MohamedRashad's picture
Add skin and tokenizer systems with parsing and tokenization functionalities
11b119e
# -*- coding: utf-8 -*-
#
# This file is part of UniRig.
#
# This file is derived from https://github.com/NeuralCarver/Michelangelo
#
# Copyright (c) https://github.com/NeuralCarver/Michelangelo original authors
# Copyright (c) 2025 VAST-AI-Research and contributors.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import torch
import torch.nn as nn
from typing import Optional, Union
from einops import repeat
import math
from torch_cluster import fps
import random
import time
import numpy as np
from ..modules import checkpoint
from ..modules.embedder import FourierEmbedder
from ..modules.transformer_blocks import (
ResidualCrossAttentionBlock,
Transformer
)
from .tsal_base import ShapeAsLatentModule
class CrossAttentionEncoder(nn.Module):
def __init__(self, *,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
num_latents: int,
fourier_embedder: FourierEmbedder,
point_feats: int,
width: int,
heads: int,
layers: int,
init_scale: float = 0.25,
qkv_bias: bool = True,
flash: bool = False,
use_ln_post: bool = False,
use_checkpoint: bool = False,
query_method: bool = False,
use_full_input: bool = True,
token_num: int = 256,
no_query: bool=False):
super().__init__()
self.query_method = query_method
self.token_num = token_num
self.use_full_input = use_full_input
self.use_checkpoint = use_checkpoint
self.num_latents = num_latents
if no_query:
self.query = None
else:
self.query = nn.Parameter(torch.randn((num_latents, width), device=device, dtype=dtype) * 0.02)
self.fourier_embedder = fourier_embedder
self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width, device=device, dtype=dtype)
self.cross_attn = ResidualCrossAttentionBlock(
device=device,
dtype=dtype,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
)
self.self_attn = Transformer(
device=device,
dtype=dtype,
n_ctx=num_latents,
width=width,
layers=layers,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
use_checkpoint=False
)
if use_ln_post:
self.ln_post = nn.LayerNorm(width, dtype=dtype, device=device)
else:
self.ln_post = None
def _forward(self, pc, feats):
"""
Args:
pc (torch.FloatTensor): [B, N, 3]
feats (torch.FloatTensor or None): [B, N, C]
Returns:
"""
if self.query_method:
token_num = self.num_latents
bs = pc.shape[0]
data = self.fourier_embedder(pc)
if feats is not None:
data = torch.cat([data, feats], dim=-1)
data = self.input_proj(data)
query = repeat(self.query, "m c -> b m c", b=bs)
latents = self.cross_attn(query, data)
latents = self.self_attn(latents)
if self.ln_post is not None:
latents = self.ln_post(latents)
pre_pc = None
else:
if isinstance(self.token_num, int):
token_num = self.token_num
else:
token_num = random.choice(self.token_num)
if self.training:
rng = np.random.default_rng()
else:
rng = np.random.default_rng(seed=0)
ind = rng.choice(pc.shape[1], token_num * 4, replace=token_num * 4 > pc.shape[1])
pre_pc = pc[:,ind,:]
pre_feats = feats[:,ind,:]
B, N, D = pre_pc.shape
C = pre_feats.shape[-1]
###### fps
pos = pre_pc.view(B*N, D)
pos_feats = pre_feats.view(B*N, C)
batch = torch.arange(B).to(pc.device)
batch = torch.repeat_interleave(batch, N)
idx = fps(pos, batch, ratio=1. / 4, random_start=self.training)
sampled_pc = pos[idx]
sampled_pc = sampled_pc.view(B, -1, 3)
sampled_feats = pos_feats[idx]
sampled_feats = sampled_feats.view(B, -1, C)
######
if self.use_full_input:
data = self.fourier_embedder(pc)
else:
data = self.fourier_embedder(pre_pc)
if feats is not None:
if not self.use_full_input:
