Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,262 Bytes
11b119e 27fa9cc 11b119e 27fa9cc 11b119e 27fa9cc 11b119e 27fa9cc 11b119e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import os
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
from os.path import join
import glob
import numpy as np
import torch
import trimesh
import json
import cv2
import pointops
from copy import deepcopy
from torch.utils.data import Dataset
from collections.abc import Sequence
from transformers import pipeline, SamModel
from PIL import Image
from pointcept.utils.logger import get_root_logger
from pointcept.utils.cache import shared_dict
from .builder import DATASETS
from .transform import Compose, TRANSFORMS
from .sampart3d_util import *
@DATASETS.register_module()
class SAMPart3DDataset16Views(Dataset):
def __init__(
self,
split="train",
data_root="data/scannet",
mesh_root="",
mesh_path_mapping=None,
oid="",
label="",
sample_num=15000,
pixels_per_image=256,
batch_size=90,
transform=None,
loop=1,
extent_scale=10.0
):
super(SAMPart3DDataset16Views, self).__init__()
data_root = os.path.join(data_root, str(oid))
mesh_path = os.path.join(mesh_root, f"{oid}.glb")
self.data_root = data_root
self.split = split
self.pixels_per_image = pixels_per_image
self.batch_size = batch_size
self.device = 'cuda'
self.logger = get_root_logger()
self.extent_scale = extent_scale
self.meta_data = json.load(open(os.path.join(data_root, "meta.json")))
# Load mesh and sample pointclouds
self.mesh_path = mesh_path
transform = Compose(transform)
self.load_mesh(mesh_path, transform, sample_num)
# Prepare SAM masks and depth mapping
if self.split == "train":
self.prepare_meta_data()
self.loop = loop
self.data_list = self.get_data_list()
self.logger.info(
"Totally {} x {} samples in {} set.".format(
len(self.data_list), self.loop, split
)
)
def sample_pixel(self, masks, image_height=512, image_width=512):
masks = masks.to(self.device)
indices_batch = torch.zeros((self.batch_size*self.pixels_per_image, 3), device=self.device)
random_imgs = torch.randint(0, len(masks), (self.batch_size,), device=self.device)
for i in range(self.batch_size):
# Find the indices of the valid points in the mask
valid_indices = torch.nonzero(masks[random_imgs[i]], as_tuple=False)
# if len(valid_indices) == 0:
# continue
# Randomly sample from the valid indices
if len(valid_indices) >= self.pixels_per_image:
indices = valid_indices[torch.randint(0, len(valid_indices), (self.pixels_per_image,))]
else:
# Repeat the indices to fill up to pixels_per_image
repeat_times = self.pixels_per_image // len(valid_indices) + 1
indices = valid_indices.repeat(repeat_times, 1)[:self.pixels_per_image]
indices_batch[i * self.pixels_per_image : (i + 1) * self.pixels_per_image, 0] = random_imgs[i]
indices_batch[i * self.pixels_per_image : (i + 1) * self.pixels_per_image, 1:] = indices
return indices_batch
def load_mesh(self, mesh_path, transform, sample_num=15000, pcd_path=None):
mesh = trimesh.load(mesh_path)
if isinstance(mesh, trimesh.Scene):
mesh = mesh.dump(concatenate=True)
coord, face_index, color = sample_surface(mesh, count=sample_num, sample_color=True)
color = color[..., :3]
face_normals = mesh.face_normals
normal = face_normals[face_index]
# self.mesh_scale, self.mesh_center_offset = cal_scale(mesh_path)
mesh_scale = self.meta_data["scaling_factor"]
mesh_center_offset = self.meta_data["mesh_offset"]
object_org_coord = coord.copy()
rotation_matrix = np.array([
[1, 0, 0],
[0, 0, 1],
[0, -1, 0]])
object_org_coord = np.dot(object_org_coord, rotation_matrix)
object_org_coord = object_org_coord * mesh_scale + mesh_center_offset
offset = torch.tensor(coord.shape[0])
obj = dict(coord=coord, normal=normal, color=color, offset=offset, origin_coord=object_org_coord, face_index=face_index)
