|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
import cv2 |
|
from PIL import Image |
|
import json |
|
import os |
|
from typing import List, Dict, Any |
|
import tempfile |
|
import subprocess |
|
from pathlib import Path |
|
import spaces |
|
import gc |
|
from huggingface_hub import hf_hub_download |
|
import threading |
|
import datetime |
|
import time |
|
|
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
from diffusers import ( |
|
StableDiffusionPipeline, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler |
|
) |
|
import soundfile as sf |
|
import requests |
|
|
|
|
|
FLASH_ATTN_AVAILABLE = False |
|
TRITON_AVAILABLE = False |
|
print("โ ๏ธ ZeroGPU mode - using CPU-optimized operations") |
|
|
|
|
|
generation_lock = threading.Lock() |
|
|
|
class ProfessionalCartoonFilmGenerator: |
|
def __init__(self): |
|
|
|
self.device = "cpu" |
|
self.dtype = torch.float32 |
|
|
|
|
|
self.output_dir = "/tmp" |
|
print(f"๐ Using Hugging Face temp directory: {self.output_dir}") |
|
|
|
|
|
self.models_loaded = False |
|
self.flux_available = False |
|
self.flux_pipe = None |
|
self.sd_pipe = None |
|
self.script_model = None |
|
self.script_tokenizer = None |
|
|
|
@spaces.GPU |
|
def load_models(self): |
|
"""Load ZeroGPU-compatible models for professional generation""" |
|
try: |
|
print("๐ Loading ZeroGPU-compatible models...") |
|
|
|
|
|
gc.collect() |
|
|
|
print(f"๐ฎ Using device: {self.device} with dtype: {self.dtype}") |
|
|
|
|
|
print("๐ Loading Stable Diffusion (CPU optimized)...") |
|
from diffusers import StableDiffusionPipeline, DDIMScheduler |
|
|
|
self.sd_pipe = StableDiffusionPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", |
|
torch_dtype=self.dtype, |
|
safety_checker=None, |
|
requires_safety_checker=False, |
|
device_map=None |
|
) |
|
|
|
|
|
self.sd_pipe.scheduler = DDIMScheduler.from_config(self.sd_pipe.scheduler.config) |
|
|
|
|
|
self.sd_pipe = self.sd_pipe.to("cpu") |
|
self.sd_pipe.enable_sequential_cpu_offload() |
|
|
|
print("โ
Loaded Stable Diffusion v1.4 (CPU optimized)") |
|
|
|
|
|
print("๐ Loading script enhancement model...") |
|
self.script_model = AutoModelForCausalLM.from_pretrained( |
|
"microsoft/DialoGPT-medium", |
|
torch_dtype=self.dtype, |
|
device_map=None |
|
) |
|
self.script_tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") |
|
|
|
if self.script_tokenizer.pad_token is None: |
|
self.script_tokenizer.pad_token = self.script_tokenizer.eos_token |
|
|
|
|
|
self.script_model = self.script_model.to("cpu") |
|
|
|
print(f"Device set to use {self.device}") |
|
print("โ
Script enhancer loaded (CPU optimized)") |
|
|
|
print("๐ฌ All ZeroGPU-compatible models loaded!") |
|
return True |
|
|
|
except Exception as e: |
|
print(f"โ Model loading failed: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
return False |
|
|
|
def clear_gpu_memory(self): |
|
"""Clear memory (CPU-focused for ZeroGPU)""" |
|
gc.collect() |
|
|
|
def optimize_prompt_for_clip(self, prompt: str, max_tokens: int = 70) -> str: |
|
"""Optimize prompt to fit within CLIP token limit""" |
|
try: |
|
|
|
words = prompt.split() |
|
if len(words) <= max_tokens: |
|
return prompt |
|
|
|
|
|
optimized_words = words[:max_tokens] |
|
optimized_prompt = " ".join(optimized_words) |
|
|
|
print(f"๐ Prompt optimized: {len(words)} words โ {len(optimized_words)} words") |
|
return optimized_prompt |
|
|
|
except Exception as e: |
|
print(f"โ ๏ธ Prompt optimization failed: {e}") |
|
|
|
words = prompt.split() |
|
return " ".join(words[:50]) |
|
|
|
def create_download_url(self, file_path: str, file_type: str = "file") -> str: |
|
"""Create download info for generated content""" |
|
try: |
|
file_name = os.path.basename(file_path) |
|
file_size = os.path.getsize(file_path) / (1024*1024) |
|
|
|
|
|
download_info = f"๐ฅ Generated {file_type}: {file_name}" |
|
download_info += f"\n ๐ File size: {file_size:.1f} MB" |
|
download_info += f"\n โ ๏ธ Note: Use Gradio File output component to download" |
