Spaces:
Running
Running
File size: 21,161 Bytes
75e2b6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
from datetime import datetime, timezone, timedelta
from typing import Dict, Any
from concurrent.futures import ThreadPoolExecutor
from yake import KeywordExtractor
from app.services.chathistory import ChatSession
from app.services.websearch import WebSearch
from app.services.llm_model import Model
from app.services.environmental_condition import EnvironmentalData
from app.services.prompts import *
from app.services.vector_database_search import VectorDatabaseSearch
from app.services.image_classification_vit import SkinDiseaseClassifier
import io
from PIL import Image
import os
import shutil
from werkzeug.utils import secure_filename
temp_dir = "temp"
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
upload_dir = "uploads"
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
class ImageProcessor:
def __init__(self, token: str, session_id: str, num_results: int, num_images: int, image):
self.token = token
self.image = image
self.session_id = session_id
self.num_results = num_results
self.num_images = num_images
self.vectordb = VectorDatabaseSearch()
self.chat_session = ChatSession(token, session_id)
self.user_city = self.chat_session.get_city()
city = self.user_city if self.user_city else ''
self.environment_data = EnvironmentalData(city)
self.web_searcher = WebSearch(num_results=num_results, max_images=num_images)
def extract_keywords_yake(self, text: str, language: str, max_ngram_size: int = 2, num_keywords: int = 4) -> list:
lang_code = "en"
if language.lower() == "urdu":
lang_code = "ur"
kw_extractor = KeywordExtractor(
lan=lang_code,
n=max_ngram_size,
top=num_keywords,
features=None
)
keywords = kw_extractor.extract_keywords(text)
return [kw[0] for kw in keywords]
def ensure_valid_session(self, title: str = None) -> str:
if not self.session_id or not self.session_id.strip():
self.chat_session.create_new_session(title=title)
self.session_id = self.chat_session.session_id
else:
try:
if not self.chat_session.validate_session(self.session_id, title=title):
self.chat_session.create_new_session(title=title)
self.session_id = self.chat_session.session_id
except ValueError:
self.chat_session.create_new_session(title=title)
self.session_id = self.chat_session.session_id
return self.session_id
def validate_upload(self):
"""Validate if user can upload an image based on daily limit and time restriction"""
try:
# Check daily upload limit
daily_uploads = self.chat_session.get_user_daily_uploads()
print(f"Daily uploads: {daily_uploads}")
if daily_uploads >= 5:
if self.chat_session.get_language().lower() == "urdu":
return False, "آپ کی روزانہ کی حد (5 تصاویر) پوری ہو چکی ہے۔ براہ کرم کل کوشش کریں۔"
else:
return False, "You've reached your daily limit (5 images). Please try again tomorrow."
# Check time between uploads
last_upload_time = self.chat_session.get_user_last_upload_time()
print(f"Last upload time: {last_upload_time}")
if last_upload_time:
# Ensure last_upload_time is timezone-aware
if last_upload_time.tzinfo is None:
# If naive, make it timezone-aware by attaching UTC
last_upload_time = last_upload_time.replace(tzinfo=timezone.utc)
# Now get the current time (which is already timezone-aware)
now = datetime.now(timezone.utc)
# Now both times are timezone-aware, so the subtraction will work
time_since_last = now - last_upload_time
print(f"Time since last: {time_since_last}")
if time_since_last < timedelta(minutes=1):
seconds_remaining = 60 - time_since_last.seconds
print(f"Seconds remaining: {seconds_remaining}")
if self.chat_session.get_language().lower() == "urdu":
return False, f"براہ کرم {seconds_remaining} سیکنڈ انتظار کریں اور دوبارہ کوشش کریں۔"
else:
return False, f"Please wait {seconds_remaining} seconds before uploading another image."
# Log this upload
result = self.chat_session.log_user_image_upload()
print(f"Logged upload: {result}")
return True, ""
except Exception as e:
print(f"Error in validate_upload: {str(e)}")
# Fail safely - if we can't validate, we should allow the upload
return True, ""
def process_chat(self, query: str) -> Dict[str, Any]:
try:
is_valid, message = self.validate_upload()
if not is_valid:
return {
"query": query,
"response": message,
"references": "",
"page_no": "",
"keywords": "",
"images": "",
"context": "",
"timestamp": datetime.now(timezone.utc).isoformat(),
"session_id": self.session_id or ""
}
profile = self.chat_session.get_name_and_age()
name = profile['name']
age = profile['age']
self.chat_session.load_chat_history()
self.chat_session.update_title(self.session_id, query)
history = self.chat_session.format_history()
language = self.chat_session.get_language().lower()
filename = secure_filename(self.image.filename)
temp_path = os.path.join(temp_dir, filename)
upload_path = os.path.join(upload_dir, filename)
content = self.image.file.read()
with open(temp_path, 'wb') as buffer:
buffer.write(content)
self.image.file.seek(0)
img_content = io.BytesIO(content)
pil_image = Image.open(img_content)
self.image.file.seek(0)
def background_file_ops(src, dst):
shutil.copy2(src, dst)
os.remove(src)
with ThreadPoolExecutor(max_workers=1) as file_executor:
file_executor.submit(background_file_ops, temp_path, upload_path)
if language != "urdu":
response1 = "Please provide a clear image of your skin with good lighting and a proper angle, without any filters! we can only analysis the image of skin :)"
response3 = "You have healthy skin, MaShaAllah! I don't notice any issues at the moment. However, based on my current confidence level of {diseases_detection_confidence}, I recommend consulting a doctor for more detailed advice and analysis."
