Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
# | |
# This file is part of UniRig. | |
# | |
# This file is derived from https://github.com/NeuralCarver/Michelangelo | |
# | |
# Copyright (c) https://github.com/NeuralCarver/Michelangelo original authors | |
# Copyright (c) 2025 VAST-AI-Research and contributors. | |
# | |
# This program is free software: you can redistribute it and/or modify | |
# it under the terms of the GNU General Public License as published by | |
# the Free Software Foundation, either version 3 of the License, or | |
# (at your option) any later version. | |
# | |
# This program is distributed in the hope that it will be useful, | |
# but WITHOUT ANY WARRANTY; without even the implied warranty of | |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
# GNU General Public License for more details. | |
# | |
# You should have received a copy of the GNU General Public License | |
# along with this program. If not, see <https://www.gnu.org/licenses/>. | |
import torch.nn as nn | |
from typing import Tuple, List, Optional | |
import lightning.pytorch as pl | |
class Point2MeshOutput(object): | |
def __init__(self): | |
self.mesh_v = None | |
self.mesh_f = None | |
self.center = None | |
self.pc = None | |
class Latent2MeshOutput(object): | |
def __init__(self): | |
self.mesh_v = None | |
self.mesh_f = None | |
class AlignedMeshOutput(object): | |
def __init__(self): | |
self.mesh_v = None | |
self.mesh_f = None | |
self.surface = None | |
self.image = None | |
self.text: Optional[str] = None | |
self.shape_text_similarity: Optional[float] = None | |
self.shape_image_similarity: Optional[float] = None | |
class ShapeAsLatentPLModule(pl.LightningModule): | |
latent_shape: Tuple[int] | |
def encode(self, surface, *args, **kwargs): | |
raise NotImplementedError | |
def decode(self, z_q, *args, **kwargs): | |
raise NotImplementedError | |
def latent2mesh(self, latents, *args, **kwargs) -> List[Latent2MeshOutput]: | |
raise NotImplementedError | |
def point2mesh(self, *args, **kwargs) -> List[Point2MeshOutput]: | |
raise NotImplementedError | |
class ShapeAsLatentModule(nn.Module): | |
latent_shape: Tuple[int, int] | |
def __init__(self, *args, **kwargs): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
def decode(self, *args, **kwargs): | |
raise NotImplementedError | |
def query_geometry(self, *args, **kwargs): | |
raise NotImplementedError | |
class AlignedShapeAsLatentPLModule(pl.LightningModule): | |
latent_shape: Tuple[int] | |
def set_shape_model_only(self): | |
raise NotImplementedError | |
def encode(self, surface, *args, **kwargs): | |
raise NotImplementedError | |
def decode(self, z_q, *args, **kwargs): | |
raise NotImplementedError | |
def latent2mesh(self, latents, *args, **kwargs) -> List[Latent2MeshOutput]: | |
raise NotImplementedError | |
def point2mesh(self, *args, **kwargs) -> List[Point2MeshOutput]: | |
raise NotImplementedError | |
class AlignedShapeAsLatentModule(nn.Module): | |
shape_model: ShapeAsLatentModule | |
latent_shape: Tuple[int, int] | |
def __init__(self, *args, **kwargs): | |
super().__init__() | |
def set_shape_model_only(self): | |
raise NotImplementedError | |
def encode_image_embed(self, *args, **kwargs): | |
raise NotImplementedError | |
def encode_text_embed(self, *args, **kwargs): | |
raise NotImplementedError | |
def encode_shape_embed(self, *args, **kwargs): | |
raise NotImplementedError | |
class TexturedShapeAsLatentModule(nn.Module): | |
def __init__(self, *args, **kwargs): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
def decode(self, *args, **kwargs): | |
raise NotImplementedError | |
def query_geometry(self, *args, **kwargs): | |
raise NotImplementedError | |
def query_color(self, *args, **kwargs): | |
raise NotImplementedError | |