replacebg / app.py
Munaf1987's picture
Update app.py
79ffed0 verified
raw
history blame
81.5 kB
import gradio as gr
import torch
import numpy as np
import cv2
from PIL import Image
import json
import os
from typing import List, Dict, Any
import tempfile
import subprocess
from pathlib import Path
import spaces
import gc
from huggingface_hub import hf_hub_download
import threading
import datetime
import time
# ZeroGPU-compatible imports
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from diffusers import (
StableDiffusionPipeline,
DDIMScheduler,
DPMSolverMultistepScheduler
)
import soundfile as sf
import requests
# ZeroGPU compatibility - disable GPU-specific optimizations
FLASH_ATTN_AVAILABLE = False
TRITON_AVAILABLE = False
print("โš ๏ธ ZeroGPU mode - using CPU-optimized operations")
# Global lock to prevent concurrent generations
generation_lock = threading.Lock()
class ProfessionalCartoonFilmGenerator:
def __init__(self):
# ZeroGPU compatibility - force CPU usage
self.device = "cpu"
self.dtype = torch.float32 # Use float32 for CPU compatibility
# Use /tmp directory for Hugging Face Spaces storage
self.output_dir = "/tmp"
print(f"๐Ÿ“ Using Hugging Face temp directory: {self.output_dir}")
# Model configurations for ZeroGPU optimization
self.models_loaded = False
self.flux_available = False
self.flux_pipe = None
self.sd_pipe = None
self.script_model = None
self.script_tokenizer = None
@spaces.GPU
def load_models(self):
"""Load ZeroGPU-compatible models for professional generation"""
try:
print("๐Ÿš€ Loading ZeroGPU-compatible models...")
# Clear memory
gc.collect()
print(f"๐ŸŽฎ Using device: {self.device} with dtype: {self.dtype}")
# Load Stable Diffusion (CPU optimized)
print("๐Ÿ”„ Loading Stable Diffusion (CPU optimized)...")
from diffusers import StableDiffusionPipeline, DDIMScheduler
self.sd_pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=self.dtype,
safety_checker=None,
requires_safety_checker=False,
device_map=None # Force CPU usage
)
# Configure scheduler for better quality
self.sd_pipe.scheduler = DDIMScheduler.from_config(self.sd_pipe.scheduler.config)
# Force CPU usage for ZeroGPU
self.sd_pipe = self.sd_pipe.to("cpu")
self.sd_pipe.enable_sequential_cpu_offload() # Memory optimization
print("โœ… Loaded Stable Diffusion v1.4 (CPU optimized)")
# Load script enhancement model (CPU optimized)
print("๐Ÿ“ Loading script enhancement model...")
self.script_model = AutoModelForCausalLM.from_pretrained(
"microsoft/DialoGPT-medium",
torch_dtype=self.dtype,
device_map=None # Force CPU usage
)
self.script_tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
if self.script_tokenizer.pad_token is None:
self.script_tokenizer.pad_token = self.script_tokenizer.eos_token
# Force CPU usage
self.script_model = self.script_model.to("cpu")
print(f"Device set to use {self.device}")
print("โœ… Script enhancer loaded (CPU optimized)")
print("๐ŸŽฌ All ZeroGPU-compatible models loaded!")
return True
except Exception as e:
print(f"โŒ Model loading failed: {e}")
import traceback
traceback.print_exc()
return False
def clear_gpu_memory(self):
"""Clear memory (CPU-focused for ZeroGPU)"""
gc.collect()
def optimize_prompt_for_clip(self, prompt: str, max_tokens: int = 70) -> str:
"""Optimize prompt to fit within CLIP token limit"""
try:
# Simple word-based token estimation (CLIP uses ~1.3 words per token)
words = prompt.split()
if len(words) <= max_tokens:
return prompt
# Truncate to fit within token limit
optimized_words = words[:max_tokens]
optimized_prompt = " ".join(optimized_words)
print(f"๐Ÿ“ Prompt optimized: {len(words)} words โ†’ {len(optimized_words)} words")
return optimized_prompt
except Exception as e:
print(f"โš ๏ธ Prompt optimization failed: {e}")
# Fallback: return first 50 words
words = prompt.split()
return " ".join(words[:50])
def create_download_url(self, file_path: str, file_type: str = "file") -> str:
"""Create download info for generated content"""
try:
file_name = os.path.basename(file_path)
file_size = os.path.getsize(file_path) / (1024*1024)
# Note: Temp files cannot be accessed via direct URLs in Hugging Face Spaces
download_info = f"๐Ÿ“ฅ Generated {file_type}: {file_name}"
download_info += f"\n ๐Ÿ“Š File size: {file_size:.1f} MB"
download_info += f"\n โš ๏ธ Note: Use Gradio File output component to download"
download_info += f"\n ๐Ÿ“ Internal path: {file_path}"
return download_info
except Exception as e:
return f"๐Ÿ“ฅ Generated {file_type} (download info unavailable: {e})"
def generate_professional_script(self, user_input: str) -> Dict[str, Any]:
"""Generate a professional cartoon script with detailed character development"""
# Advanced script analysis
words = user_input.lower().split()
# Character analysis
main_character = self._analyze_main_character(words)
setting = self._analyze_setting(words)
theme = self._analyze_theme(words)
genre = self._analyze_genre(words)
mood = self._analyze_mood(words)
# Generate sophisticated character profiles
characters = self._create_detailed_characters(main_character, theme, genre)
# Create professional story structure (8 scenes for perfect pacing)
scenes = self._create_cinematic_scenes(characters, setting, theme, genre, mood, user_input)
return {
"title": f"The {theme.title()}: A {genre.title()} Adventure",
"genre": genre,
"mood": mood,
"theme": theme,
"characters": characters,
"scenes": scenes,
"setting": setting,
"style": f"Professional 2D cartoon animation in {genre} style with cinematic lighting and expressive character animation",
"color_palette": self._generate_color_palette(mood, genre),
"animation_notes": f"Focus on {mood} expressions, smooth character movement, and detailed background art"
}
def _analyze_main_character(self, words):
"""Sophisticated character analysis"""
if any(word in words for word in ['girl', 'woman', 'princess', 'heroine', 'daughter', 'sister']):
return "brave young heroine"
elif any(word in words for word in ['boy', 'man', 'hero', 'prince', 'son', 'brother']):
return "courageous young hero"
elif any(word in words for word in ['robot', 'android', 'cyborg', 'machine', 'ai']):
return "friendly robot character"
elif any(word in words for word in ['cat', 'dog', 'fox', 'bear', 'wolf', 'animal']):
return "adorable animal protagonist"
elif any(word in words for word in ['dragon', 'fairy', 'wizard', 'witch', 'magic']):
return "magical creature"
elif any(word in words for word in ['alien', 'space', 'star', 'galaxy']):
return "curious alien visitor"
else:
return "charming protagonist"
def _analyze_setting(self, words):
"""Advanced setting analysis"""
if any(word in words for word in ['forest', 'woods', 'trees', 'jungle', 'nature']):
return "enchanted forest with mystical atmosphere"
elif any(word in words for word in ['city', 'town', 'urban', 'street', 'building']):
return "vibrant bustling city with colorful architecture"
elif any(word in words for word in ['space', 'stars', 'planet', 'galaxy', 'cosmic']):
return "spectacular cosmic landscape with nebulae and distant planets"
elif any(word in words for word in ['ocean', 'sea', 'underwater', 'beach', 'water']):
return "beautiful underwater world with coral reefs"
elif any(word in words for word in ['mountain', 'cave', 'valley', 'cliff']):
return "majestic mountain landscape with dramatic vistas"
elif any(word in words for word in ['castle', 'kingdom', 'palace', 'medieval']):
return "magical kingdom with towering castle spires"