response4 = "I'm sorry, I'm not able to identify your skin condition yet as I'm still learning, but I hope to be able to detect any skin issues in the future. :) Right now, my confidence in identifying your skin is below 50%."
response5 = ADVICE_REPORT_SUGGESTION
else:
response1 = "براہ کرم اپنی جلد کی واضح تصویر اچھی روشنی اور مناسب زاویے سے فراہم کریں، کسی فلٹر کے بغیر! ہم صرف جلد کی تصویر کا تجزیہ کر سکتے ہیں"
response3 = "آپ کی جلد صحت مند ہے، ماشاءاللہ! مجھے اس وقت کوئی مسئلہ نظر نہیں آ رہا۔ تاہم، میری موجودہ اعتماد کی سطح {diseases_detection_confidence} کی بنیاد پر، میں مزید تفصیلی مشورے اور تجزیے کے لیے ڈاکٹر سے رجوع کرنے کی تجویز کرتا ہوں۔"
response4 = "معذرت، میں ابھی آپ کی جلد کی حالت کی شناخت کرنے کے قابل نہیں ہوں کیونکہ میں ابھی سیکھ رہا ہوں، لیکن مجھے امید ہے کہ مستقبل میں جلد کے کسی بھی مسئلے کو پہچان سکوں گا۔ :) اس وقت آپ کی جلد کی شناخت میں میرا اعتماد 50% سے کم ہے۔"
response5 = URDU_ADVICE_REPORT_SUGGESTION
model = Model()
result = model.llm_image(text=SKIN_NON_SKIN_PROMPT, image=pil_image)
result_lower = result.lower().strip()
is_negative = any(marker in result_lower for marker in ["<no>", "no"])
if is_negative:
chat_data = {
"query": query,
"response": response1,
"references": "",
"page_no": filename,
"keywords": "",
"images": "",
"context": "",
"timestamp": datetime.now(timezone.utc).isoformat(),
"session_id": self.chat_session.session_id
}
if not self.chat_session.save_chat(chat_data):
raise ValueError("Failed to save chat message")
return chat_data
diseases_detector = SkinDiseaseClassifier()
diseases_name, diseases_detection_confidence = diseases_detector.predict(pil_image, 5)
if diseases_name == "Healthy Skin":
chat_data = {
"query": query,
"response": response3.format(diseases_detection_confidence=diseases_detection_confidence),
"references": "",
"page_no": filename,
"keywords": "",
"images": "",
"context": "",
"timestamp": datetime.now(timezone.utc).isoformat(),
"session_id": self.chat_session.session_id
}
if not self.chat_session.save_chat(chat_data):
raise ValueError("Failed to save chat message")
return chat_data
elif diseases_detection_confidence < 46:
chat_data = {
"query": query,
"response": response4,
"references": "",
"page_no": filename,
"keywords": "",
"images": "",
"context": "",
"timestamp": datetime.now(timezone.utc).isoformat(),
"session_id": self.chat_session.session_id
}
if not self.chat_session.save_chat(chat_data):
raise ValueError("Failed to save chat message")
return chat_data
if not result:
chat_data = {
"query": query,
"response": response1,
"references": "",
"page_no": filename,
"keywords": "",
"images": "",
"context": "",
"timestamp": datetime.now(timezone.utc).isoformat(),
"session_id": self.chat_session.session_id
}
if not self.chat_session.save_chat(chat_data):
raise ValueError("Failed to save chat message")
return chat_data
self.session_id = self.ensure_valid_session(title=query)
permission = self.chat_session.get_user_preferences()
websearch_enabled = permission.get('websearch', False)
env_recommendations = permission.get('environmental_recommendations', False)
personalized_recommendations = permission.get('personalized_recommendations', False)
keywords_permission = permission.get('keywords', False)
reference_permission = permission.get('references', False)
language = self.chat_session.get_language().lower()
language_prompt = LANGUAGE_RESPONSE_PROMPT.format(language=language)
if websearch_enabled:
with ThreadPoolExecutor(max_workers=2) as executor:
future_web = executor.submit(self.web_searcher.search, diseases_name)
future_images = executor.submit(self.web_searcher.search_images, diseases_name)
web_results = future_web.result()
image_results = future_images.result()
context_parts = []
references = []
for idx, result in enumerate(web_results, 1):
if result['text']:
context_parts.append(f"From Source {idx}: {result['text']}\n")
references.append(result['link'])
context = "\n".join(context_parts)
if env_recommendations and personalized_recommendations:
prompt = ENVIRONMENTAL_PERSONALIZED_PROMPT.format(
user_name=name,
user_age=age,
user_details=self.chat_session.get_personalized_recommendation(),
environmental_condition=self.environment_data.get_environmental_data(),
previous_history="",
context=context,
current_query=query
)
elif personalized_recommendations:
