Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,15 @@ def load_model():
|
|
10 |
return model
|
11 |
|
12 |
model = load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
st.title("Patent Text Extractor")
|
14 |
placeholder = st.empty()
|
15 |
text_input = placeholder.text_area("Paste or write text", height=300)
|
@@ -34,14 +43,16 @@ button = st.button("Extract Keywords")
|
|
34 |
#diversity = st.sidebar.slider("diversity", 0.1, 1.0, 0.6, 0.01)
|
35 |
#params["use_mmr"] = True
|
36 |
#params["diversity"] = diversity
|
37 |
-
kw_extractor = yake.KeywordExtractor(top=50)
|
38 |
-
candidates = kw_extractor.extract_keywords(text_input)
|
39 |
-
keyphrases = [candidate[0] for candidate in candidates]
|
40 |
#kw_model = KeyBERT(model="google/bigbird-pegasus-large-bigpatent")
|
41 |
|
|
|
|
|
42 |
#if keywords != []:
|
43 |
-
keywords = model.extract_keywords(text_input,keyphrases, keyphrase_ngram_range=(1, 3),
|
44 |
-
top_n=50,stop_words='english',vectorizer=KeyphraseCountVectorizer())
|
45 |
if keywords != []:
|
46 |
st.info("Extracted keywords")
|
47 |
keywords = pd.DataFrame(keywords, columns=["Keyword", "Score"])
|
|
|
10 |
return model
|
11 |
|
12 |
model = load_model()
|
13 |
+
|
14 |
+
def predict_fn(text, model):
|
15 |
+
kw_extractor = yake.KeywordExtractor(top=50)
|
16 |
+
candidates = kw_extractor.extract_keywords(text)
|
17 |
+
keyphrases = [candidate[0] for candidate in candidates]
|
18 |
+
kw_model = KeyBERT(model=kw_model)
|
19 |
+
keywords=kw_model.extract_keywords(text, keyphrases, keyphrase_ngram_range=(1, 3), top_n=50)
|
20 |
+
return keywords
|
21 |
+
|
22 |
st.title("Patent Text Extractor")
|
23 |
placeholder = st.empty()
|
24 |
text_input = placeholder.text_area("Paste or write text", height=300)
|
|
|
43 |
#diversity = st.sidebar.slider("diversity", 0.1, 1.0, 0.6, 0.01)
|
44 |
#params["use_mmr"] = True
|
45 |
#params["diversity"] = diversity
|
46 |
+
#kw_extractor = yake.KeywordExtractor(top=50)
|
47 |
+
#candidates = kw_extractor.extract_keywords(text_input)
|
48 |
+
#keyphrases = [candidate[0] for candidate in candidates]
|
49 |
#kw_model = KeyBERT(model="google/bigbird-pegasus-large-bigpatent")
|
50 |
|
51 |
+
predict_fn(text, kw_model)
|
52 |
+
|
53 |
#if keywords != []:
|
54 |
+
#keywords = model.extract_keywords(text_input,keyphrases, keyphrase_ngram_range=(1, 3),
|
55 |
+
#top_n=50,stop_words='english',vectorizer=KeyphraseCountVectorizer())
|
56 |
if keywords != []:
|
57 |
st.info("Extracted keywords")
|
58 |
keywords = pd.DataFrame(keywords, columns=["Keyword", "Score"])
|