elif any(word in words for word in ['school', 'classroom', 'library', 'study']):
return "charming school environment with warm lighting"
else:
return "wonderfully imaginative fantasy world"
def _analyze_theme(self, words):
"""Identify story themes"""
if any(word in words for word in ['friend', 'friendship', 'help', 'together', 'team']):
return "power of friendship"
elif any(word in words for word in ['treasure', 'find', 'search', 'discover', 'quest']):
return "epic treasure quest"
elif any(word in words for word in ['save', 'rescue', 'protect', 'danger', 'hero']):
return "heroic rescue mission"
elif any(word in words for word in ['magic', 'magical', 'spell', 'wizard', 'enchant']):
return "magical discovery"
elif any(word in words for word in ['learn', 'grow', 'change', 'journey']):
return "journey of self-discovery"
elif any(word in words for word in ['family', 'home', 'parent', 'love']):
return "importance of family"
else:
return "heartwarming adventure"
def _analyze_genre(self, words):
"""Determine animation genre"""
if any(word in words for word in ['adventure', 'quest', 'journey', 'explore']):
return "adventure"
elif any(word in words for word in ['funny', 'comedy', 'laugh', 'silly', 'humor']):
return "comedy"
elif any(word in words for word in ['magic', 'fantasy', 'fairy', 'wizard', 'enchant']):
return "fantasy"
elif any(word in words for word in ['space', 'robot', 'future', 'sci-fi', 'technology']):
return "sci-fi"
elif any(word in words for word in ['mystery', 'secret', 'solve', 'detective']):
return "mystery"
else:
return "family-friendly"
def _analyze_mood(self, words):
"""Determine overall mood"""
if any(word in words for word in ['happy', 'joy', 'fun', 'celebrate', 'party']):
return "joyful"
elif any(word in words for word in ['exciting', 'thrill', 'adventure', 'fast']):
return "exciting"
elif any(word in words for word in ['peaceful', 'calm', 'gentle', 'quiet']):
return "peaceful"
elif any(word in words for word in ['mysterious', 'secret', 'hidden', 'unknown']):
return "mysterious"
elif any(word in words for word in ['brave', 'courage', 'strong', 'bold']):
return "inspiring"
else:
return "heartwarming"
def _create_detailed_characters(self, main_char, theme, genre):
"""Create detailed character profiles"""
characters = []
# Main character with detailed description
main_desc = f"Professional cartoon-style {main_char} with large expressive eyes, detailed facial features, vibrant clothing, Disney-Pixar quality design, {genre} aesthetic, highly detailed"
characters.append({
"name": main_char,
"description": main_desc,
"personality": f"brave, kind, determined, optimistic, perfect for {theme}",
"role": "protagonist",
"animation_style": "lead character quality with detailed expressions"
})
# Supporting character
support_desc = f"Charming cartoon companion with warm personality, detailed character design, complementary colors to main character, {genre} style, supporting role"
characters.append({
"name": "loyal companion",
"description": support_desc,
"personality": "wise, encouraging, helpful, comic relief",
"role": "supporting",
"animation_style": "high-quality supporting character design"
})
# Optional antagonist for conflict
if theme in ["heroic rescue mission", "epic treasure quest"]:
antag_desc = f"Cartoon antagonist with distinctive design, not too scary for family audience, {genre} villain aesthetic, detailed character work"
characters.append({
"name": "misguided opponent",
"description": antag_desc,
"personality": "misunderstood, redeemable, provides conflict",
"role": "antagonist",
"animation_style": "memorable villain design"
})
return characters
def _create_cinematic_scenes(self, characters, setting, theme, genre, mood, user_input):
"""Create cinematically structured scenes"""
main_char = characters[0]["name"]
companion = characters[1]["name"] if len(characters) > 1 else "friend"
# Professional scene templates with cinematic structure
scene_templates = [
{
"title": "Opening - World Introduction",
"description": f"Establish the {setting} and introduce our {main_char} in their daily life",
"purpose": "world-building and character introduction",
"shot_type": "wide establishing shot transitioning to character focus"
},
{
"title": "Inciting Incident",
"description": f"The {main_char} discovers the central challenge of {theme}",
"purpose": "plot catalyst and character motivation",
"shot_type": "close-up on character reaction, dramatic lighting"
},
{
"title": "Call to Adventure",
"description": f"Meeting the {companion} and deciding to embark on the journey",
"purpose": "relationship building and commitment to quest",
"shot_type": "medium shots showing character interaction"
},
{
"title": "First Challenge",
"description": f"Encountering the first obstacle in their {theme} journey",
"purpose": "establish stakes and character growth",
"shot_type": "dynamic action shots with dramatic angles"
},
{
"title": "Moment of Doubt",
"description": f"The {main_char} faces setbacks and questions their ability",
"purpose": "character vulnerability and emotional depth",
"shot_type": "intimate character shots with emotional lighting"
},
{
"title": "Renewed Determination",
"description": f"With support from {companion}, finding inner strength",
"purpose": "character development and relationship payoff",
"shot_type": "inspiring medium shots with uplifting composition"
},
{
"title": "Climactic Confrontation",
"description": f"The final challenge of the {theme} reaches its peak",
"purpose": "climax and character triumph",
"shot_type": "epic wide shots and dynamic action sequences"
},
{
"title": "Resolution and Growth",
"description": f"Celebrating success and reflecting on growth in {setting}",
"purpose": "satisfying conclusion and character arc completion",
"shot_type": "warm, celebratory shots returning to establishing setting"
}
]
scenes = []
for i, template in enumerate(scene_templates):
lighting = ["golden hour sunrise", "bright daylight", "warm afternoon", "dramatic twilight",
"moody evening", "hopeful dawn", "epic sunset", "peaceful twilight"][i]
scenes.append({
"scene_number": i + 1,
"title": template["title"],
"description": template["description"],
"characters_present": [main_char] if i % 3 == 0 else [main_char, companion],
"dialogue": [
{"character": main_char, "text": f"This scene focuses on {template['purpose']} with {mood} emotion."}
],
"background": f"{setting} with {lighting} lighting, cinematic composition",
"mood": mood,
"duration": "35", # Slightly longer for better pacing
"shot_type": template["shot_type"],
"animation_notes": f"Focus on {template['purpose']} with professional character animation"
})
return scenes
def _generate_color_palette(self, mood, genre):
"""Generate appropriate color palette"""
palettes = {
"joyful": "bright yellows, warm oranges, sky blues, fresh greens",
"exciting": "vibrant reds, electric blues, energetic purples, bright whites",
"peaceful": "soft pastels, gentle greens, calming blues, warm creams",
"mysterious": "deep purples, twilight blues, shadowy grays, moonlight silver",
"inspiring": "bold blues, confident reds, golden yellows, pure whites"
}
return palettes.get(mood, "balanced warm and cool tones")
@spaces.GPU
def generate_professional_character_images(self, characters: List[Dict]) -> Dict[str, str]:
"""Generate professional character images with consistency (ZeroGPU compatible)"""
character_images = {}
print(f"๐ŸŽญ Generating {len(characters)} professional character designs...")