|
download_info += f"\n ๐ Internal path: {file_path}" |
|
|
|
return download_info |
|
|
|
except Exception as e: |
|
return f"๐ฅ Generated {file_type} (download info unavailable: {e})" |
|
|
|
def generate_professional_script(self, user_input: str) -> Dict[str, Any]: |
|
"""Generate a professional cartoon script with detailed character development""" |
|
|
|
|
|
words = user_input.lower().split() |
|
|
|
|
|
main_character = self._analyze_main_character(words) |
|
setting = self._analyze_setting(words) |
|
theme = self._analyze_theme(words) |
|
genre = self._analyze_genre(words) |
|
mood = self._analyze_mood(words) |
|
|
|
|
|
characters = self._create_detailed_characters(main_character, theme, genre) |
|
|
|
|
|
scenes = self._create_cinematic_scenes(characters, setting, theme, genre, mood, user_input) |
|
|
|
return { |
|
"title": f"The {theme.title()}: A {genre.title()} Adventure", |
|
"genre": genre, |
|
"mood": mood, |
|
"theme": theme, |
|
"characters": characters, |
|
"scenes": scenes, |
|
"setting": setting, |
|
"style": f"Professional 2D cartoon animation in {genre} style with cinematic lighting and expressive character animation", |
|
"color_palette": self._generate_color_palette(mood, genre), |
|
"animation_notes": f"Focus on {mood} expressions, smooth character movement, and detailed background art" |
|
} |
|
|
|
def _analyze_main_character(self, words): |
|
"""Sophisticated character analysis""" |
|
if any(word in words for word in ['girl', 'woman', 'princess', 'heroine', 'daughter', 'sister']): |
|
return "brave young heroine" |
|
elif any(word in words for word in ['boy', 'man', 'hero', 'prince', 'son', 'brother']): |
|
return "courageous young hero" |
|
elif any(word in words for word in ['robot', 'android', 'cyborg', 'machine', 'ai']): |
|
return "friendly robot character" |
|
elif any(word in words for word in ['cat', 'dog', 'fox', 'bear', 'wolf', 'animal']): |
|
return "adorable animal protagonist" |
|
elif any(word in words for word in ['dragon', 'fairy', 'wizard', 'witch', 'magic']): |
|
return "magical creature" |
|
elif any(word in words for word in ['alien', 'space', 'star', 'galaxy']): |
|
return "curious alien visitor" |
|
else: |
|
return "charming protagonist" |
|
|
|
def _analyze_setting(self, words): |
|
"""Advanced setting analysis""" |
|
if any(word in words for word in ['forest', 'woods', 'trees', 'jungle', 'nature']): |
|
return "enchanted forest with mystical atmosphere" |
|
elif any(word in words for word in ['city', 'town', 'urban', 'street', 'building']): |
|
return "vibrant bustling city with colorful architecture" |
|
elif any(word in words for word in ['space', 'stars', 'planet', 'galaxy', 'cosmic']): |
|
return "spectacular cosmic landscape with nebulae and distant planets" |
|
elif any(word in words for word in ['ocean', 'sea', 'underwater', 'beach', 'water']): |
|
return "beautiful underwater world with coral reefs" |
|
elif any(word in words for word in ['mountain', 'cave', 'valley', 'cliff']): |
|
return "majestic mountain landscape with dramatic vistas" |
|
elif any(word in words for word in ['castle', 'kingdom', 'palace', 'medieval']): |
|
return "magical kingdom with towering castle spires" |
|
elif any(word in words for word in ['school', 'classroom', 'library', 'study']): |
|
return "charming school environment with warm lighting" |
|
else: |
|
return "wonderfully imaginative fantasy world" |
|
|
|
def _analyze_theme(self, words): |
|
"""Identify story themes""" |
|
if any(word in words for word in ['friend', 'friendship', 'help', 'together', 'team']): |
|
return "power of friendship" |
|
elif any(word in words for word in ['treasure', 'find', 'search', 'discover', 'quest']): |
|
return "epic treasure quest" |
|
elif any(word in words for word in ['save', 'rescue', 'protect', 'danger', 'hero']): |
|
return "heroic rescue mission" |
|
elif any(word in words for word in ['magic', 'magical', 'spell', 'wizard', 'enchant']): |
|
