import os os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1" from os.path import join import glob import numpy as np import torch import trimesh import json import cv2 import pointops from copy import deepcopy from torch.utils.data import Dataset from collections.abc import Sequence from transformers import pipeline, SamModel from PIL import Image from pointcept.utils.logger import get_root_logger from pointcept.utils.cache import shared_dict from .builder import DATASETS from .transform import Compose, TRANSFORMS from .sampart3d_util import * @DATASETS.register_module() class SAMPart3DDataset16Views(Dataset): def __init__( self, split="train", data_root="data/scannet", mesh_root="", mesh_path_mapping=None, oid="", label="", sample_num=15000, pixels_per_image=256, batch_size=90, transform=None, loop=1, extent_scale=10.0 ): super(SAMPart3DDataset16Views, self).__init__() data_root = os.path.join(data_root, str(oid)) mesh_path = os.path.join(mesh_root, f"{oid}.glb") self.data_root = data_root self.split = split self.pixels_per_image = pixels_per_image self.batch_size = batch_size self.device = 'cuda' self.logger = get_root_logger() self.extent_scale = extent_scale self.meta_data = json.load(open(os.path.join(data_root, "meta.json"))) # Load mesh and sample pointclouds self.mesh_path = mesh_path transform = Compose(transform) self.load_mesh(mesh_path, transform, sample_num) # Prepare SAM masks and depth mapping if self.split == "train": self.prepare_meta_data() self.loop = loop self.data_list = self.get_data_list() self.logger.info( "Totally {} x {} samples in {} set.".format( len(self.data_list), self.loop, split ) ) def sample_pixel(self, masks, image_height=512, image_width=512): masks = masks.to(self.device) indices_batch = torch.zeros((self.batch_size*self.pixels_per_image, 3), device=self.device) random_imgs = torch.randint(0, len(masks), (self.batch_size,), device=self.device) for i in range(self.batch_size): # Find the indices of the valid points in the mask valid_indices = torch.nonzero(masks[random_imgs[i]], as_tuple=False) # if len(valid_indices) == 0: # continue # Randomly sample from the valid indices if len(valid_indices) >= self.pixels_per_image: indices = valid_indices[torch.randint(0, len(valid_indices), (self.pixels_per_image,))] else: # Repeat the indices to fill up to pixels_per_image repeat_times = self.pixels_per_image // len(valid_indices) + 1 indices = valid_indices.repeat(repeat_times, 1)[:self.pixels_per_image] indices_batch[i * self.pixels_per_image : (i + 1) * self.pixels_per_image, 0] = random_imgs[i] indices_batch[i * self.pixels_per_image : (i + 1) * self.pixels_per_image, 1:] = indices return indices_batch def load_mesh(self, mesh_path, transform, sample_num=15000, pcd_path=None): mesh = trimesh.load(mesh_path) if isinstance(mesh, trimesh.Scene): mesh = mesh.dump(concatenate=True) coord, face_index, color = sample_surface(mesh, count=sample_num, sample_color=True) color = color[..., :3] face_normals = mesh.face_normals normal = face_normals[face_index] # self.mesh_scale, self.mesh_center_offset = cal_scale(mesh_path) mesh_scale = self.meta_data["scaling_factor"] mesh_center_offset = self.meta_data["mesh_offset"] object_org_coord = coord.copy() rotation_matrix = np.array([ [1, 0, 0], [0, 0, 1], [0, -1, 0]]) object_org_coord = np.dot(object_org_coord, rotation_matrix) object_org_coord = object_org_coord * mesh_scale + mesh_center_offset offset = torch.tensor(coord.shape[0]) obj = dict(coord=coord, normal=normal, color=color, offset=offset, origin_coord=object_org_coord, face_index=face_index) obj = transform(obj) self.object_org_coord = obj["origin_coord"].clone() self.face_index = obj["face_index"].clone().numpy() self.pcd_inverse = obj["inverse"].clone().numpy() # print("object_org_coord", torch.unique(self.object_org_coord, return_counts=True)) del obj["origin_coord"], obj["face_index"], obj["inverse"] self.object = obj def prepare_meta_data(self, data_path=None): SAM_model = pipeline("mask-generation", model="facebook/sam-vit-huge", device=self.device) pixel_level_keys_list = [] scale_list = [] group_cdf_list = [] depth_valid_list = [] mapping_list = [] mapping_valid_list = [] object_org_coord = self.object_org_coord.to(self.device).contiguous().float() obj_offset = torch.tensor(object_org_coord.shape[0]).to(self.device) camera_angle_x = self.meta_data['camera_angle_x'] for i, c2w_opengl in enumerate(self.meta_data["transforms"]): # print(frame['index']) c2w_opengl = np.array(c2w_opengl) self.logger.info(f"Processing frame_{i}") rgb_path = join(self.data_root, f"render_{i:04d}.webp") img = np.array(Image.open(rgb_path)) if img.shape[-1] == 4: mask_img = img[..., 3] == 0 img[mask_img] = [255, 255, 255, 255] img = img[..., :3] img = Image.fromarray(img.astype('uint8')) # Calculate mapping depth_path = join(self.data_root, f"depth_{i:04d}.exr") depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED) depth = depth[..., 0] depth_valid = torch.tensor(depth < 65500.0) org_points = gen_pcd(depth, c2w_opengl, camera_angle_x) org_points = torch.from_numpy(org_points) points_tensor = org_points.to(self.device).contiguous().float() offset = torch.tensor(points_tensor.shape[0]).to(self.device) indices, distances = pointops.knn_query(1, object_org_coord, obj_offset, points_tensor, offset) mapping = torch.zeros((depth.shape[0], depth.shape[1]), dtype=torch.int) - 1 # Create a mask where distances are less than 0.03 mask_dis = distances[..., 0] < 0.03 indices[~mask_dis] = -1 mapping[depth_valid] = indices.cpu().flatten() mapping_valid = mapping != -1 # Calculate groups try: masks = SAM_model(img, points_per_side=32, pred_iou_thresh=0.9, stability_score_thresh=0.9) masks = masks['masks'] masks = sorted(masks, key=lambda x: x.sum()) except: masks = [] # mask filter masks_filtered = [] img_valid = ~mask_img for mask in masks: valid_ratio = mask[img_valid].sum() / img_valid.sum() invalid_ratio = mask[mask_img].sum() / mask_img.sum() if valid_ratio == 0 or invalid_ratio > 0.1: continue else: masks_filtered.append(mask) pixel_level_keys, scale, mask_cdf = self._calculate_3d_groups(torch.from_numpy(depth), mapping_valid, masks_filtered, points_tensor[mask_dis]) pixel_level_keys_list.append(pixel_level_keys) scale_list.append(scale) group_cdf_list.append(mask_cdf) depth_valid_list.append(depth_valid) mapping_list.append(mapping) mapping_valid_list.append(mapping_valid) self.pixel_level_keys = torch.nested.nested_tensor( pixel_level_keys_list ) self.scale_3d_statistics = torch.cat(scale_list) self.scale_3d = torch.nested.nested_tensor(scale_list) self.group_cdf = torch.nested.nested_tensor(group_cdf_list) self.depth_valid = torch.stack(depth_valid_list) self.mapping = torch.stack(mapping_list) self.mapping_valid = torch.stack(mapping_valid_list) def _calculate_3d_groups( self, depth: torch.Tensor, valid: torch.Tensor, masks: torch.Tensor, point: torch.Tensor, max_scale: float = 2.0, ): """ Calculate the set of groups and their 3D scale for each pixel, and the cdf. Returns: - pixel_level_keys: [H, W, max_masks] - scale: [num_masks, 1] - mask_cdf: [H, W, max_masks] max_masks is the maximum number of masks that was assigned to a pixel in