import hashlib import io import torch from pathlib import Path from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, UniPCMultistepScheduler from PIL import Image, ImageOps import gradio as gr # ---- Model loading ---- CACHE_DIR = "./cache" CNET_MODEL = "MrPio/Texture-Anything_CNet-SD15" SD_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5" controlnet = ControlNetModel.from_pretrained( CNET_MODEL, cache_dir=CACHE_DIR, torch_dtype=torch.float16 ) pipe = StableDiffusionControlNetPipeline.from_pretrained( SD_MODEL, controlnet=controlnet, cache_dir=CACHE_DIR, torch_dtype=torch.float16, safety_checker=None, ) # speed & memory optimizations pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) # pipe.enable_xformers_memory_efficient_attention() # if xformers installed # pipe.enable_model_cpu_offload() def pil2hash(image: Image.Image) -> str: buffer = io.BytesIO() image.save(buffer, format="PNG") image_bytes = buffer.getvalue() return hashlib.sha256(image_bytes).hexdigest() def caption2hash(caption: str) -> str: return hashlib.sha256(caption.encode()).hexdigest() # ---- Inference function ---- def infer(caption: str, condition_image: Image.Image, steps: int = 20, seed: int = 0, invert: bool = False): print("Loading condition image") img = condition_image.convert("RGB") if invert: img = ImageOps.invert(img) print("Condition image inverted") cache_file = Path(f"inferences/{pil2hash(img)}_{caption2hash(caption)}.png") if cache_file.exists(): return Image.open(cache_file) generator = torch.manual_seed(seed) print("Starting generation...") output = pipe(prompt=caption, image=img, num_inference_steps=steps, generator=generator).images[0] print("Caching result...") output.save(cache_file) return output # ---- Gradio UI + API ---- with gr.Blocks() as demo: gr.Markdown("## ControlNet + Stable Diffusion 1.5") with gr.Row(): txt = gr.Textbox(label="Prompt", placeholder="Describe the texture...") cond = gr.Image(type="pil", label="Condition Image") with gr.Row(): steps = gr.Slider(1, 50, value=20, label="Inference Steps") seed = gr.Number(value=0, label="Seed (0 for random)") inv = gr.Checkbox(label="Invert UV colors?") btn = gr.Button("Generate") out = gr.Image(label="Output") btn.click(fn=infer, inputs=[txt, cond, steps, seed, inv], outputs=out) # enable the standard gradio REST API (/run/predict) demo.launch(server_name="0.0.0.0", server_port=7860, share=True)