return "magical discovery" |
|
elif any(word in words for word in ['learn', 'grow', 'change', 'journey']): |
|
return "journey of self-discovery" |
|
elif any(word in words for word in ['family', 'home', 'parent', 'love']): |
|
return "importance of family" |
|
else: |
|
return "heartwarming adventure" |
|
|
|
def _analyze_genre(self, words): |
|
"""Determine animation genre""" |
|
if any(word in words for word in ['adventure', 'quest', 'journey', 'explore']): |
|
return "adventure" |
|
elif any(word in words for word in ['funny', 'comedy', 'laugh', 'silly', 'humor']): |
|
return "comedy" |
|
elif any(word in words for word in ['magic', 'fantasy', 'fairy', 'wizard', 'enchant']): |
|
return "fantasy" |
|
elif any(word in words for word in ['space', 'robot', 'future', 'sci-fi', 'technology']): |
|
return "sci-fi" |
|
elif any(word in words for word in ['mystery', 'secret', 'solve', 'detective']): |
|
return "mystery" |
|
else: |
|
return "family-friendly" |
|
|
|
def _analyze_mood(self, words): |
|
"""Determine overall mood""" |
|
if any(word in words for word in ['happy', 'joy', 'fun', 'celebrate', 'party']): |
|
return "joyful" |
|
elif any(word in words for word in ['exciting', 'thrill', 'adventure', 'fast']): |
|
return "exciting" |
|
elif any(word in words for word in ['peaceful', 'calm', 'gentle', 'quiet']): |
|
return "peaceful" |
|
elif any(word in words for word in ['mysterious', 'secret', 'hidden', 'unknown']): |
|
return "mysterious" |
|
elif any(word in words for word in ['brave', 'courage', 'strong', 'bold']): |
|
return "inspiring" |
|
else: |
|
return "heartwarming" |
|
|
|
def _create_detailed_characters(self, main_char, theme, genre): |
|
"""Create detailed character profiles""" |
|
characters = [] |
|
|
|
|
|
main_desc = f"Professional cartoon-style {main_char} with large expressive eyes, detailed facial features, vibrant clothing, Disney-Pixar quality design, {genre} aesthetic, highly detailed" |
|
characters.append({ |
|
"name": main_char, |
|
"description": main_desc, |
|
"personality": f"brave, kind, determined, optimistic, perfect for {theme}", |
|
"role": "protagonist", |
|
"animation_style": "lead character quality with detailed expressions" |
|
}) |
|
|
|
|
|
support_desc = f"Charming cartoon companion with warm personality, detailed character design, complementary colors to main character, {genre} style, supporting role" |
|
characters.append({ |
|
"name": "loyal companion", |
|
"description": support_desc, |
|
"personality": "wise, encouraging, helpful, comic relief", |
|
"role": "supporting", |
|
"animation_style": "high-quality supporting character design" |
|
}) |
|
|
|
|
|
if theme in ["heroic rescue mission", "epic treasure quest"]: |
|
antag_desc = f"Cartoon antagonist with distinctive design, not too scary for family audience, {genre} villain aesthetic, detailed character work" |
|
characters.append({ |
|
"name": "misguided opponent", |
|
"description": antag_desc, |
|
"personality": "misunderstood, redeemable, provides conflict", |
|
"role": "antagonist", |
|
"animation_style": "memorable villain design" |
|
}) |
|
|
|
return characters |
|
|
|
def _create_cinematic_scenes(self, characters, setting, theme, genre, mood, user_input): |
|
"""Create cinematically structured scenes""" |
|
|
|
main_char = characters[0]["name"] |
|
companion = characters[1]["name"] if len(characters) > 1 else "friend" |
|
|
|
|
|
scene_templates = [ |
|
{ |
|
"title": "Opening - World Introduction", |
|
"description": f"Establish the {setting} and introduce our {main_char} in their daily life", |
|
"purpose": "world-building and character introduction", |
|
"shot_type": "wide establishing shot transitioning to character focus" |
|
}, |
|
{ |
|
"title": "Inciting Incident", |
|
"description": f"The {main_char} discovers the central challenge of {theme}", |
|
"purpose": "plot catalyst and character motivation", |
|
"shot_type": "close-up on character reaction, dramatic lighting" |
|
}, |
|
{ |
|
