
241 |
+
|
242 |
+
Args:
|
243 |
+
masks_remaining: Number of masks still remaining
|
244 |
+
"""
|
245 |
+
self.pbar.update(1)
|
246 |
+
self.pbar.set_postfix({'masks': masks_remaining})
|
247 |
+
|
248 |
+
def close(self):
|
249 |
+
"""Close the progress bar."""
|
250 |
+
self.pbar.close()
|
251 |
+
print("\n✨ Generation complete!\n")
|