feats = pre_feats
data = torch.cat([data, feats], dim=-1)
data = self.input_proj(data)
sampled_data = self.fourier_embedder(sampled_pc)
if feats is not None:
sampled_data = torch.cat([sampled_data, sampled_feats], dim=-1)
sampled_data = self.input_proj(sampled_data)
latents = self.cross_attn(sampled_data, data)
latents = self.self_attn(latents)
if self.ln_post is not None:
latents = self.ln_post(latents)
pre_pc = torch.cat([pre_pc, pre_feats], dim=-1)
return latents, pc, token_num, pre_pc
def forward(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None):
"""
Args:
pc (torch.FloatTensor): [B, N, 3]
feats (torch.FloatTensor or None): [B, N, C]
Returns:
dict
"""
return checkpoint(self._forward, (pc, feats), self.parameters(), self.use_checkpoint)
class CrossAttentionDecoder(nn.Module):
def __init__(self, *,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
num_latents: int,
out_channels: int,
fourier_embedder: FourierEmbedder,
width: int,
heads: int,
init_scale: float = 0.25,
qkv_bias: bool = True,
flash: bool = False,
use_checkpoint: bool = False,
mlp_width_scale: int = 4,
supervision_type: str = 'occupancy'):
super().__init__()
self.use_checkpoint = use_checkpoint
self.fourier_embedder = fourier_embedder
self.supervision_type = supervision_type
self.query_proj = nn.Linear(self.fourier_embedder.out_dim, width, device=device, dtype=dtype)
self.cross_attn_decoder = ResidualCrossAttentionBlock(
device=device,
dtype=dtype,
n_data=num_latents,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
mlp_width_scale=mlp_width_scale,
)
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
self.output_proj = nn.Linear(width, out_channels, device=device, dtype=dtype)
if self.supervision_type == 'occupancy-sdf':
self.output_proj_sdf = nn.Linear(width, out_channels, device=device, dtype=dtype)
def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
if next(self.query_proj.parameters()).dtype == torch.float16:
queries = queries.half()
latents = latents.half()
# print(f"queries: {queries.dtype}, {queries.device}")
# print(f"latents: {latents.dtype}, {latents.device}"z)
queries = self.query_proj(self.fourier_embedder(queries))
x = self.cross_attn_decoder(queries, latents)
x = self.ln_post(x)
x_1 = self.output_proj(x)
if self.supervision_type == 'occupancy-sdf':
x_2 = self.output_proj_sdf(x)
return x_1, x_2
else:
return x_1
def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
return checkpoint(self._forward, (queries, latents), self.parameters(), self.use_checkpoint)
class ShapeAsLatentPerceiver(ShapeAsLatentModule):
def __init__(self, *,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
num_latents: int,
point_feats: int = 0,
embed_dim: int = 0,
num_freqs: int = 8,
include_pi: bool = True,
width: int,
heads: int,
num_encoder_layers: int,
num_decoder_layers: int,
decoder_width: Optional[int] = None,
init_scale: float = 0.25,
qkv_bias: bool = True,
flash: bool = False,
use_ln_post: bool = False,
use_checkpoint: bool = False,
supervision_type: str = 'occupancy',
query_method: bool = False,
token_num: int = 256,
grad_type: str = "numerical",
grad_interval: float = 0.005,
use_full_input: bool = True,
freeze_encoder: bool = False,
decoder_mlp_width_scale: int = 4,
residual_kl: bool = False,
):
super().__init__()
self.use_checkpoint = use_checkpoint
self.num_latents = num_latents
assert grad_type in ["numerical", "analytical"]
self.grad_type = grad_type
self.grad_interval = grad_interval
self.supervision_type = supervision_type
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
