MrGanesh commited on
Commit
eda711d
·
1 Parent(s): f26be33

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -5
app.py CHANGED
@@ -10,6 +10,15 @@ def load_model():
10
  return model
11
 
12
  model = load_model()
 
 
 
 
 
 
 
 
 
13
  st.title("Patent Text Extractor")
14
  placeholder = st.empty()
15
  text_input = placeholder.text_area("Paste or write text", height=300)
@@ -34,14 +43,16 @@ button = st.button("Extract Keywords")
34
  #diversity = st.sidebar.slider("diversity", 0.1, 1.0, 0.6, 0.01)
35
  #params["use_mmr"] = True
36
  #params["diversity"] = diversity
37
- kw_extractor = yake.KeywordExtractor(top=50)
38
- candidates = kw_extractor.extract_keywords(text_input)
39
- keyphrases = [candidate[0] for candidate in candidates]
40
  #kw_model = KeyBERT(model="google/bigbird-pegasus-large-bigpatent")
41
 
 
 
42
  #if keywords != []:
43
- keywords = model.extract_keywords(text_input,keyphrases, keyphrase_ngram_range=(1, 3),
44
- top_n=50,stop_words='english',vectorizer=KeyphraseCountVectorizer())
45
  if keywords != []:
46
  st.info("Extracted keywords")
47
  keywords = pd.DataFrame(keywords, columns=["Keyword", "Score"])
 
10
  return model
11
 
12
  model = load_model()
13
+
14
+ def predict_fn(text, model):
15
+ kw_extractor = yake.KeywordExtractor(top=50)
16
+ candidates = kw_extractor.extract_keywords(text)
17
+ keyphrases = [candidate[0] for candidate in candidates]
18
+ kw_model = KeyBERT(model=kw_model)
19
+ keywords=kw_model.extract_keywords(text, keyphrases, keyphrase_ngram_range=(1, 3), top_n=50)
20
+ return keywords
21
+
22
  st.title("Patent Text Extractor")
23
  placeholder = st.empty()
24
  text_input = placeholder.text_area("Paste or write text", height=300)
 
43
  #diversity = st.sidebar.slider("diversity", 0.1, 1.0, 0.6, 0.01)
44
  #params["use_mmr"] = True
45
  #params["diversity"] = diversity
46
+ #kw_extractor = yake.KeywordExtractor(top=50)
47
+ #candidates = kw_extractor.extract_keywords(text_input)
48
+ #keyphrases = [candidate[0] for candidate in candidates]
49
  #kw_model = KeyBERT(model="google/bigbird-pegasus-large-bigpatent")
50
 
51
+ predict_fn(text, kw_model)
52
+
53
  #if keywords != []:
54
+ #keywords = model.extract_keywords(text_input,keyphrases, keyphrase_ngram_range=(1, 3),
55
+ #top_n=50,stop_words='english',vectorizer=KeyphraseCountVectorizer())
56
  if keywords != []:
57
  st.info("Extracted keywords")
58
  keywords = pd.DataFrame(keywords, columns=["Keyword", "Score"])