"title": "Call to Adventure", |
|
"description": f"Meeting the {companion} and deciding to embark on the journey", |
|
"purpose": "relationship building and commitment to quest", |
|
"shot_type": "medium shots showing character interaction" |
|
}, |
|
{ |
|
"title": "First Challenge", |
|
"description": f"Encountering the first obstacle in their {theme} journey", |
|
"purpose": "establish stakes and character growth", |
|
"shot_type": "dynamic action shots with dramatic angles" |
|
}, |
|
{ |
|
"title": "Moment of Doubt", |
|
"description": f"The {main_char} faces setbacks and questions their ability", |
|
"purpose": "character vulnerability and emotional depth", |
|
"shot_type": "intimate character shots with emotional lighting" |
|
}, |
|
{ |
|
"title": "Renewed Determination", |
|
"description": f"With support from {companion}, finding inner strength", |
|
"purpose": "character development and relationship payoff", |
|
"shot_type": "inspiring medium shots with uplifting composition" |
|
}, |
|
{ |
|
"title": "Climactic Confrontation", |
|
"description": f"The final challenge of the {theme} reaches its peak", |
|
"purpose": "climax and character triumph", |
|
"shot_type": "epic wide shots and dynamic action sequences" |
|
}, |
|
{ |
|
"title": "Resolution and Growth", |
|
"description": f"Celebrating success and reflecting on growth in {setting}", |
|
"purpose": "satisfying conclusion and character arc completion", |
|
"shot_type": "warm, celebratory shots returning to establishing setting" |
|
} |
|
] |
|
|
|
scenes = [] |
|
for i, template in enumerate(scene_templates): |
|
lighting = ["golden hour sunrise", "bright daylight", "warm afternoon", "dramatic twilight", |
|
"moody evening", "hopeful dawn", "epic sunset", "peaceful twilight"][i] |
|
|
|
scenes.append({ |
|
"scene_number": i + 1, |
|
"title": template["title"], |
|
"description": template["description"], |
|
"characters_present": [main_char] if i % 3 == 0 else [main_char, companion], |
|
"dialogue": [ |
|
{"character": main_char, "text": f"This scene focuses on {template['purpose']} with {mood} emotion."} |
|
], |
|
"background": f"{setting} with {lighting} lighting, cinematic composition", |
|
"mood": mood, |
|
"duration": "35", |
|
"shot_type": template["shot_type"], |
|
"animation_notes": f"Focus on {template['purpose']} with professional character animation" |
|
}) |
|
|
|
return scenes |
|
|
|
def _generate_color_palette(self, mood, genre): |
|
"""Generate appropriate color palette""" |
|
palettes = { |
|
"joyful": "bright yellows, warm oranges, sky blues, fresh greens", |
|
"exciting": "vibrant reds, electric blues, energetic purples, bright whites", |
|
"peaceful": "soft pastels, gentle greens, calming blues, warm creams", |
|
"mysterious": "deep purples, twilight blues, shadowy grays, moonlight silver", |
|
"inspiring": "bold blues, confident reds, golden yellows, pure whites" |
|
} |
|
return palettes.get(mood, "balanced warm and cool tones") |
|
|
|
@spaces.GPU |
|
def generate_professional_character_images(self, characters: List[Dict]) -> Dict[str, str]: |
|
"""Generate professional character images with consistency (ZeroGPU compatible)""" |
|
character_images = {} |
|
|
|
print(f"๐ญ Generating {len(characters)} professional character designs...") |
|
|
|
|
|
if not hasattr(self, 'sd_pipe') or self.sd_pipe is None: |
|
print("โ Stable Diffusion not loaded - please call load_models() first") |
|
return character_images |
|
|
|
pipeline = self.sd_pipe |
|
model_name = "Stable Diffusion (CPU)" |
|
|
|
print(f"๐จ Using {model_name} for character generation") |
|
|
|
for character in characters: |
|
character_name = character['name'] |
|
print(f"\n๐จ Generating character: {character_name}") |
|
|
|
try: |
|
|
|
base_prompt = f"Professional cartoon character design, {character['name']}, {character['description']}" |
|
|
|
|
|
prompt = f"{base_prompt}, anime style, cartoon character, clean background, high quality, detailed, 2D animation style, character sheet, simple design" |