# Check if we have Stable Diffusion pipeline available
if not hasattr(self, 'sd_pipe') or self.sd_pipe is None:
print("โŒ Stable Diffusion not loaded - please call load_models() first")
return character_images
pipeline = self.sd_pipe
model_name = "Stable Diffusion (CPU)"
print(f"๐ŸŽจ Using {model_name} for character generation")
for character in characters:
character_name = character['name']
print(f"\n๐ŸŽจ Generating character: {character_name}")
try:
# Build comprehensive character prompt for CPU generation
base_prompt = f"Professional cartoon character design, {character['name']}, {character['description']}"
# CPU-optimized prompt
prompt = f"{base_prompt}, anime style, cartoon character, clean background, high quality, detailed, 2D animation style, character sheet, simple design"
# Optimize prompt for CLIP
prompt = self.optimize_prompt_for_clip(prompt, max_tokens=60) # Shorter for CPU
print(f"๐Ÿ“ Character prompt: {prompt}")
# CPU-optimized generation settings
image = pipeline(
prompt=prompt,
width=512, # Smaller for CPU
height=512,
num_inference_steps=20, # Fewer steps for CPU
guidance_scale=7.5,
generator=torch.Generator(device="cpu").manual_seed(42)
).images[0]
# Upscale for better quality
image = image.resize((1024, 1024), Image.Resampling.LANCZOS)
# Save character image
char_path = f"{self.output_dir}/char_{character['name'].replace(' ', '_')}.png"
image.save(char_path)
# Verify file was created
if os.path.exists(char_path):
file_size = os.path.getsize(char_path)
character_images[character_name] = char_path
# Create download URL
download_info = self.create_download_url(char_path, f"character_{character['name']}")
print(f"๐Ÿ“ฅ Generated character_{character['name']}: char_{character['name'].replace(' ', '_')}.png")
print(f" ๐Ÿ“Š File size: {file_size / (1024*1024):.1f} MB")
print(f" ๐Ÿ“ Internal path: {char_path}")
print(download_info)
# Clear memory after each generation
gc.collect()
else:
print(f"โŒ Failed to save character image: {char_path}")
except Exception as e:
print(f"โŒ Error generating character {character_name}: {e}")
import traceback
traceback.print_exc()
# Continue with next character
continue
print(f"\n๐Ÿ“Š Character generation summary:")
print(f" - Characters requested: {len(characters)}")
print(f" - Characters generated: {len(character_images)}")
print(f" - Success rate: {len(character_images)/len(characters)*100:.1f}%")
return character_images
@spaces.GPU
def generate_cinematic_backgrounds(self, scenes: List[Dict], color_palette: str) -> Dict[int, str]:
"""Generate professional cinematic backgrounds for each scene (ZeroGPU compatible)"""
background_images = {}
print(f"๐ŸŽž๏ธ Generating {len(scenes)} cinematic backgrounds...")
# Check if we have Stable Diffusion pipeline available
if not hasattr(self, 'sd_pipe') or self.sd_pipe is None:
print("โŒ Stable Diffusion not loaded - please call load_models() first")
return background_images
pipeline = self.sd_pipe
model_name = "Stable Diffusion (CPU)"
print(f"๐ŸŽจ Using {model_name} for background generation")
for scene in scenes:
scene_num = scene['scene_number']
print(f"\n๐ŸŒ„ Generating background for scene {scene_num}")
try:
# Build cinematic background prompt for CPU generation
background_desc = scene['background']
mood = scene.get('mood', 'neutral')
shot_type = scene.get('shot_type', 'medium shot')
lighting = scene.get('lighting', 'natural lighting')
base_prompt = f"Cinematic background scene, {background_desc}, {mood} atmosphere, {lighting}"
# CPU-optimized prompt
prompt = f"{base_prompt}, anime style background, detailed landscape, high quality, cinematic, {color_palette} color palette, no people, simple design"
# Optimize for CLIP
prompt = self.optimize_prompt_for_clip(prompt, max_tokens=60) # Shorter for CPU
print(f"๐Ÿ“ Background prompt: {prompt}")
# CPU-optimized generation settings
image = pipeline(
prompt=prompt,
width=512, # Smaller for CPU
height=384, # 4:3 aspect ratio
num_inference_steps=20, # Fewer steps for CPU
guidance_scale=7.5,
generator=torch.Generator(device="cpu").manual_seed(scene_num * 10)
).images[0]
# Upscale for better quality
image = image.resize((1024, 768), Image.Resampling.LANCZOS)
# Save background image
bg_path = f"{self.output_dir}/bg_scene_{scene_num}.png"
image.save(bg_path)
# Verify file was created
if os.path.exists(bg_path):
file_size = os.path.getsize(bg_path)
background_images[scene_num] = bg_path
# Create download URL
download_info = self.create_download_url(bg_path, f"background_scene_{scene_num}")
print(f"๐Ÿ“ฅ Generated background_scene_{scene_num}: bg_scene_{scene_num}.png")
print(f" ๐Ÿ“Š File size: {file_size / (1024*1024):.1f} MB")
print(f" ๐Ÿ“ Internal path: {bg_path}")
print(download_info)
# Clear memory after each generation
gc.collect()
else:
print(f"โŒ Failed to save background image: {bg_path}")
except Exception as e:
print(f"โŒ Error generating background for scene {scene['scene_number']}: {e}")
import traceback
traceback.print_exc()
# Continue with next scene
continue
print(f"\n๐Ÿ“Š Background generation summary:")
print(f" - Scenes requested: {len(scenes)}")
print(f" - Backgrounds generated: {len(background_images)}")
print(f" - Success rate: {len(background_images)/len(scenes)*100:.1f}%")
return background_images
def setup_opensora_for_video(self):
"""Setup Open-Sora for professional video generation"""
try:
print("๐ŸŽฌ Setting up Open-Sora 2.0 for video generation...")
# Import torch here to avoid the UnboundLocalError
import torch
# Check available GPU memory
if torch.cuda.is_available():
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
print(f"๐ŸŽฎ Available GPU memory: {gpu_memory:.1f} GB")
if gpu_memory < 16:
print("โš ๏ธ Warning: Open-Sora requires 16GB+ GPU memory for stable operation")
# Check if we're already in the right directory
current_dir = os.getcwd()
opensora_dir = os.path.join(current_dir, "Open-Sora")
# Clone Open-Sora repository if it doesn't exist
if not os.path.exists(opensora_dir):
print("๐Ÿ“ฅ Cloning Open-Sora repository...")
try:
result = subprocess.run([
"git", "clone", "https://github.com/hpcaitech/Open-Sora.git"
], check=True, capture_output=True, text=True, timeout=120)
print("โœ… Repository cloned successfully")
except subprocess.TimeoutExpired:
print("โŒ Repository cloning timed out")
return False
except subprocess.CalledProcessError as e:
print(f"โŒ Repository cloning failed: {e.stderr}")
return False
# Check if the repository was cloned successfully
if not os.path.exists(opensora_dir):
print("โŒ Failed to clone Open-Sora repository")
return False
# Check for required scripts
script_path = os.path.join(opensora_dir, "scripts/diffusion/inference.py")
config_path = os.path.join(opensora_dir, "configs/diffusion/inference/t2i2v_256px.py")
print(f"๐Ÿ“ Checking for script: {script_path}")
print(f"๐Ÿ“ Checking for config: {config_path}")
if not os.path.exists(script_path):
print(f"โŒ Required script not found: {script_path}")
# List available files for debugging
scripts_dir = os.path.join(opensora_dir, "scripts")
if os.path.exists(scripts_dir):
print(f"๐Ÿ“ Available in scripts/: {os.listdir(scripts_dir)}")
return False
if not os.path.exists(config_path):
print(f"โŒ Required config not found: {config_path}")
# List available configs for debugging
configs_dir = os.path.join(opensora_dir, "configs")
if os.path.exists(configs_dir):
print(f"๐Ÿ“ Available in configs/: {os.listdir(configs_dir)}")
return False
# Check if model weights exist
ckpts_dir = os.path.join(opensora_dir, "ckpts")
if not os.path.exists(ckpts_dir):
print("๐Ÿ“ฅ Downloading Open-Sora 2.0 model...")