init_scale = init_scale * math.sqrt(1.0 / width)
self.encoder = CrossAttentionEncoder(
device=device,
dtype=dtype,
fourier_embedder=self.fourier_embedder,
num_latents=num_latents,
point_feats=point_feats,
width=width,
heads=heads,
layers=num_encoder_layers,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
use_ln_post=use_ln_post,
use_checkpoint=use_checkpoint,
query_method=query_method,
use_full_input=use_full_input,
token_num=token_num
)
self.embed_dim = embed_dim
self.residual_kl = residual_kl
if decoder_width is None:
decoder_width = width
if embed_dim > 0:
# VAE embed
self.pre_kl = nn.Linear(width, embed_dim * 2, device=device, dtype=dtype)
self.post_kl = nn.Linear(embed_dim, decoder_width, device=device, dtype=dtype)
self.latent_shape = (num_latents, embed_dim)
if self.residual_kl:
assert self.post_kl.out_features % self.post_kl.in_features == 0
assert self.pre_kl.in_features % self.pre_kl.out_features == 0
else:
self.latent_shape = (num_latents, width)
self.transformer = Transformer(
device=device,
dtype=dtype,
n_ctx=num_latents,
width=decoder_width,
layers=num_decoder_layers,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
use_checkpoint=use_checkpoint
)
# geometry decoder
self.geo_decoder = CrossAttentionDecoder(
device=device,
dtype=dtype,
fourier_embedder=self.fourier_embedder,
out_channels=1,
num_latents=num_latents,
width=decoder_width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
use_checkpoint=use_checkpoint,
supervision_type=supervision_type,
mlp_width_scale=decoder_mlp_width_scale
)
if freeze_encoder:
for p in self.encoder.parameters():
p.requires_grad = False
for p in self.pre_kl.parameters():
p.requires_grad = False
print("freeze encoder and pre kl")
def forward(self,
pc: torch.FloatTensor,
feats: torch.FloatTensor,
volume_queries: torch.FloatTensor,
sample_posterior: bool = True):
"""
Args:
pc (torch.FloatTensor): [B, N, 3]
feats (torch.FloatTensor or None): [B, N, C]
volume_queries (torch.FloatTensor): [B, P, 3]
sample_posterior (bool):
Returns:
logits (torch.FloatTensor): [B, P]
center_pos (torch.FloatTensor): [B, M, 3]
posterior (DiagonalGaussianDistribution or None).
"""
latents, center_pos, posterior = self.encode(pc, feats, sample_posterior=sample_posterior)
latents = self.decode(latents)
logits = self.query_geometry(volume_queries, latents)
return logits, center_pos, posterior
class AlignedShapeLatentPerceiver(ShapeAsLatentPerceiver):
def __init__(self, *,
device: Optional[torch.device],
dtype: Optional[str],
num_latents: int,
point_feats: int = 0,
embed_dim: int = 0,
num_freqs: int = 8,
include_pi: bool = True,
width: int,
heads: int,
num_encoder_layers: int,
num_decoder_layers: int,
decoder_width: Optional[int] = None,
init_scale: float = 0.25,
qkv_bias: bool = True,
flash: bool = False,
use_ln_post: bool = False,
use_checkpoint: bool = False,
supervision_type: str = 'occupancy',
grad_type: str = "numerical",
grad_interval: float = 0.005,
query_method: bool = False,
use_full_input: bool = True,
token_num: int = 256,
freeze_encoder: bool = False,
decoder_mlp_width_scale: int = 4,
residual_kl: bool = False,
):
MAP_DTYPE = {
'float32': torch.float32,
'float16': torch.float16,
'bfloat16': torch.bfloat16,
}
if dtype is not None:
dtype = MAP_DTYPE[dtype]
super().__init__(
device=device,
dtype=dtype,
num_latents=1 + num_latents,
point_feats=point_feats,
embed_dim=embed_dim,
num_freqs=num_freqs,
include_pi=include_pi,
width=width,
decoder_width=decoder_width,
heads=heads,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
use_ln_post=use_ln_post,