|
|
|
|
|
prompt = self.optimize_prompt_for_clip(prompt, max_tokens=60) |
|
print(f"๐ Character prompt: {prompt}") |
|
|
|
|
|
image = pipeline( |
|
prompt=prompt, |
|
width=512, |
|
height=512, |
|
num_inference_steps=20, |
|
guidance_scale=7.5, |
|
generator=torch.Generator(device="cpu").manual_seed(42) |
|
).images[0] |
|
|
|
|
|
image = image.resize((1024, 1024), Image.Resampling.LANCZOS) |
|
|
|
|
|
char_path = f"{self.output_dir}/char_{character['name'].replace(' ', '_')}.png" |
|
image.save(char_path) |
|
|
|
|
|
if os.path.exists(char_path): |
|
file_size = os.path.getsize(char_path) |
|
character_images[character_name] = char_path |
|
|
|
|
|
download_info = self.create_download_url(char_path, f"character_{character['name']}") |
|
print(f"๐ฅ Generated character_{character['name']}: char_{character['name'].replace(' ', '_')}.png") |
|
print(f" ๐ File size: {file_size / (1024*1024):.1f} MB") |
|
print(f" ๐ Internal path: {char_path}") |
|
print(download_info) |
|
|
|
|
|
gc.collect() |
|
else: |
|
print(f"โ Failed to save character image: {char_path}") |
|
|
|
except Exception as e: |
|
print(f"โ Error generating character {character_name}: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
|
|
continue |
|
|
|
print(f"\n๐ Character generation summary:") |
|
print(f" - Characters requested: {len(characters)}") |
|
print(f" - Characters generated: {len(character_images)}") |
|
print(f" - Success rate: {len(character_images)/len(characters)*100:.1f}%") |
|
|
|
return character_images |
|
|
|
@spaces.GPU |
|
def generate_cinematic_backgrounds(self, scenes: List[Dict], color_palette: str) -> Dict[int, str]: |
|
"""Generate professional cinematic backgrounds for each scene (ZeroGPU compatible)""" |
|
background_images = {} |
|
|
|
print(f"๐๏ธ Generating {len(scenes)} cinematic backgrounds...") |
|
|
|
|
|
if not hasattr(self, 'sd_pipe') or self.sd_pipe is None: |
|
print("โ Stable Diffusion not loaded - please call load_models() first") |
|
return background_images |
|
|
|
pipeline = self.sd_pipe |
|
model_name = "Stable Diffusion (CPU)" |
|
|
|
print(f"๐จ Using {model_name} for background generation") |
|
|
|
for scene in scenes: |
|
scene_num = scene['scene_number'] |
|
print(f"\n๐ Generating background for scene {scene_num}") |
|
|
|
try: |
|
|
|
background_desc = scene['background'] |
|
mood = scene.get('mood', 'neutral') |
|
shot_type = scene.get('shot_type', 'medium shot') |
|
lighting = scene.get('lighting', 'natural lighting') |
|
|
|
base_prompt = f"Cinematic background scene, {background_desc}, {mood} atmosphere, {lighting}" |
|
|
|
|
|
prompt = f"{base_prompt}, anime style background, detailed landscape, high quality, cinematic, {color_palette} color palette, no people, simple design" |
|
|
|
|
|
prompt = self.optimize_prompt_for_clip(prompt, max_tokens=60) |
|
print(f"๐ Background prompt: {prompt}") |
|
|
|
|
|
image = pipeline( |
|
prompt=prompt, |
|
width=512, |
|
height=384, |
|
num_inference_steps=20, |
|
guidance_scale=7.5, |
|
generator=torch.Generator(device="cpu").manual_seed(scene_num * 10) |
|
).images[0] |
|
|
|
|
|
image = image.resize((1024, 768), Image.Resampling.LANCZOS) |
|
|
|
|
|
bg_path = f"{self.output_dir}/bg_scene_{scene_num}.png" |
|
image.save(bg_path) |
|
|
|
|
|
if os.path.exists(bg_path): |
|
file_size = os.path.getsize(bg_path) |
|
background_images[scene_num] = bg_path |
|
|
|
|
|
download_info = self.create_download_url(bg_path, f"background_scene_{scene_num}") |
|
print(f"๐ฅ Generated background_scene_{scene_num}: bg_scene_{scene_num}.png") |
|
print(f" ๐ File size: {file_size / (1024*1024):.1f} MB") |
|
print(f" ๐ Internal path: {bg_path}") |
|
print(download_info) |
|
|
|
|
|
gc.collect() |
|
else: |
|
print(f"โ Failed to save background image: {bg_path}") |
|
|
|
except Exception as e: |
|
print(f"โ Error generating background for scene {scene['scene_number']}: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
|
|