obj = transform(obj)
self.object_org_coord = obj["origin_coord"].clone()
self.face_index = obj["face_index"].clone().numpy()
self.pcd_inverse = obj["inverse"].clone().numpy()
# print("object_org_coord", torch.unique(self.object_org_coord, return_counts=True))
del obj["origin_coord"], obj["face_index"], obj["inverse"]
self.object = obj
def prepare_meta_data(self, data_path=None):
SAM_model = pipeline("mask-generation", model="facebook/sam-vit-huge", device=self.device)
pixel_level_keys_list = []
scale_list = []
group_cdf_list = []
depth_valid_list = []
mapping_list = []
mapping_valid_list = []
object_org_coord = self.object_org_coord.to(self.device).contiguous().float()
obj_offset = torch.tensor(object_org_coord.shape[0]).to(self.device)
camera_angle_x = self.meta_data['camera_angle_x']
for i, c2w_opengl in enumerate(self.meta_data["transforms"]):
# print(frame['index'])
c2w_opengl = np.array(c2w_opengl)
self.logger.info(f"Processing frame_{i}")
rgb_path = join(self.data_root, f"render_{i:04d}.webp")
img = np.array(Image.open(rgb_path))
if img.shape[-1] == 4:
mask_img = img[..., 3] == 0
img[mask_img] = [255, 255, 255, 255]
img = img[..., :3]
img = Image.fromarray(img.astype('uint8'))
# Calculate mapping
depth_path = join(self.data_root, f"depth_{i:04d}.exr")
depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED)
depth = depth[..., 0]
depth_valid = torch.tensor(depth < 65500.0)
org_points = gen_pcd(depth, c2w_opengl, camera_angle_x)
org_points = torch.from_numpy(org_points)
points_tensor = org_points.to(self.device).contiguous().float()
offset = torch.tensor(points_tensor.shape[0]).to(self.device)
indices, distances = pointops.knn_query(1, object_org_coord, obj_offset, points_tensor, offset)
mapping = torch.zeros((depth.shape[0], depth.shape[1]), dtype=torch.int) - 1
# Create a mask where distances are less than 0.03
mask_dis = distances[..., 0] < 0.03
indices[~mask_dis] = -1
mapping[depth_valid] = indices.cpu().flatten()
mapping_valid = mapping != -1
# Calculate groups
try:
masks = SAM_model(img, points_per_side=32, pred_iou_thresh=0.9, stability_score_thresh=0.9)
masks = masks['masks']
masks = sorted(masks, key=lambda x: x.sum())
except:
masks = []
# mask filter
masks_filtered = []
img_valid = ~mask_img
for mask in masks:
valid_ratio = mask[img_valid].sum() / img_valid.sum()
invalid_ratio = mask[mask_img].sum() / mask_img.sum()
if valid_ratio == 0 or invalid_ratio > 0.1:
continue
else:
masks_filtered.append(mask)
pixel_level_keys, scale, mask_cdf = self._calculate_3d_groups(torch.from_numpy(depth), mapping_valid, masks_filtered, points_tensor[mask_dis])
pixel_level_keys_list.append(pixel_level_keys)
scale_list.append(scale)
group_cdf_list.append(mask_cdf)
depth_valid_list.append(depth_valid)
mapping_list.append(mapping)
mapping_valid_list.append(mapping_valid)
self.pixel_level_keys = torch.nested.nested_tensor(
pixel_level_keys_list
)
self.scale_3d_statistics = torch.cat(scale_list)
self.scale_3d = torch.nested.nested_tensor(scale_list)
self.group_cdf = torch.nested.nested_tensor(group_cdf_list)
self.depth_valid = torch.stack(depth_valid_list)
self.mapping = torch.stack(mapping_list)
self.mapping_valid = torch.stack(mapping_valid_list)
def _calculate_3d_groups(
self,
depth: torch.Tensor,
valid: torch.Tensor,
masks: torch.Tensor,
point: torch.Tensor,
max_scale: float = 2.0,
):
"""
Calculate the set of groups and their 3D scale for each pixel, and the cdf.
Returns:
- pixel_level_keys: [H, W, max_masks]
- scale: [num_masks, 1]
- mask_cdf: [H, W, max_masks]
max_masks is the maximum number of masks that was assigned to a pixel in the image,
padded with -1s. mask_cdf does *not* include the -1s.
Refer to the main paper for more details.