the image, padded with -1s. mask_cdf does *not* include the -1s. Refer to the main paper for more details. """ image_shape = depth.shape[:2] depth_valid = valid point = point.to(self.device) def helper_return_no_masks(): # Fail gracefully when no masks are found. # Create dummy data (all -1s), which will be ignored later. # See: `get_loss_dict_group` in `garfield_model.py` pixel_level_keys = torch.full( (image_shape[0], image_shape[1], 1), -1, dtype=torch.int ) scale = torch.Tensor([0.0]).view(-1, 1) mask_cdf = torch.full( (image_shape[0], image_shape[1], 1), 1, dtype=torch.float ) return (pixel_level_keys, scale, mask_cdf) # If no masks are found, return dummy data. if len(masks) == 0: return helper_return_no_masks() sam_mask = [] scale = [] # For all 2D groups, # 1) Denoise the masks (through eroding) all_masks = torch.stack( # [torch.from_numpy(_["segmentation"]).to(self.device) for _ in masks] [torch.from_numpy(_).to(self.device) for _ in masks] ) # erode all masks using 3x3 kernel # ignore erode eroded_masks = torch.conv2d( all_masks.unsqueeze(1).float(), torch.full((3, 3), 1.0).view(1, 1, 3, 3).to("cuda"), padding=1, ) eroded_masks = (eroded_masks >= 5).squeeze(1) # (num_masks, H, W) # 2) Calculate 3D scale # Don't include groups with scale > max_scale (likely to be too noisy to be useful) for i in range(len(masks)): curr_mask_org = eroded_masks[i] curr_mask = curr_mask_org[depth_valid] curr_points = point[curr_mask] extent = (curr_points.std(dim=0) * self.extent_scale).norm() if extent.item() < max_scale: sam_mask.append(curr_mask_org) scale.append(extent.item()) # If no masks are found, after postprocessing, return dummy data. if len(sam_mask) == 0: return helper_return_no_masks() sam_mask = torch.stack(sam_mask) # (num_masks, H, W) scale = torch.Tensor(scale).view(-1, 1).to(self.device) # (num_masks, 1) # Calculate "pixel level keys", which is a 2D array of shape (H, W, max_masks) # Each pixel has a list of group indices that it belongs to, in order of increasing scale. pixel_level_keys = self.create_pixel_mask_array( sam_mask ).long() # (H, W, max_masks) depth_invalid = ~depth_valid pixel_level_keys[depth_invalid, :] = -1 # Calculate group sampling CDF, to bias sampling towards smaller groups # Be careful to not include -1s in the CDF (padding, or unlabeled pixels) # Inversely proportional to log of mask size. mask_inds, counts = torch.unique(pixel_level_keys, return_counts=True) counts[0] = 0 # don't include -1 probs = counts / counts.sum() # [-1, 0, ...] pixel_shape = pixel_level_keys.shape if (pixel_level_keys.max()+2) != probs.shape[0]: pixel_level_keys_new = pixel_level_keys.reshape(-1) unique_values, inverse_indices = torch.unique(pixel_level_keys_new, return_inverse=True) pixel_level_keys_new = inverse_indices.reshape(-1) else: pixel_level_keys_new = pixel_level_keys.reshape(-1) + 1 mask_probs = torch.gather(probs, 0, pixel_level_keys.reshape(-1) + 1).view( pixel_shape ) mask_log_probs = torch.log(mask_probs) never_masked = mask_log_probs.isinf() mask_log_probs[never_masked] = 0.0 mask_log_probs = mask_log_probs / ( mask_log_probs.sum(dim=-1, keepdim=True) + 1e-6 ) mask_cdf = torch.cumsum(mask_log_probs, dim=-1) mask_cdf[never_masked] = 1.0 return (pixel_level_keys.cpu(), scale.cpu(), mask_cdf.cpu()) @staticmethod def create_pixel_mask_array(masks: torch.Tensor): """ Create per-pixel data structure for grouping supervision. pixel_mask_array[x, y] = [m1, m2, ...] means that pixel (x, y) belongs to masks m1, m2, ... where Area(m1) < Area(m2) < ... (sorted by area). """ max_masks = masks.sum(dim=0).max().item() # print(max_masks) image_shape = masks.shape[1:] pixel_mask_array = torch.full( (max_masks, image_shape[0], image_shape[1]), -1, dtype=torch.int ).to(masks.device) for m, mask in enumerate(masks): mask_clone = mask.clone() for i in range(max_masks): free = pixel_mask_array[i] == -1 masked_area = mask_clone == 1 right_index = free & masked_area if len(pixel_mask_array[i][right_index]) != 0: pixel_mask_array[i][right_index] = m mask_clone[right_index] = 0 pixel_mask_array = pixel_mask_array.permute(1, 2, 0) return pixel_mask_array def get_data_list(self): data_list = glob.glob(os.path.join(self.data_root, "*.exr")) return data_list def get_data(self, idx): indices = self.sample_pixel(self.mapping_valid, 512, 512).long().detach().cpu() npximg = self.pixels_per_image img_ind = indices[:, 0] x_ind = indices[:, 1] y_ind = indices[:, 2] # sampled_imgs = img_ind[::npximg] mask_id = torch.zeros((indices.shape[0],), device=self.device) scale = torch.zeros((indices.shape[0],), device=self.device) mapping = torch.zeros((indices.shape[0],), device=self.device) random_vec_sampling = (torch.rand((1,)) * torch.ones((npximg,))).view(-1, 1) random_vec_densify = (torch.rand((1,)) * torch.ones((npximg,))).view(-1, 1) for i in range(0, indices.shape[0], npximg): img_idx = img_ind[i] # calculate mapping mapping[i : i + npximg] = self.mapping[img_idx][x_ind[i : i + npximg], y_ind[i : i + npximg]] # Use `random_vec` to choose a group for each pixel. per_pixel_index = self.pixel_level_keys[img_idx][ x_ind[i : i + npximg], y_ind[i : i + npximg] ] random_index = torch.sum( random_vec_sampling.view(-1, 1) > self.group_cdf[img_idx][x_ind[i : i + npximg], y_ind[i : i + npximg]], dim=-1, ) # `per_pixel_index` encodes the list of groups that each pixel belongs to. # If there's only one group, then `per_pixel_index` is a 1D tensor # -- this will mess up the future `gather` operations. if per_pixel_index.shape[-1] == 1: per_pixel_mask = per_pixel_index.squeeze() else: # Clamp random_index to valid range to prevent out of bounds error random_index_clamped = torch.clamp(random_index.unsqueeze(-1), 0, per_pixel_index.shape[1] - 1) per_pixel_mask = torch.gather( per_pixel_index, 1, random_index_clamped ).squeeze() # Clamp the previous index to valid range as well prev_index_clamped = torch.clamp(random_index.unsqueeze(-1) - 1, 0, per_pixel_index.shape[1] - 1) per_pixel_mask_ = torch.gather( per_pixel_index, 1, prev_index_clamped, ).squeeze() mask_id[i : i + npximg] = per_pixel_mask.to(self.device) # interval scale supervision curr_scale = self.scale_3d[img_idx][per_pixel_mask] curr_scale[random_index == 0] = ( self.scale_3d[img_idx][per_pixel_mask][random_index == 0] * random_vec_densify[random_index == 0] ) for j in range(1, self.group_cdf[img_idx].shape[-1]): if (random_index == j).sum() == 0: continue curr_scale[random_index == j] = ( self.scale_3d[img_idx][per_pixel_mask_][random_index == j] + ( self.scale_3d[img_idx][per_pixel_mask][random_index == j] - self.scale_3d[img_idx][per_pixel_mask_][random_index == j] ) * random_vec_densify[random_index == j] ) scale[i : i + npximg] = curr_scale.squeeze().to(self.device) batch = dict() batch["mask_id"] = mask_id batch["scale"] = scale batch["nPxImg"] = npximg batch["obj"] = self.object batch["mapping"] = mapping.long() return batch def val_data(self): return dict(obj=self.object) def get_data_name(self, idx): return os.path.basename(self.data_list[idx % len(self.data_list)]).split(".")[0] def __getitem__(self, idx): return self.get_data(idx % len(self.data_list)) def __len__(self): return len(self.data_list) * self.loop