continue |
|
|
|
print(f"\n๐ Background generation summary:") |
|
print(f" - Scenes requested: {len(scenes)}") |
|
print(f" - Backgrounds generated: {len(background_images)}") |
|
print(f" - Success rate: {len(background_images)/len(scenes)*100:.1f}%") |
|
|
|
return background_images |
|
|
|
def setup_opensora_for_video(self): |
|
"""Setup Open-Sora for professional video generation""" |
|
try: |
|
print("๐ฌ Setting up Open-Sora 2.0 for video generation...") |
|
|
|
|
|
import torch |
|
|
|
|
|
if torch.cuda.is_available(): |
|
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3) |
|
print(f"๐ฎ Available GPU memory: {gpu_memory:.1f} GB") |
|
if gpu_memory < 16: |
|
print("โ ๏ธ Warning: Open-Sora requires 16GB+ GPU memory for stable operation") |
|
|
|
|
|
current_dir = os.getcwd() |
|
opensora_dir = os.path.join(current_dir, "Open-Sora") |
|
|
|
|
|
if not os.path.exists(opensora_dir): |
|
print("๐ฅ Cloning Open-Sora repository...") |
|
try: |
|
result = subprocess.run([ |
|
"git", "clone", "https://github.com/hpcaitech/Open-Sora.git" |
|
], check=True, capture_output=True, text=True, timeout=120) |
|
print("โ
Repository cloned successfully") |
|
except subprocess.TimeoutExpired: |
|
print("โ Repository cloning timed out") |
|
return False |
|
except subprocess.CalledProcessError as e: |
|
print(f"โ Repository cloning failed: {e.stderr}") |
|
return False |
|
|
|
|
|
if not os.path.exists(opensora_dir): |
|
print("โ Failed to clone Open-Sora repository") |
|
return False |
|
|
|
|
|
script_path = os.path.join(opensora_dir, "scripts/diffusion/inference.py") |
|
config_path = os.path.join(opensora_dir, "configs/diffusion/inference/t2i2v_256px.py") |
|
|
|
print(f"๐ Checking for script: {script_path}") |
|
print(f"๐ Checking for config: {config_path}") |
|
|
|
if not os.path.exists(script_path): |
|
print(f"โ Required script not found: {script_path}") |
|
|
|
scripts_dir = os.path.join(opensora_dir, "scripts") |
|
if os.path.exists(scripts_dir): |
|
print(f"๐ Available in scripts/: {os.listdir(scripts_dir)}") |
|
return False |
|
|
|
if not os.path.exists(config_path): |
|
print(f"โ Required config not found: {config_path}") |
|
|
|
configs_dir = os.path.join(opensora_dir, "configs") |
|
if os.path.exists(configs_dir): |
|
print(f"๐ Available in configs/: {os.listdir(configs_dir)}") |
|
return False |
|
|
|
|
|
ckpts_dir = os.path.join(opensora_dir, "ckpts") |
|
if not os.path.exists(ckpts_dir): |
|
print("๐ฅ Downloading Open-Sora 2.0 model...") |
|
try: |
|
|
|
result = subprocess.run([ |
|
"huggingface-cli", "download", "hpcai-tech/Open-Sora-v2", |
|
"--local-dir", ckpts_dir |
|
], check=True, capture_output=True, text=True, timeout=300) |
|
print("โ
Model downloaded successfully") |
|
except subprocess.TimeoutExpired: |
|
print("โ Model download timed out (5 minutes)") |
|
return False |
|
except subprocess.CalledProcessError as e: |
|
print(f"โ Model download failed: {e.stderr}") |
|
return False |
|
except FileNotFoundError: |
|
print("โ huggingface-cli not found - cannot download model") |
|
return False |
|
else: |
|
print("โ
Model weights already exist") |
|
|
|
|
|
try: |
|
import torch.distributed |
|
print("โ
torch.distributed available") |
|
except ImportError: |
|
print("โ torch.distributed not available") |
|
return False |
|
|
|
|
|
try: |
|
result = subprocess.run(["torchrun", "--help"], |
|
capture_output=True, text=True, timeout=10) |
|
if result.returncode == 0: |
|
print("โ
torchrun available") |
|
else: |
|
print("โ torchrun not working properly") |
|
return False |
|
except (subprocess.TimeoutExpired, FileNotFoundError): |
|
print("โ torchrun not found") |
|
return False |
|
|
|
print("โ
Open-Sora setup completed") |
|
return True |
|
|
|
except Exception as e: |
|
print(f"โ Open-Sora setup failed: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
return False |
|
|
|
@spaces.GPU |
|
def generate_professional_videos(self, scenes: List[Dict], character_images: Dict, background_images: Dict) -> List[str]: |
