Spaces:
Sleeping
Sleeping
import hashlib | |
import io | |
import torch | |
from pathlib import Path | |
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, UniPCMultistepScheduler | |
from PIL import Image, ImageOps | |
import gradio as gr | |
# ---- Model loading ---- | |
CACHE_DIR = "./cache" | |
CNET_MODEL = "MrPio/Texture-Anything_CNet-SD15" | |
SD_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5" | |
controlnet = ControlNetModel.from_pretrained( | |
CNET_MODEL, cache_dir=CACHE_DIR, torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
SD_MODEL, | |
controlnet=controlnet, | |
cache_dir=CACHE_DIR, | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
) | |
# speed & memory optimizations | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# pipe.enable_xformers_memory_efficient_attention() # if xformers installed | |
# pipe.enable_model_cpu_offload() | |
def pil2hash(image: Image.Image) -> str: | |
buffer = io.BytesIO() | |
image.save(buffer, format="PNG") | |
image_bytes = buffer.getvalue() | |
return hashlib.sha256(image_bytes).hexdigest() | |
def caption2hash(caption: str) -> str: | |
return hashlib.sha256(caption.encode()).hexdigest() | |
# ---- Inference function ---- | |
def infer(caption: str, condition_image: Image.Image, steps: int = 20, seed: int = 0, invert: bool = False): | |
print("Loading condition image") | |
img = condition_image.convert("RGB") | |
if invert: | |
img = ImageOps.invert(img) | |
print("Condition image inverted") | |
cache_file = Path(f"inferences/{pil2hash(img)}_{caption2hash(caption)}.png") | |
if cache_file.exists(): | |
return Image.open(cache_file) | |
generator = torch.manual_seed(seed) | |
print("Starting generation...") | |
output = pipe(prompt=caption, image=img, num_inference_steps=steps, generator=generator).images[0] | |
print("Caching result...") | |
output.save(cache_file) | |
return output | |
# ---- Gradio UI + API ---- | |
with gr.Blocks() as demo: | |
gr.Markdown("## ControlNet + Stable Diffusion 1.5") | |
with gr.Row(): | |
txt = gr.Textbox(label="Prompt", placeholder="Describe the texture...") | |
cond = gr.Image(type="pil", label="Condition Image") | |
with gr.Row(): | |
steps = gr.Slider(1, 50, value=20, label="Inference Steps") | |
seed = gr.Number(value=0, label="Seed (0 for random)") | |
inv = gr.Checkbox(label="Invert UV colors?") | |
btn = gr.Button("Generate") | |
out = gr.Image(label="Output") | |
btn.click(fn=infer, inputs=[txt, cond, steps, seed, inv], outputs=out) | |
# enable the standard gradio REST API (/run/predict) | |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True) | |