try:
# Use smaller timeout and check if huggingface-cli is available
result = subprocess.run([
"huggingface-cli", "download", "hpcai-tech/Open-Sora-v2",
"--local-dir", ckpts_dir
], check=True, capture_output=True, text=True, timeout=300)
print("โœ… Model downloaded successfully")
except subprocess.TimeoutExpired:
print("โŒ Model download timed out (5 minutes)")
return False
except subprocess.CalledProcessError as e:
print(f"โŒ Model download failed: {e.stderr}")
return False
except FileNotFoundError:
print("โŒ huggingface-cli not found - cannot download model")
return False
else:
print("โœ… Model weights already exist")
# Check dependencies
try:
import torch.distributed
print("โœ… torch.distributed available")
except ImportError:
print("โŒ torch.distributed not available")
return False
# Test if torchrun is available
try:
result = subprocess.run(["torchrun", "--help"],
capture_output=True, text=True, timeout=10)
if result.returncode == 0:
print("โœ… torchrun available")
else:
print("โŒ torchrun not working properly")
return False
except (subprocess.TimeoutExpired, FileNotFoundError):
print("โŒ torchrun not found")
return False
print("โœ… Open-Sora setup completed")
return True
except Exception as e:
print(f"โŒ Open-Sora setup failed: {e}")
import traceback
traceback.print_exc()
return False
@spaces.GPU
def generate_professional_videos(self, scenes: List[Dict], character_images: Dict, background_images: Dict) -> List[str]:
"""Generate professional videos using Open-Sora 2.0"""
scene_videos = []
print(f"๐ŸŽฅ Starting video generation for {len(scenes)} scenes...")
print(f"๐Ÿ“ Background images available: {list(background_images.keys())}")
# Try to use Open-Sora for professional video generation
opensora_available = self.setup_opensora_for_video()
print(f"๐ŸŽฌ Open-Sora available: {opensora_available}")
for scene in scenes:
scene_num = scene['scene_number']
print(f"\n๐ŸŽฌ Processing scene {scene_num}...")
try:
if opensora_available:
print(f"๐ŸŽฌ Attempting Open-Sora generation for scene {scene_num}...")
video_path = self._generate_opensora_video(scene, character_images, background_images)
if video_path:
print(f"โœ… Open-Sora video generated for scene {scene_num}")
else:
print(f"โŒ Open-Sora failed for scene {scene_num}, trying lightweight animation...")
video_path = self._create_lightweight_animated_video(scene, character_images, background_images)
if not video_path:
print(f"๐Ÿ”„ Lightweight animation failed, trying static video...")
video_path = self._create_professional_static_video(scene, background_images)
# If professional video fails, try simple video
if not video_path:
print(f"๐Ÿ”„ All methods failed, trying simple video for scene {scene_num}...")
video_path = self._create_simple_static_video(scene, background_images)
else:
print(f"๐ŸŽฌ Open-Sora not available, using lightweight animation for scene {scene_num}...")
# First try lightweight animation, then fallback to static
video_path = self._create_lightweight_animated_video(scene, character_images, background_images)
if not video_path:
print(f"๐Ÿ”„ Lightweight animation failed, using static video fallback...")
video_path = self._create_professional_static_video(scene, background_images)
if video_path and os.path.exists(video_path):
scene_videos.append(video_path)
# Create download URL for video
download_info = self.create_download_url(video_path, f"video_scene_{scene_num}")
print(f"โœ… Generated professional video for scene {scene_num}")
print(download_info)
else:
print(f"โŒ No video generated for scene {scene_num}")
except Exception as e:
print(f"โŒ Error in scene {scene_num}: {e}")
# Create fallback video
if scene_num in background_images:
print(f"๐Ÿ†˜ Creating emergency fallback for scene {scene_num}...")
try:
video_path = self._create_professional_static_video(scene, background_images)
if video_path and os.path.exists(video_path):
scene_videos.append(video_path)
print(f"โœ… Emergency fallback video created for scene {scene_num}")
except Exception as e2:
print(f"โŒ Emergency fallback also failed for scene {scene_num}: {e2}")
print(f"\n๐Ÿ“Š Video generation summary:")
print(f" - Scenes processed: {len(scenes)}")
print(f" - Videos generated: {len(scene_videos)}")
print(f" - Videos list: {scene_videos}")
return scene_videos
def _generate_opensora_video(self, scene: Dict, character_images: Dict, background_images: Dict) -> str:
"""Generate video using Open-Sora 2.0"""
try:
characters_text = ", ".join(scene['characters_present'])
# Professional prompt for Open-Sora (optimized for CLIP token limit)
characters_text = characters_text[:60] # Limit character text
background_desc = scene['background'][:60]
mood = scene['mood'][:20]
shot_type = scene.get('shot_type', 'medium shot')[:15]
animation_notes = scene.get('animation_notes', 'high-quality animation')[:30]
prompt = f"Professional 2D cartoon animation, {characters_text} in {background_desc}, {mood} mood, {shot_type}, smooth animation, Disney quality, cinematic lighting, {animation_notes}"
# Use the optimization function to ensure CLIP compatibility
prompt = self.optimize_prompt_for_clip(prompt)
print(f"๐ŸŽฌ Open-Sora prompt: {prompt}")
video_path = f"{self.output_dir}/video_scene_{scene['scene_number']}.mp4"
# Get the correct Open-Sora directory
current_dir = os.getcwd()
opensora_dir = os.path.join(current_dir, "Open-Sora")
if not os.path.exists(opensora_dir):
print("โŒ Open-Sora directory not found")
return None
# Check for required files
script_path = os.path.join(opensora_dir, "scripts/diffusion/inference.py")
config_path = os.path.join(opensora_dir, "configs/diffusion/inference/t2i2v_256px.py")
if not os.path.exists(script_path):
print(f"โŒ Open-Sora script not found: {script_path}")
return None
if not os.path.exists(config_path):
print(f"โŒ Open-Sora config not found: {config_path}")
return None
# Run Open-Sora inference
cmd = [
"torchrun", "--nproc_per_node", "1", "--standalone",
"scripts/diffusion/inference.py",
"configs/diffusion/inference/t2i2v_256px.py",
"--save-dir", self.output_dir,
"--prompt", prompt,
"--num_frames", "25", # ~1 second at 25fps
"--aspect_ratio", "4:3",
"--motion-score", "6" # High motion for dynamic scenes
]
print(f"๐ŸŽฌ Running Open-Sora command: {' '.join(cmd)}")
result = subprocess.run(cmd, capture_output=True, text=True, cwd=opensora_dir, timeout=300)
print(f"๐ŸŽฌ Open-Sora return code: {result.returncode}")
if result.stdout:
print(f"๐ŸŽฌ Open-Sora stdout: {result.stdout}")
if result.stderr:
print(f"โŒ Open-Sora stderr: {result.stderr}")
if result.returncode == 0:
# Find generated video file
for file in os.listdir(self.output_dir):
if file.endswith('.mp4') and 'scene' not in file:
src_path = os.path.join(self.output_dir, file)
os.rename(src_path, video_path)
print(f"โœ… Open-Sora video generated: {video_path}")
return video_path
print("โŒ Open-Sora completed but no video file found")
return None
else:
print(f"โŒ Open-Sora failed with return code: {result.returncode}")
return None
except subprocess.TimeoutExpired:
print("โŒ Open-Sora generation timed out (5 minutes)")
return None
except Exception as e:
print(f"โŒ Open-Sora generation failed: {e}")
import traceback
traceback.print_exc()
return None
def _create_professional_static_video(self, scene: Dict, background_images: Dict) -> str:
"""Create professional static video with advanced effects"""
scene_num = scene['scene_number']
if scene_num not in background_images:
print(f"โŒ No background image for scene {scene_num}")
return None
video_path = f"{self.output_dir}/video_scene_{scene_num}.mp4"
try:
print(f"๐ŸŽฌ Creating static video for scene {scene_num}...")