use_checkpoint=use_checkpoint,
supervision_type=supervision_type,
grad_type=grad_type,
grad_interval=grad_interval,
query_method=query_method,
token_num=token_num,
use_full_input=use_full_input,
freeze_encoder=freeze_encoder,
decoder_mlp_width_scale=decoder_mlp_width_scale,
residual_kl=residual_kl,
)
self.width = width
def encode(self,
pc: torch.FloatTensor,
feats: Optional[torch.FloatTensor] = None,
sample_posterior: bool = True,
only_shape: bool=False):
"""
Args:
pc (torch.FloatTensor): [B, N, 3]
feats (torch.FloatTensor or None): [B, N, c]
sample_posterior (bool):
Returns:
shape_embed (torch.FloatTensor)
kl_embed (torch.FloatTensor):
posterior (DiagonalGaussianDistribution or None):
"""
shape_embed, latents, token_num, pre_pc = self.encode_latents(pc, feats)
if only_shape:
return shape_embed
kl_embed, posterior = self.encode_kl_embed(latents, sample_posterior)
return shape_embed, kl_embed, posterior, token_num, pre_pc
def encode_latents(self,
pc: torch.FloatTensor,
feats: Optional[torch.FloatTensor] = None):
x, _, token_num, pre_pc = self.encoder(pc, feats)
shape_embed = x[:, 0]
# latents = x[:, 1:]
# use all tokens
latents = x
return shape_embed, latents, token_num, pre_pc
def forward(self,
pc: torch.FloatTensor,
feats: torch.FloatTensor,
volume_queries: torch.FloatTensor,
sample_posterior: bool = True):
raise NotImplementedError()
#####################################################
# a simplified verstion of perceiver encoder
#####################################################
class ShapeAsLatentPerceiverEncoder(ShapeAsLatentModule):
def __init__(self, *,
device: Optional[torch.device],
dtype: Optional[Union[torch.dtype, str]],
num_latents: int,
point_feats: int = 0,
embed_dim: int = 0,
num_freqs: int = 8,
include_pi: bool = True,
width: int,
heads: int,
num_encoder_layers: int,
init_scale: float = 0.25,
qkv_bias: bool = True,
flash: bool = False,
use_ln_post: bool = False,
use_checkpoint: bool = False,
supervision_type: str = 'occupancy',
query_method: bool = False,
token_num: int = 256,
grad_type: str = "numerical",
grad_interval: float = 0.005,
use_full_input: bool = True,
freeze_encoder: bool = False,
residual_kl: bool = False,
):
super().__init__()
MAP_DTYPE = {
'float32': torch.float32,
'float16': torch.float16,
'bfloat16': torch.bfloat16,
}
if dtype is not None and isinstance(dtype, str):
dtype = MAP_DTYPE[dtype]
self.use_checkpoint = use_checkpoint
self.num_latents = num_latents
assert grad_type in ["numerical", "analytical"]
self.grad_type = grad_type
self.grad_interval = grad_interval
self.supervision_type = supervision_type
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
init_scale = init_scale * math.sqrt(1.0 / width)
self.encoder = CrossAttentionEncoder(
device=device,
dtype=dtype,
fourier_embedder=self.fourier_embedder,
num_latents=num_latents,
point_feats=point_feats,
width=width,
heads=heads,
layers=num_encoder_layers,
init_scale=init_scale,
qkv_bias=qkv_bias,
flash=flash,
use_ln_post=use_ln_post,
use_checkpoint=use_checkpoint,
query_method=query_method,
use_full_input=use_full_input,
token_num=token_num,
no_query=True,
)
self.embed_dim = embed_dim
self.residual_kl = residual_kl
if freeze_encoder:
for p in self.encoder.parameters():
p.requires_grad = False
print("freeze encoder")
self.width = width
def encode_latents(self,
pc: torch.FloatTensor,
feats: Optional[torch.FloatTensor] = None):
x, _, token_num, pre_pc = self.encoder(pc, feats)
shape_embed = x[:, 0]
latents = x
return shape_embed, latents, token_num, pre_pc
def forward(self):
raise NotImplementedError()