"""
image_shape = depth.shape[:2]
depth_valid = valid
point = point.to(self.device)
def helper_return_no_masks():
# Fail gracefully when no masks are found.
# Create dummy data (all -1s), which will be ignored later.
# See: `get_loss_dict_group` in `garfield_model.py`
pixel_level_keys = torch.full(
(image_shape[0], image_shape[1], 1), -1, dtype=torch.int
)
scale = torch.Tensor([0.0]).view(-1, 1)
mask_cdf = torch.full(
(image_shape[0], image_shape[1], 1), 1, dtype=torch.float
)
return (pixel_level_keys, scale, mask_cdf)
# If no masks are found, return dummy data.
if len(masks) == 0:
return helper_return_no_masks()
sam_mask = []
scale = []
# For all 2D groups,
# 1) Denoise the masks (through eroding)
all_masks = torch.stack(
# [torch.from_numpy(_["segmentation"]).to(self.device) for _ in masks]
[torch.from_numpy(_).to(self.device) for _ in masks]
)
# erode all masks using 3x3 kernel
# ignore erode
eroded_masks = torch.conv2d(
all_masks.unsqueeze(1).float(),
torch.full((3, 3), 1.0).view(1, 1, 3, 3).to("cuda"),
padding=1,
)
eroded_masks = (eroded_masks >= 5).squeeze(1) # (num_masks, H, W)
# 2) Calculate 3D scale
# Don't include groups with scale > max_scale (likely to be too noisy to be useful)
for i in range(len(masks)):
curr_mask_org = eroded_masks[i]
curr_mask = curr_mask_org[depth_valid]
curr_points = point[curr_mask]
extent = (curr_points.std(dim=0) * self.extent_scale).norm()
if extent.item() < max_scale:
sam_mask.append(curr_mask_org)
scale.append(extent.item())
# If no masks are found, after postprocessing, return dummy data.
if len(sam_mask) == 0:
return helper_return_no_masks()
sam_mask = torch.stack(sam_mask) # (num_masks, H, W)
scale = torch.Tensor(scale).view(-1, 1).to(self.device) # (num_masks, 1)
# Calculate "pixel level keys", which is a 2D array of shape (H, W, max_masks)
# Each pixel has a list of group indices that it belongs to, in order of increasing scale.
pixel_level_keys = self.create_pixel_mask_array(
sam_mask
).long() # (H, W, max_masks)
depth_invalid = ~depth_valid
pixel_level_keys[depth_invalid, :] = -1
# Calculate group sampling CDF, to bias sampling towards smaller groups
# Be careful to not include -1s in the CDF (padding, or unlabeled pixels)
# Inversely proportional to log of mask size.
mask_inds, counts = torch.unique(pixel_level_keys, return_counts=True)
counts[0] = 0 # don't include -1
probs = counts / counts.sum() # [-1, 0, ...]
pixel_shape = pixel_level_keys.shape
if (pixel_level_keys.max()+2) != probs.shape[0]:
pixel_level_keys_new = pixel_level_keys.reshape(-1)
unique_values, inverse_indices = torch.unique(pixel_level_keys_new, return_inverse=True)
pixel_level_keys_new = inverse_indices.reshape(-1)
else:
pixel_level_keys_new = pixel_level_keys.reshape(-1) + 1
mask_probs = torch.gather(probs, 0, pixel_level_keys.reshape(-1) + 1).view(
pixel_shape
)
mask_log_probs = torch.log(mask_probs)
never_masked = mask_log_probs.isinf()
mask_log_probs[never_masked] = 0.0
mask_log_probs = mask_log_probs / (
mask_log_probs.sum(dim=-1, keepdim=True) + 1e-6
)
mask_cdf = torch.cumsum(mask_log_probs, dim=-1)
mask_cdf[never_masked] = 1.0
return (pixel_level_keys.cpu(), scale.cpu(), mask_cdf.cpu())
@staticmethod
def create_pixel_mask_array(masks: torch.Tensor):
"""
Create per-pixel data structure for grouping supervision.
pixel_mask_array[x, y] = [m1, m2, ...] means that pixel (x, y) belongs to masks m1, m2, ...
where Area(m1) < Area(m2) < ... (sorted by area).