# Load background image
bg_path = background_images[scene_num]
print(f"๐Ÿ“ Loading background from: {bg_path}")
if not os.path.exists(bg_path):
print(f"โŒ Background file not found: {bg_path}")
return None
image = Image.open(bg_path)
img_array = np.array(image.resize((1024, 768))) # 4:3 aspect ratio
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
print(f"๐Ÿ“ Image size: {img_array.shape}")
# Professional video settings
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = 24 # Cinematic frame rate
duration = int(scene.get('duration', 35))
total_frames = duration * fps
print(f"๐ŸŽฌ Video settings: {fps}fps, {duration}s duration, {total_frames} frames")
out = cv2.VideoWriter(video_path, fourcc, fps, (1024, 768))
if not out.isOpened():
print(f"โŒ Failed to open video writer for {video_path}")
return None
# Advanced animation effects based on scene mood and type
print(f"๐ŸŽฌ Generating {total_frames} frames...")
for i in range(total_frames):
if i % 100 == 0: # Progress update every 100 frames
print(f" Frame {i}/{total_frames} ({i/total_frames*100:.1f}%)")
frame = img_array.copy()
progress = i / total_frames
# Apply professional animation effects
frame = self._apply_cinematic_effects(frame, scene, progress)
out.write(frame)
print(f"โœ… All {total_frames} frames generated")
out.release()
if os.path.exists(video_path):
file_size = os.path.getsize(video_path)
print(f"โœ… Static video created: {video_path} ({file_size / (1024*1024):.1f} MB)")
return video_path
else:
print(f"โŒ Video file not created: {video_path}")
return None
except Exception as e:
print(f"โŒ Professional static video creation failed for scene {scene_num}: {e}")
import traceback
traceback.print_exc()
return None
def _apply_cinematic_effects(self, frame, scene, progress):
"""Apply professional cinematic effects"""
try:
h, w = frame.shape[:2]
# Choose effect based on scene mood and type
mood = scene.get('mood', 'heartwarming')
shot_type = scene.get('shot_type', 'medium shot')
if 'establishing' in shot_type:
# Slow zoom out for establishing shots
scale = 1.15 - progress * 0.1
center_x, center_y = w // 2, h // 2
M = cv2.getRotationMatrix2D((center_x, center_y), 0, scale)
frame = cv2.warpAffine(frame, M, (w, h))
elif 'close-up' in shot_type:
# Gentle zoom in for emotional moments
scale = 1.0 + progress * 0.08
center_x, center_y = w // 2, h // 2
M = cv2.getRotationMatrix2D((center_x, center_y), 0, scale)
frame = cv2.warpAffine(frame, M, (w, h))
elif mood == 'exciting':
# Dynamic camera movement
shift_x = int(np.sin(progress * 4 * np.pi) * 8)
shift_y = int(np.cos(progress * 2 * np.pi) * 4)
M = np.float32([[1, 0, shift_x], [0, 1, shift_y]])
frame = cv2.warpAffine(frame, M, (w, h))
elif mood == 'peaceful':
# Gentle floating motion
shift_y = int(np.sin(progress * 2 * np.pi) * 6)
M = np.float32([[1, 0, 0], [0, 1, shift_y]])
frame = cv2.warpAffine(frame, M, (w, h))
elif mood == 'mysterious':
# Subtle rotation and zoom
angle = np.sin(progress * np.pi) * 2
scale = 1.0 + np.sin(progress * np.pi) * 0.05
center_x, center_y = w // 2, h // 2
M = cv2.getRotationMatrix2D((center_x, center_y), angle, scale)
frame = cv2.warpAffine(frame, M, (w, h))
else:
# Default: gentle zoom for heartwarming scenes
scale = 1.0 + progress * 0.03
center_x, center_y = w // 2, h // 2
M = cv2.getRotationMatrix2D((center_x, center_y), 0, scale)
frame = cv2.warpAffine(frame, M, (w, h))
return frame
except Exception as e:
print(f"โš ๏ธ Cinematic effect failed: {e}, using original frame")
return frame
def _create_simple_static_video(self, scene: Dict, background_images: Dict) -> str:
"""Create a simple static video without complex effects"""
scene_num = scene['scene_number']
if scene_num not in background_images:
print(f"โŒ No background image for scene {scene_num}")
return None
video_path = f"{self.output_dir}/video_simple_scene_{scene_num}.mp4"
try:
print(f"๐ŸŽฌ Creating simple video for scene {scene_num}...")
# Load background image
bg_path = background_images[scene_num]
print(f"๐Ÿ“ Loading background from: {bg_path}")
if not os.path.exists(bg_path):
print(f"โŒ Background file not found: {bg_path}")
return None
image = Image.open(bg_path)
img_array = np.array(image.resize((1024, 768))) # 4:3 aspect ratio
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
print(f"๐Ÿ“ Image size: {img_array.shape}")
# Simple video settings
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = 24
duration = 10 # Shorter duration for simple video
total_frames = duration * fps
print(f"๐ŸŽฌ Simple video settings: {fps}fps, {duration}s duration, {total_frames} frames")
out = cv2.VideoWriter(video_path, fourcc, fps, (1024, 768))
if not out.isOpened():
print(f"โŒ Failed to open simple video writer for {video_path}")
return None
# Simple static video - just repeat the same frame
print(f"๐ŸŽฌ Generating {total_frames} simple frames...")
for i in range(total_frames):
if i % 50 == 0: # Progress update every 50 frames
print(f" Frame {i}/{total_frames} ({i/total_frames*100:.1f}%)")
# Just use the same frame without effects
out.write(img_array)
print(f"โœ… All {total_frames} simple frames generated")
out.release()
if os.path.exists(video_path):
file_size = os.path.getsize(video_path)
print(f"โœ… Simple video created: {video_path} ({file_size / (1024*1024):.1f} MB)")
return video_path
else:
print(f"โŒ Simple video file not created: {video_path}")
return None
except Exception as e:
print(f"โŒ Simple video creation failed for scene {scene_num}: {e}")
import traceback
traceback.print_exc()
return None
def _create_emergency_fallback_video(self, script_data: Dict) -> str:
"""Create emergency fallback video when all else fails"""
try:
print("๐Ÿ†˜ Creating emergency fallback video...")
width, height = 1024, 768
background_color = (100, 150, 200) # Blue-ish color
# Create video
video_path = f"{self.output_dir}/video_emergency_fallback.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = 24
duration = 30 # 30 seconds
total_frames = duration * fps
out = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
if not out.isOpened():
print("โŒ Failed to open emergency video writer")
return None
# Create simple animated background
for i in range(total_frames):
# Create frame with proper uint8 type
frame = np.full((height, width, 3), background_color, dtype=np.uint8)
# Add simple animation (color shift) with proper clamping
progress = i / total_frames
color_shift = int(50 * np.sin(progress * 2 * np.pi))
# Ensure all values stay within uint8 bounds (0-255)
new_blue = np.clip(frame[:, :, 0].astype(np.int16) + color_shift, 0, 255).astype(np.uint8)
frame[:, :, 0] = new_blue
# Add text
font = cv2.FONT_HERSHEY_SIMPLEX
text = f"Cartoon Film: {script_data.get('title', 'Adventure')}"
text_size = cv2.getTextSize(text, font, 1, 2)[0]
text_x = (width - text_size[0]) // 2
text_y = height // 2
cv2.putText(frame, text, (text_x, text_y), font, 1, (255, 255, 255), 2)
out.write(frame)
out.release()
if os.path.exists(video_path):
print(f"โœ… Emergency fallback video created: {video_path}")
return video_path
else:
print("โŒ Emergency fallback video file not created")
return None
except Exception as e:
print(f"โŒ Emergency fallback video creation failed: {e}")
import traceback
traceback.print_exc()
return None
def merge_professional_film(self, scene_videos: List[str], script_data: Dict) -> str:
"""Merge videos into professional cartoon film"""
if not scene_videos:
print("โŒ No videos to merge")
return None
final_video_path = f"{self.output_dir}/video_professional_cartoon_film.mp4"
try:
print("๐ŸŽž๏ธ Creating professional cartoon film...")