|
"""Generate professional videos using Open-Sora 2.0""" |
|
scene_videos = [] |
|
|
|
print(f"๐ฅ Starting video generation for {len(scenes)} scenes...") |
|
print(f"๐ Background images available: {list(background_images.keys())}") |
|
|
|
|
|
opensora_available = self.setup_opensora_for_video() |
|
print(f"๐ฌ Open-Sora available: {opensora_available}") |
|
|
|
for scene in scenes: |
|
scene_num = scene['scene_number'] |
|
print(f"\n๐ฌ Processing scene {scene_num}...") |
|
|
|
try: |
|
if opensora_available: |
|
print(f"๐ฌ Attempting Open-Sora generation for scene {scene_num}...") |
|
video_path = self._generate_opensora_video(scene, character_images, background_images) |
|
if video_path: |
|
print(f"โ
Open-Sora video generated for scene {scene_num}") |
|
else: |
|
print(f"โ Open-Sora failed for scene {scene_num}, trying lightweight animation...") |
|
video_path = self._create_lightweight_animated_video(scene, character_images, background_images) |
|
if not video_path: |
|
print(f"๐ Lightweight animation failed, trying static video...") |
|
video_path = self._create_professional_static_video(scene, background_images) |
|
|
|
|
|
if not video_path: |
|
print(f"๐ All methods failed, trying simple video for scene {scene_num}...") |
|
video_path = self._create_simple_static_video(scene, background_images) |
|
else: |
|
print(f"๐ฌ Open-Sora not available, using lightweight animation for scene {scene_num}...") |
|
|
|
video_path = self._create_lightweight_animated_video(scene, character_images, background_images) |
|
if not video_path: |
|
print(f"๐ Lightweight animation failed, using static video fallback...") |
|
video_path = self._create_professional_static_video(scene, background_images) |
|
|
|
if video_path and os.path.exists(video_path): |
|
scene_videos.append(video_path) |
|
|
|
|
|
download_info = self.create_download_url(video_path, f"video_scene_{scene_num}") |
|
print(f"โ
Generated professional video for scene {scene_num}") |
|
print(download_info) |
|
else: |
|
print(f"โ No video generated for scene {scene_num}") |
|
|
|
except Exception as e: |
|
print(f"โ Error in scene {scene_num}: {e}") |
|
|
|
if scene_num in background_images: |
|
print(f"๐ Creating emergency fallback for scene {scene_num}...") |
|
try: |
|
video_path = self._create_professional_static_video(scene, background_images) |
|
if video_path and os.path.exists(video_path): |
|
scene_videos.append(video_path) |
|
print(f"โ
Emergency fallback video created for scene {scene_num}") |
|
except Exception as e2: |
|
print(f"โ Emergency fallback also failed for scene {scene_num}: {e2}") |
|
|
|
print(f"\n๐ Video generation summary:") |
|
print(f" - Scenes processed: {len(scenes)}") |
|
print(f" - Videos generated: {len(scene_videos)}") |
|
print(f" - Videos list: {scene_videos}") |
|
|
|
return scene_videos |
|
|
|
def _generate_opensora_video(self, scene: Dict, character_images: Dict, background_images: Dict) -> str: |
|
"""Generate video using Open-Sora 2.0""" |
|
try: |
|
characters_text = ", ".join(scene['characters_present']) |
|
|
|
|
|
characters_text = characters_text[:60] |
|
background_desc = scene['background'][:60] |
|
mood = scene['mood'][:20] |
|
shot_type = scene.get('shot_type', 'medium shot')[:15] |
|
animation_notes = scene.get('animation_notes', 'high-quality animation')[:30] |
|
|
|
prompt = f"Professional 2D cartoon animation, {characters_text} in {background_desc}, {mood} mood, {shot_type}, smooth animation, Disney quality, cinematic lighting, {animation_notes}" |
|
|
|
|
|
prompt = self.optimize_prompt_for_clip(prompt) |
|
print(f"๐ฌ Open-Sora prompt: {prompt}") |
|
|
|
video_path = f"{self.output_dir}/video_scene_{scene['scene_number']}.mp4" |
|
|
|
|
|
current_dir = os.getcwd() |
|
opensora_dir = os.path.join(current_dir, "Open-Sora") |
|
|
|
if not os.path.exists(opensora_dir): |
|
print("โ Open-Sora directory not found") |
|
return None |
|
|
|
|
|
script_path = os.path.join(opensora_dir, "scripts/diffusion/inference.py") |
