|
from langchain.prompts import PromptTemplate
|
|
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
from langchain_community.vectorstores import FAISS
|
|
from langchain.llms import HuggingFacePipeline
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
|
from langchain.chains import RetrievalQA
|
|
import chainlit as cl
|
|
from dotenv import load_dotenv
|
|
import torch
|
|
import os
|
|
|
|
load_dotenv()
|
|
|
|
DB_FAISS_PATH = 'vectorstore/db_faiss'
|
|
|
|
|
|
custom_prompt_template = """Use the following pieces of information to answer the user's question.
|
|
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
|
|
|
Context: {context}
|
|
Question: {question}
|
|
|
|
Only return the helpful answer below and nothing else.
|
|
Helpful answer:
|
|
"""
|
|
|
|
def set_custom_prompt():
|
|
prompt = PromptTemplate(template=custom_prompt_template,
|
|
input_variables=['context', 'question'])
|
|
return prompt
|
|
|
|
|
|
def retrieval_qa_chain(llm, prompt, db):
|
|
qa_chain = RetrievalQA.from_chain_type(
|
|
llm=llm,
|
|
chain_type='stuff',
|
|
retriever=db.as_retriever(search_kwargs={'k': 2}),
|
|
return_source_documents=True,
|
|
chain_type_kwargs={'prompt': prompt}
|
|
)
|
|
return qa_chain
|
|
|
|
|
|
def load_llm():
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
"google/flan-t5-base",
|
|
device_map="cpu",
|
|
torch_dtype=torch.float32
|
|
)
|
|
|
|
|
|
pipe = pipeline(
|
|
"text2text-generation",
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
max_new_tokens=512,
|
|
repetition_penalty=1.15
|
|
)
|
|
|
|
|
|
llm = HuggingFacePipeline(pipeline=pipe)
|
|
return llm
|
|
|
|
|
|
def qa_bot():
|
|
embeddings = HuggingFaceEmbeddings(
|
|
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
|
model_kwargs={'device': 'cpu'}
|
|
)
|
|
db = FAISS.load_local(
|
|
DB_FAISS_PATH,
|
|
embeddings,
|
|
allow_dangerous_deserialization=True
|
|
)
|
|
|
|
llm = load_llm()
|
|
qa_prompt = set_custom_prompt()
|
|
qa = retrieval_qa_chain(llm, qa_prompt, db)
|
|
return qa
|
|
|
|
|
|
def final_result(query):
|
|
qa_result = qa_bot()
|
|
response = qa_result({'query': query})
|
|
return response
|
|
|
|
|
|
@cl.on_chat_start
|
|
async def start():
|
|
chain = qa_bot()
|
|
msg = cl.Message(content="Starting the bot...")
|
|
await msg.send()
|
|
msg.content = "Hi, Welcome to MindMate. What is your query?"
|
|
await msg.update()
|
|
cl.user_session.set("chain", chain)
|
|
|
|
|
|
@cl.on_message
|
|
async def main(message: cl.Message):
|
|
chain = cl.user_session.get("chain")
|
|
cb = cl.AsyncLangchainCallbackHandler(
|
|
stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"]
|
|
)
|
|
cb.answer_reached = True
|
|
|
|
|
|
res = await cl.make_async(chain.invoke)(
|
|
{"query": message.content},
|
|
callbacks=[cb]
|
|
)
|
|
|
|
|
|
answer = res.get("result", "No result found")
|
|
sources = res.get("source_documents", [])
|
|
|
|
|
|
if sources:
|
|
formatted_sources = []
|
|
for source in sources:
|
|
if hasattr(source, 'page_content'):
|
|
formatted_sources.append(source.page_content.strip())
|
|
|
|
if formatted_sources:
|
|
answer = f"{answer}\n\nBased on the following information:\n" + "\n\n".join(formatted_sources)
|
|
|
|
await cl.Message(content=answer).send()
|
|
|