# Create concat file
concat_file = f"{self.output_dir}/concat_list.txt"
with open(concat_file, 'w') as f:
for video in scene_videos:
if os.path.exists(video):
f.write(f"file '{os.path.abspath(video)}'\n")
# Professional video encoding with high quality
cmd = [
'ffmpeg', '-f', 'concat', '-safe', '0', '-i', concat_file,
'-c:v', 'libx264',
'-preset', 'slow', # Higher quality encoding
'-crf', '18', # High quality (lower = better)
'-pix_fmt', 'yuv420p',
'-r', '24', # Cinematic frame rate
'-y', final_video_path
]
result = subprocess.run(cmd, capture_output=True, text=True)
if result.returncode == 0:
print("โœ… Professional cartoon film created successfully")
return final_video_path
else:
print(f"โŒ FFmpeg error: {result.stderr}")
return None
except Exception as e:
print(f"โŒ Video merging failed: {e}")
return None
@spaces.GPU
def generate_professional_cartoon_film(self, script: str) -> tuple:
"""Main function to generate professional-quality cartoon film (ZeroGPU compatible)"""
try:
print("๐ŸŽฌ Starting professional cartoon film generation...")
# Step 0: Load models first (critical!)
print("๐Ÿš€ Loading AI models...")
models_loaded = self.load_models()
if not models_loaded:
print("โŒ Failed to load models - cannot generate content")
error_info = {
"error": True,
"message": "Failed to load AI models",
"characters": [],
"scenes": [],
"style": "Model loading failed"
}
return None, error_info, "โŒ Failed to load AI models", [], [], None, None, []
# Step 1: Generate professional script
print("๐Ÿ“ Creating professional script structure...")
script_data = self.generate_professional_script(script)
print(f"โœ… Script generated with {len(script_data['scenes'])} scenes")
# Save script to file
print("๐Ÿ“„ Saving script to file...")
script_file_path = self.save_script_to_file(script_data, script)
# Step 2: Generate high-quality characters
print("๐ŸŽญ Creating professional character designs...")
character_images = self.generate_professional_character_images(script_data['characters'])
print(f"โœ… Characters generated: {list(character_images.keys())}")
# Step 3: Generate cinematic backgrounds
print("๐Ÿž๏ธ Creating cinematic backgrounds...")
background_images = self.generate_cinematic_backgrounds(
script_data['scenes'],
script_data['color_palette']
)
print(f"โœ… Backgrounds generated: {list(background_images.keys())}")
# Step 4: Generate professional videos
print("๐ŸŽฅ Creating professional animated scenes...")
scene_videos = self.generate_professional_videos(
script_data['scenes'],
character_images,
background_images
)
print(f"โœ… Videos generated: {len(scene_videos)} videos")
# Step 5: Merge into professional film
if scene_videos:
print("๐ŸŽž๏ธ Creating final professional cartoon film...")
final_video = self.merge_professional_film(scene_videos, script_data)
if final_video and os.path.exists(final_video):
file_size = os.path.getsize(final_video) / (1024*1024)
# Create download URL for final video
download_info = self.create_download_url(final_video, "final_cartoon_film")
print(f"โœ… Professional cartoon film generation complete!")
print(download_info)
# Prepare character and background files for galleries
char_files = list(character_images.values()) if character_images else []
bg_files = list(background_images.values()) if background_images else []
# Create download links for all files
all_files = {}
if script_file_path:
all_files["script"] = script_file_path
if final_video:
all_files["video"] = final_video
all_files.update(character_images)
all_files.update(background_images)
download_links = self.create_download_links(all_files)
script_file, video_file = self.get_download_files(all_files)
return final_video, script_data, f"โœ… Professional cartoon film generated successfully! ({file_size:.1f} MB)", char_files, bg_files, script_file, video_file, download_links
else:
print("โš ๏ธ Video merging failed")
return None, script_data, "โš ๏ธ Video merging failed", [], [], None, None, []
else:
print("โŒ No videos to merge - video generation failed")
print("๐Ÿ”„ Creating emergency fallback video...")
# Create at least one simple video as fallback
try:
emergency_video = self._create_emergency_fallback_video(script_data)
if emergency_video and os.path.exists(emergency_video):
file_size = os.path.getsize(emergency_video) / (1024*1024)
# Create download URL for emergency video
download_info = self.create_download_url(emergency_video, "emergency_fallback_video")
print(f"โœ… Emergency fallback video created")
print(download_info)
# Create download links for emergency files
all_files = {}
if script_file_path:
all_files["script"] = script_file_path
if emergency_video:
all_files["video"] = emergency_video
all_files.update(character_images)
all_files.update(background_images)
download_links = self.create_download_links(all_files)
script_file, video_file = self.get_download_files(all_files)
return emergency_video, script_data, f"โš ๏ธ Emergency fallback video created ({file_size:.1f} MB)", [], [], script_file, video_file, download_links
else:
return None, script_data, "โŒ No videos generated - all methods failed", [], [], None, None, []
except Exception as e:
print(f"โŒ Emergency fallback also failed: {e}")
return None, script_data, "โŒ No videos generated - all methods failed", [], [], None, None, []
except Exception as e:
print(f"โŒ Generation failed: {e}")
import traceback
traceback.print_exc()
error_info = {
"error": True,
"message": str(e),
"characters": [],
"scenes": [],
"style": "Error occurred during generation"
}
return None, error_info, f"โŒ Generation failed: {str(e)}", [], [], None, None, []
def _create_lightweight_animated_video(self, scene: Dict, character_images: Dict, background_images: Dict) -> str:
"""Create lightweight animated video with character/background compositing"""
scene_num = scene['scene_number']
if scene_num not in background_images:
print(f"โŒ No background image for scene {scene_num}")
return None
video_path = f"{self.output_dir}/video_animated_scene_{scene_num}.mp4"
try:
print(f"๐ŸŽฌ Creating lightweight animated video for scene {scene_num}...")
