Spaces:
Runtime error
Runtime error
| import os | |
| from threading import Thread | |
| from typing import Iterator, List, Tuple | |
| import torch | |
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from peft import PeftModel | |
| import gradio as gr | |
| from gradio import Blocks | |
| from transformers import TextIteratorStreamer | |
| # Load the base model and tokenizer | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| 'NousResearch/Llama-2-7b-chat-hf', | |
| trust_remote_code=True, | |
| device_map="auto", | |
| torch_dtype=torch.float16, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-chat-hf') | |
| # Load the finetuned model | |
| model = PeftModel.from_pretrained(base_model, 'FinGPT/fingpt-forecaster_dow30_llama2-7b_lora') | |
| model = model.eval() | |
| # Define constants | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| # FastAPI setup | |
| app = FastAPI() | |
| class ChatRequest(BaseModel): | |
| message: str | |
| chat_history: List[Tuple[str, str]] = [] | |
| system_prompt: str = "" | |
| max_new_tokens: int = 1024 | |
| temperature: float = 0.6 | |
| top_p: float = 0.9 | |
| top_k: int = 50 | |
| repetition_penalty: float = 1.2 | |
| async def chat(request: ChatRequest): | |
| try: | |
| response = await generate_response( | |
| request.message, | |
| request.chat_history, | |
| request.system_prompt, | |
| request.max_new_tokens, | |
| request.temperature, | |
| request.top_p, | |
| request.top_k, | |
| request.repetition_penalty | |
| ) | |
| return {"response": response} | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=str(e)) | |
| async def generate_response( | |
| message: str, | |
| chat_history: List[Tuple[str, str]], | |
| system_prompt: str, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ) -> str: | |
| conversation = [] | |
| if system_prompt: | |
| conversation.append({"role": "system", "content": system_prompt}) | |
| for user, assistant in chat_history: | |
| conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
| conversation.append({"role": "user", "content": message}) | |
| input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = { | |
| "input_ids": input_ids, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "temperature": temperature, | |
| "num_beams": 1, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| return "".join(outputs) | |
| # Gradio setup | |
| def generate( | |
| message: str, | |
| chat_history: List[Tuple[str, str]], | |
| system_prompt: str, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ) -> Iterator[str]: | |
| return generate_response( | |
| message, | |
| chat_history, | |
| system_prompt, | |
| max_new_tokens, | |
| temperature, | |
| top_p, | |
| top_k, | |
| repetition_penalty | |
| ) | |
| chat_interface = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Textbox(label="System prompt", lines=6), | |
| gr.Slider( | |
| label="Max new tokens", | |
| minimum=1, | |
| maximum=MAX_MAX_NEW_TOKENS, | |
| step=1, | |
| value=DEFAULT_MAX_NEW_TOKENS, | |
| ), | |
| gr.Slider( | |
| label="Temperature", | |
| minimum=0.1, | |
| maximum=4.0, | |
| step=0.1, | |
| value=0.6, | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.9, | |
| ), | |
| gr.Slider( | |
| label="Top-k", | |
| minimum=1, | |
| maximum=1000, | |
| step=1, | |
| value=50, | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.2, | |
| ), | |
| ], | |
| stop_btn=None, | |
| examples=[ | |
| ["Hello there! How are you doing?"], | |
| ["Can you explain briefly to me what is the Python programming language?"], | |
| ["Explain the plot of Cinderella in a sentence."], | |
| ["How many hours does it take a man to eat a Helicopter?"], | |
| ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
| ], | |
| ) | |
| with Blocks(css="style.css") as demo: | |
| gr.Markdown("# Llama-2 7B Chat") | |
| gr.Markdown(""" | |
| This Space demonstrates the Llama-2 7B Chat model by Meta, fine-tuned for chat instructions. | |
| Feel free to chat with the model here or use the API to integrate it into your applications. | |
| """) | |
| chat_interface.render() | |
| gr.Markdown("---") | |
| gr.Markdown("This demo is governed by the original [license](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/blob/main/LICENSE.txt).") | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() | |