prompt = PERSONALIZED_PROMPT.format(
user_name=name,
user_age=age,
user_details=self.chat_session.get_personalized_recommendation(),
previous_history="",
context=context,
current_query=query
)
elif env_recommendations:
prompt = ENVIRONMENTAL_PROMPT.format(
user_name=name,
user_age=age,
environmental_condition=self.environment_data.get_environmental_data(),
previous_history="",
context=context,
current_query=query
)
else:
prompt = DEFAULT_PROMPT.format(
previous_history="",
context=context,
current_query=query
)
prompt = prompt + f"\the query is related to {diseases_name}" + language_prompt
llm_response = Model().llm(prompt, query)
response = response5.format(
diseases_name=diseases_name,
diseases_detection_confidence=diseases_detection_confidence,
response=llm_response
)
keywords = ""
if keywords_permission:
keywords = self.extract_keywords_yake(response, language=language)
if not reference_permission:
references = ""
chat_data = {
"query": query,
"response": response,
"references": references,
"page_no": filename,
"keywords": keywords,
"images": image_results,
"context": context,
"timestamp": datetime.now(timezone.utc).isoformat(),
"session_id": self.chat_session.session_id
}
if not self.chat_session.save_chat(chat_data):
raise ValueError("Failed to save chat message")
return chat_data
else:
attach_image = False
with ThreadPoolExecutor(max_workers=2) as executor:
future_images = executor.submit(self.web_searcher.search_images, diseases_name)
image_results = future_images.result()
results = self.vectordb.search(diseases_name , top_k= 3)
context_parts = []
references = []
seen_pages = set()
for result in results:
confidence = result['confidence']
if confidence > 60:
context_parts.append(f"Content: {result['content']}")
page = result['page']
if page not in seen_pages:
references.append(f"Source: {result['source']}, Page: {page}")
seen_pages.add(page)
attach_image = True
context = "\n".join(context_parts)
if not context or len(context) < 10:
context = "There is no context found unfortunately please do not answer anything and ignore previous information or recommendations that were mentioned earlier in the context."
if env_recommendations and personalized_recommendations:
prompt = ENVIRONMENTAL_PERSONALIZED_PROMPT.format(
user_name=name,
user_age=age,
user_details=self.chat_session.get_personalized_recommendation(),
environmental_condition=self.environment_data.get_environmental_data(),
previous_history="",
context=context,
current_query=query
)
elif personalized_recommendations:
prompt = PERSONALIZED_PROMPT.format(
user_name=name,
user_age=age,
user_details=self.chat_session.get_personalized_recommendation(),
previous_history="",
context=context,
current_query=query
)
elif env_recommendations:
prompt = ENVIRONMENTAL_PROMPT.format(
user_name=name,
user_age=age,
environmental_condition=self.environment_data.get_environmental_data(),
previous_history=history,
context=context,
current_query=query
)
else:
prompt = DEFAULT_PROMPT.format(
previous_history="",
context=context,
current_query=query
)
prompt = prompt + f"\the query is related to {diseases_name}" + language_prompt
llm_response = Model().llm(prompt, query)
response = response5.format(
diseases_name=diseases_name,
diseases_detection_confidence=diseases_detection_confidence,
response=llm_response
)
keywords = ""
if keywords_permission:
keywords = self.extract_keywords_yake(response, language=language)
if not reference_permission:
references = ""
if not attach_image:
image_results = ""
keywords = ""
chat_data = {
"query": query,
"response": response,
"references": references,
"page_no": filename,
"keywords": keywords,
"images": image_results,
"context": context,
"timestamp": datetime.now(timezone.utc).isoformat(),
"session_id": self.chat_session.session_id
}
if not self.chat_session.save_chat(chat_data):
raise ValueError("Failed to save chat message")
return chat_data
except Exception as e:
return {
"error": str(e),
"query": query,
"response": "Sorry, there was an error processing your request.",
"timestamp": datetime.now(timezone.utc).isoformat()
}
def web_search(self, query: str) -> Dict[str, Any]:
if self.session_id and len(self.session_id) > 5:
return self.process_chat(query=query)
else:
return self.process_chat(query=query) |