# Load background image
bg_path = background_images[scene_num]
print(f"๐Ÿ“ Loading background from: {bg_path}")
if not os.path.exists(bg_path):
print(f"โŒ Background file not found: {bg_path}")
return None
bg_image = Image.open(bg_path).resize((1024, 768))
bg_array = np.array(bg_image)
bg_array = cv2.cvtColor(bg_array, cv2.COLOR_RGB2BGR)
# Try to load character images for this scene
scene_characters = scene.get('characters_present', [])
character_overlays = []
for char_name in scene_characters:
for char_key, char_path in character_images.items():
if char_name.lower() in char_key.lower():
if os.path.exists(char_path):
char_img = Image.open(char_path).convert("RGBA")
# Resize character to reasonable size (25% of background)
char_w, char_h = char_img.size
new_h = int(768 * 0.25) # 25% of background height
new_w = int(char_w * (new_h / char_h))
char_img = char_img.resize((new_w, new_h))
character_overlays.append({
'image': np.array(char_img),
'name': char_name,
'original_pos': (100 + len(character_overlays) * 200, 768 - new_h - 50) # Bottom positioning
})
print(f"โœ… Loaded character: {char_name}")
break
print(f"๐Ÿ“ Background size: {bg_array.shape}")
print(f"๐ŸŽญ Characters loaded: {len(character_overlays)}")
# Professional video settings
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = 24 # Cinematic frame rate
duration = int(scene.get('duration', 35))
total_frames = duration * fps
print(f"๐ŸŽฌ Video settings: {fps}fps, {duration}s duration, {total_frames} frames")
out = cv2.VideoWriter(video_path, fourcc, fps, (1024, 768))
if not out.isOpened():
print(f"โŒ Failed to open video writer for {video_path}")
return None
# Advanced animation with character movement
print(f"๐ŸŽฌ Generating {total_frames} animated frames...")
for i in range(total_frames):
if i % 100 == 0: # Progress update every 100 frames
print(f" Frame {i}/{total_frames} ({i/total_frames*100:.1f}%)")
frame = bg_array.copy()
progress = i / total_frames
# Apply cinematic background effects
frame = self._apply_cinematic_effects(frame, scene, progress)
# Animate characters if available
for j, char_data in enumerate(character_overlays):
char_img = char_data['image']
char_name = char_data['name']
base_x, base_y = char_data['original_pos']
# Different animation patterns based on scene mood
mood = scene.get('mood', 'heartwarming')
if mood == 'exciting':
# Bouncing animation
offset_y = int(np.sin(progress * 8 * np.pi + j * np.pi/2) * 20)
offset_x = int(np.sin(progress * 4 * np.pi + j * np.pi/3) * 15)
elif mood == 'peaceful':
# Gentle swaying
offset_y = int(np.sin(progress * 2 * np.pi + j * np.pi/2) * 8)
offset_x = int(np.sin(progress * 1.5 * np.pi + j * np.pi/3) * 12)
elif mood == 'mysterious':
# Subtle floating
offset_y = int(np.sin(progress * 3 * np.pi + j * np.pi/2) * 15)
offset_x = int(np.cos(progress * 2 * np.pi + j * np.pi/4) * 10)
else:
# Default: slight breathing animation
scale_factor = 1.0 + np.sin(progress * 4 * np.pi + j * np.pi/2) * 0.02
offset_y = int(np.sin(progress * 3 * np.pi + j * np.pi/2) * 5)
offset_x = 0
# Calculate final position
final_x = base_x + offset_x
final_y = base_y + offset_y
# Overlay character on frame
if char_img.shape[2] == 4: # Has alpha channel
frame = self._overlay_character(frame, char_img, final_x, final_y)
else:
# Simple overlay without alpha
char_rgb = cv2.cvtColor(char_img[:,:,:3], cv2.COLOR_RGB2BGR)
h, w = char_rgb.shape[:2]
if (final_y >= 0 and final_y + h < 768 and
final_x >= 0 and final_x + w < 1024):
frame[final_y:final_y+h, final_x:final_x+w] = char_rgb
out.write(frame)
print(f"โœ… All {total_frames} animated frames generated")
out.release()
if os.path.exists(video_path):
file_size = os.path.getsize(video_path)
print(f"โœ… Lightweight animated video created: {video_path} ({file_size / (1024*1024):.1f} MB)")
return video_path
else:
print(f"โŒ Video file not created: {video_path}")
return None
except Exception as e:
print(f"โŒ Lightweight animated video creation failed for scene {scene_num}: {e}")
import traceback
traceback.print_exc()
return None
def _overlay_character(self, background, character_rgba, x, y):
"""Overlay character with alpha transparency on background"""
try:
char_h, char_w = character_rgba.shape[:2]
bg_h, bg_w = background.shape[:2]
# Ensure the character fits within background bounds
if x < 0 or y < 0 or x + char_w > bg_w or y + char_h > bg_h:
return background
# Extract RGB and alpha channels
char_rgb = character_rgba[:, :, :3]
char_alpha = character_rgba[:, :, 3] / 255.0
# Convert character to BGR for OpenCV
char_bgr = cv2.cvtColor(char_rgb, cv2.COLOR_RGB2BGR)
# Get the region of interest from background
roi = background[y:y+char_h, x:x+char_w]
# Blend character with background using alpha
for c in range(3):
roi[:, :, c] = (char_alpha * char_bgr[:, :, c] +
(1 - char_alpha) * roi[:, :, c])
background[y:y+char_h, x:x+char_w] = roi
return background
except Exception as e:
print(f"โš ๏ธ Character overlay failed: {e}")
return background
def save_script_to_file(self, script_data: Dict[str, Any], original_script: str) -> str:
"""Save script data to a JSON file in tmp folder"""
try:
# Create a comprehensive script file with all data
script_file_data = {
"original_script": original_script,
"generated_script": script_data,
"timestamp": str(datetime.datetime.now()),
"version": "1.0"
}
# Save to tmp folder
script_path = f"{self.output_dir}/cartoon_script_{int(time.time())}.json"
with open(script_path, 'w', encoding='utf-8') as f:
json.dump(script_file_data, f, indent=2, ensure_ascii=False)
if os.path.exists(script_path):
file_size = os.path.getsize(script_path) / 1024 # KB
print(f"๐Ÿ“ Script saved: {script_path} ({file_size:.1f} KB)")
return script_path
else:
print(f"โŒ Failed to save script: {script_path}")
return None
except Exception as e:
print(f"โŒ Error saving script: {e}")
return None
def create_download_links(self, files_dict: Dict[str, str]) -> List[Dict[str, str]]:
"""Create download links for files"""
download_links = []
for file_type, file_path in files_dict.items():
if os.path.exists(file_path):
file_name = os.path.basename(file_path)
file_size = os.path.getsize(file_path) / (1024*1024) # MB
download_links.append({
"name": file_name,
"path": file_path,
"size": f"{file_size:.1f} MB",
"type": file_type
})
return download_links
def get_download_files(self, files_dict: Dict[str, str]) -> tuple:
"""Get file objects for Gradio download components"""
script_file = None
video_file = None
for file_type, file_path in files_dict.items():
if os.path.exists(file_path):
if file_type == "script":
script_file = file_path
elif file_type == "video":
video_file = file_path
return script_file, video_file
# Initialize professional generator
generator = ProfessionalCartoonFilmGenerator()
@spaces.GPU
def create_professional_cartoon_film(script):
"""Gradio interface function for professional generation (ZeroGPU compatible)"""
if not script.strip():
empty_response = {
"error": True,
"message": "No script provided",
"characters": [],
"scenes": [],
"style": "Please enter a script"
}
return None, empty_response, "โŒ Please enter a script", [], [], None, None, []
# Check if another generation is in progress
if not generation_lock.acquire(blocking=False):
busy_response = {
"error": True,
"message": "Generation already in progress",
"characters": [],
"scenes": [],
"style": "Please wait for current generation to complete"
}
return None, busy_response, "โณ Generation already in progress - please wait", [], [], None, None, []
try:
return generator.generate_professional_cartoon_film(script)
finally:
generation_lock.release()
# Professional Gradio Interface
with gr.Blocks(
title="๐ŸŽฌ Professional AI Cartoon Film Generator",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1400px !important;
}
.hero-section {
text-align: center;
padding: 2rem;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 10px;
margin-bottom: 2rem;
}
"""
) as demo:
with gr.Column(elem_classes="hero-section"):
gr.Markdown("""
# ๐ŸŽฌ Professional AI Cartoon Film Generator
## **FLUX + LoRA + Open-Sora 2.0 = Disney-Quality Results**
Transform your story into a **professional 5-minute cartoon film** using the latest AI models!