"""
max_masks = masks.sum(dim=0).max().item()
# print(max_masks)
image_shape = masks.shape[1:]
pixel_mask_array = torch.full(
(max_masks, image_shape[0], image_shape[1]), -1, dtype=torch.int
).to(masks.device)
for m, mask in enumerate(masks):
mask_clone = mask.clone()
for i in range(max_masks):
free = pixel_mask_array[i] == -1
masked_area = mask_clone == 1
right_index = free & masked_area
if len(pixel_mask_array[i][right_index]) != 0:
pixel_mask_array[i][right_index] = m
mask_clone[right_index] = 0
pixel_mask_array = pixel_mask_array.permute(1, 2, 0)
return pixel_mask_array
def get_data_list(self):
data_list = glob.glob(os.path.join(self.data_root, "*.exr"))
return data_list
def get_data(self, idx):
indices = self.sample_pixel(self.mapping_valid, 512, 512).long().detach().cpu()
npximg = self.pixels_per_image
img_ind = indices[:, 0]
x_ind = indices[:, 1]
y_ind = indices[:, 2]
# sampled_imgs = img_ind[::npximg]
mask_id = torch.zeros((indices.shape[0],), device=self.device)
scale = torch.zeros((indices.shape[0],), device=self.device)
mapping = torch.zeros((indices.shape[0],), device=self.device)
random_vec_sampling = (torch.rand((1,)) * torch.ones((npximg,))).view(-1, 1)
random_vec_densify = (torch.rand((1,)) * torch.ones((npximg,))).view(-1, 1)
for i in range(0, indices.shape[0], npximg):
img_idx = img_ind[i]
# calculate mapping
mapping[i : i + npximg] = self.mapping[img_idx][x_ind[i : i + npximg], y_ind[i : i + npximg]]
# Use `random_vec` to choose a group for each pixel.
per_pixel_index = self.pixel_level_keys[img_idx][
x_ind[i : i + npximg], y_ind[i : i + npximg]
]
random_index = torch.sum(
random_vec_sampling.view(-1, 1)
> self.group_cdf[img_idx][x_ind[i : i + npximg], y_ind[i : i + npximg]],
dim=-1,
)
# `per_pixel_index` encodes the list of groups that each pixel belongs to.
# If there's only one group, then `per_pixel_index` is a 1D tensor
# -- this will mess up the future `gather` operations.
if per_pixel_index.shape[-1] == 1:
per_pixel_mask = per_pixel_index.squeeze()
else:
# Clamp random_index to valid range to prevent out of bounds error
random_index_clamped = torch.clamp(random_index.unsqueeze(-1), 0, per_pixel_index.shape[1] - 1)
per_pixel_mask = torch.gather(
per_pixel_index, 1, random_index_clamped
).squeeze()
# Clamp the previous index to valid range as well
prev_index_clamped = torch.clamp(random_index.unsqueeze(-1) - 1, 0, per_pixel_index.shape[1] - 1)
per_pixel_mask_ = torch.gather(
per_pixel_index,
1,
prev_index_clamped,
).squeeze()
mask_id[i : i + npximg] = per_pixel_mask.to(self.device)
# interval scale supervision
curr_scale = self.scale_3d[img_idx][per_pixel_mask]
curr_scale[random_index == 0] = (
self.scale_3d[img_idx][per_pixel_mask][random_index == 0]
* random_vec_densify[random_index == 0]
)
for j in range(1, self.group_cdf[img_idx].shape[-1]):
if (random_index == j).sum() == 0:
continue
curr_scale[random_index == j] = (
self.scale_3d[img_idx][per_pixel_mask_][random_index == j]
+ (
self.scale_3d[img_idx][per_pixel_mask][random_index == j]
- self.scale_3d[img_idx][per_pixel_mask_][random_index == j]
)
* random_vec_densify[random_index == j]
)
scale[i : i + npximg] = curr_scale.squeeze().to(self.device)
batch = dict()
batch["mask_id"] = mask_id
batch["scale"] = scale
batch["nPxImg"] = npximg
batch["obj"] = self.object
batch["mapping"] = mapping.long()
return batch
def val_data(self):
return dict(obj=self.object)
def get_data_name(self, idx):
return os.path.basename(self.data_list[idx % len(self.data_list)]).split(".")[0]
def __getitem__(self, idx):
return self.get_data(idx % len(self.data_list))
def __len__(self):
return len(self.data_list) * self.loop
|