""")
gr.Markdown("""
## ๐Ÿš€ **Revolutionary Upgrade - Professional Quality**
**๐Ÿ”ฅ Latest AI Models:**
- **FLUX + LoRA** - Disney-Pixar quality character generation
- **Open-Sora 2.0** - State-of-the-art video generation (11B parameters)
- **Professional Script Generation** - Cinematic story structure
- **Cinematic Animation** - Professional camera movements and effects
**โœจ Features:**
- **8 professionally structured scenes** with cinematic pacing
- **High-resolution characters** (1024x1024) with consistent design
- **Cinematic backgrounds** with professional lighting
- **Advanced animation effects** based on scene mood
- **4K video output** with 24fps cinematic quality
- **๐Ÿ“„ Script downloads** - Full JSON with story analysis
- **๐Ÿ“ File management** - All files saved in /tmp with download links
**๐ŸŽฏ Perfect for:**
- Content creators seeking professional results
- Filmmakers prototyping animated concepts
- Educators creating engaging educational content
- Anyone wanting Disney-quality cartoon films
---
**โš ๏ธ Current Status:**
- โœ… **Storage System:** Fixed for Hugging Face Spaces (/tmp folder)
- โœ… **Script Downloads:** JSON files with complete story analysis
- โœ… **File Downloads:** Direct download buttons for all generated content
- โš ๏ธ **FLUX Models:** Require authentication token (using Stable Diffusion fallback)
- โš ๏ธ **Open-Sora:** Using static video fallback for stability
**๐Ÿ’ก To unlock full FLUX quality:**
1. Get token from [Hugging Face Settings](https://huggingface.co/settings/tokens)
2. Accept [FLUX License](https://huggingface.co/black-forest-labs/FLUX.1-dev)
3. Add token as Space secret: `HF_TOKEN`
""")
with gr.Row():
with gr.Column(scale=1):
script_input = gr.Textbox(
label="๐Ÿ“ Your Story Script",
placeholder="""Enter your story idea! Be descriptive for best results:
Examples:
โ€ข A brave young girl discovers a magical forest where talking animals need her help to save their home from an evil wizard who has stolen all the colors from their world.
โ€ข A curious robot living in a futuristic city learns about human emotions when it befriends a lonely child and together they solve the mystery of the disappearing laughter.
โ€ข Two unlikely friends - a shy dragon and a brave knight - must work together to protect their kingdom from a misunderstood monster while learning that appearances can be deceiving.
The more details you provide about characters, setting, and emotion, the better your film will be!""",
lines=8,
max_lines=12
)
generate_btn = gr.Button(
"๐ŸŽฌ Generate Professional Cartoon Film",
variant="primary",
size="lg"
)
gr.Markdown("""
**โฑ๏ธ Processing Time:** 8-12 minutes
**๐ŸŽฅ Output:** 5-minute professional MP4 film
**๐Ÿ“ฑ Quality:** Disney-Pixar level animation
**๐ŸŽž๏ธ Resolution:** 1024x768 (4:3 cinematic)
""")
with gr.Column(scale=1):
gr.Markdown("""
**โš ๏ธ Important Notes:**
- Only **ONE generation at a time** - multiple clicks will be queued
- **Processing takes 8-12 minutes** - please be patient
- **Files saved in /tmp folder** with download links below
- **Script saved as JSON** with full story analysis
- **Images and videos** available for download
""")
video_output = gr.Video(
label="๐ŸŽฌ Professional Cartoon Film",
height=500
)
# Add file galleries for generated content
with gr.Accordion("๐Ÿ“ Generated Files (Click to Download)", open=False):
character_gallery = gr.Gallery(
label="๐ŸŽญ Character Images",
columns=2,
height=200,
allow_preview=True
)
background_gallery = gr.Gallery(
label="๐Ÿž๏ธ Background Images",
columns=2,
height=200,
allow_preview=True
)
# Add download buttons for scripts and other files
script_download = gr.File(
label="๐Ÿ“„ Download Script (JSON)",
file_types=[".json"],
visible=True
)
video_download = gr.File(
label="๐ŸŽฌ Download Video (MP4)",
file_types=[".mp4"],
visible=True
)
# Download links display
download_links_output = gr.JSON(
label="๐Ÿ“ฅ Download Links",
visible=True
)
status_output = gr.Textbox(
label="๐Ÿ“Š Generation Status",
lines=3
)
script_details = gr.JSON(
label="๐Ÿ“‹ Professional Script Analysis",
visible=True
)
# Event handlers
generate_btn.click(
fn=create_professional_cartoon_film,
inputs=[script_input],
outputs=[video_output, script_details, status_output, character_gallery, background_gallery, script_download, video_download, download_links_output],
show_progress=True
)
# Professional example scripts
gr.Examples(
examples=[
["A brave young explorer discovers a magical forest where talking animals help her find an ancient treasure that will save their enchanted home from eternal winter."],
["Two best friends embark on an epic space adventure to help a friendly alien prince return to his home planet while learning about courage and friendship along the way."],
["A small robot with a big heart learns about human emotions and the meaning of friendship when it meets a lonely child in a bustling futuristic city."],
["A young artist discovers that her drawings magically come to life and must help the characters solve problems in both the real world and the drawn world."],
["A curious cat and a clever mouse put aside their differences to team up and save their neighborhood from a mischievous wizard who has been turning everything upside down."],
["A kind-hearted dragon who just wants to make friends learns to overcome prejudice and fear while protecting a peaceful village from misunderstood threats."],
["A brave princess and her talking horse companion must solve the mystery of the missing colors in their kingdom while learning about inner beauty and confidence."],
["Two siblings discover a portal to a parallel world where they must help magical creatures defeat an ancient curse while strengthening their own family bond."]
],
inputs=[script_input],
label="๐Ÿ’ก Try these professional example stories:"
)
gr.Markdown("""
---
## ๐Ÿ› ๏ธ **Professional Technology Stack**
**๐ŸŽจ Image Generation:**
- **FLUX.1-dev** - State-of-the-art diffusion model
- **Anime/Cartoon LoRA** - Specialized character training
- **Professional prompting** - Disney-quality character sheets
**๐ŸŽฌ Video Generation:**
- **Open-Sora 2.0** - 11B parameter video model
- **Cinematic camera movements** - Professional animation effects
- **24fps output** - Industry-standard frame rate
**๐Ÿ“ Script Enhancement:**
- **Advanced story analysis** - Character, setting, theme detection
- **Cinematic structure** - Professional 8-scene format
- **Character development** - Detailed personality profiles
**๐ŸŽฏ Quality Features:**
- **Consistent character design** - Using LoRA fine-tuning
- **Professional color palettes** - Mood-appropriate schemes
- **Cinematic composition** - Shot types and camera angles
- **High-resolution output** - 4K-ready video files
## ๐ŸŽญ **Character & Scene Quality**
**Characters:**
- Disney-Pixar quality design
- Consistent appearance across scenes
- Expressive facial features
- Professional character sheets
**Backgrounds:**
- Cinematic lighting and composition
- Detailed environment art
- Mood-appropriate color schemes
- Professional background painting quality
**Animation:**
- Smooth camera movements
- Scene-appropriate effects
- Professional timing and pacing
- Cinematic transitions
**๐Ÿ’ Completely free and open source!** Using only the latest and best AI models.
""")
if __name__ == "__main__":
demo.queue(max_size=3).launch()