|
config_path = os.path.join(opensora_dir, "configs/diffusion/inference/t2i2v_256px.py") |
|
|
|
if not os.path.exists(script_path): |
|
print(f"โ Open-Sora script not found: {script_path}") |
|
return None |
|
|
|
if not os.path.exists(config_path): |
|
print(f"โ Open-Sora config not found: {config_path}") |
|
return None |
|
|
|
|
|
cmd = [ |
|
"torchrun", "--nproc_per_node", "1", "--standalone", |
|
"scripts/diffusion/inference.py", |
|
"configs/diffusion/inference/t2i2v_256px.py", |
|
"--save-dir", self.output_dir, |
|
"--prompt", prompt, |
|
"--num_frames", "25", |
|
"--aspect_ratio", "4:3", |
|
"--motion-score", "6" |
|
] |
|
|
|
print(f"๐ฌ Running Open-Sora command: {' '.join(cmd)}") |
|
result = subprocess.run(cmd, capture_output=True, text=True, cwd=opensora_dir, timeout=300) |
|
|
|
print(f"๐ฌ Open-Sora return code: {result.returncode}") |
|
if result.stdout: |
|
print(f"๐ฌ Open-Sora stdout: {result.stdout}") |
|
if result.stderr: |
|
print(f"โ Open-Sora stderr: {result.stderr}") |
|
|
|
if result.returncode == 0: |
|
|
|
for file in os.listdir(self.output_dir): |
|
if file.endswith('.mp4') and 'scene' not in file: |
|
src_path = os.path.join(self.output_dir, file) |
|
os.rename(src_path, video_path) |
|
print(f"โ
Open-Sora video generated: {video_path}") |
|
return video_path |
|
|
|
print("โ Open-Sora completed but no video file found") |
|
return None |
|
else: |
|
print(f"โ Open-Sora failed with return code: {result.returncode}") |
|
return None |
|
|
|
except subprocess.TimeoutExpired: |
|
print("โ Open-Sora generation timed out (5 minutes)") |
|
return None |
|
except Exception as e: |
|
print(f"โ Open-Sora generation failed: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
return None |
|
|
|
def _create_professional_static_video(self, scene: Dict, background_images: Dict) -> str: |
|
"""Create professional static video with advanced effects""" |
|
scene_num = scene['scene_number'] |
|
|
|
if scene_num not in background_images: |
|
print(f"โ No background image for scene {scene_num}") |
|
return None |
|
|
|
video_path = f"{self.output_dir}/video_scene_{scene_num}.mp4" |
|
|
|
try: |
|
print(f"๐ฌ Creating static video for scene {scene_num}...") |
|
|
|
|
|
bg_path = background_images[scene_num] |
|
print(f"๐ Loading background from: {bg_path}") |
|
|
|
if not os.path.exists(bg_path): |
|
print(f"โ Background file not found: {bg_path}") |
|
return None |
|
|
|
image = Image.open(bg_path) |
|
img_array = np.array(image.resize((1024, 768))) |
|
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR) |
|
|
|
print(f"๐ Image size: {img_array.shape}") |
|
|
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
fps = 24 |
|
duration = int(scene.get('duration', 35)) |
|
total_frames = duration * fps |
|
|
|
print(f"๐ฌ Video settings: {fps}fps, {duration}s duration, {total_frames} frames") |
|
|
|
out = cv2.VideoWriter(video_path, fourcc, fps, (1024, 768)) |
|
|
|
if not out.isOpened(): |
|
print(f"โ Failed to open video writer for {video_path}") |
|
return None |
|
|
|
|
|
print(f"๐ฌ Generating {total_frames} frames...") |
|
|
|
for i in range(total_frames): |
|
if i % 100 == 0: |
|
print(f" Frame {i}/{total_frames} ({i/total_frames*100:.1f}%)") |
|
|
|
frame = img_array.copy() |
|
progress = i / total_frames |
|
|
|
|
|
frame = self._apply_cinematic_effects(frame, scene, progress) |
|
out.write(frame) |
|
|
|
print(f"โ
All {total_frames} frames generated") |
|
|
|
out.release() |
|
|
|
if os.path.exists(video_path): |
|
file_size = os.path.getsize(video_path) |
|
print(f"โ
Static video created: {video_path} ({file_size / (1024*1024):.1f} MB)") |
|
return video_path |
|
else: |
|
print(f"โ Video file not created: {video_path}") |
|
return None |
|
|
|
except Exception as e: |
|
print(f"โ Professional static video creation failed for scene {scene_num}: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
return None |
|
|
|
def _apply_cinematic_effects(self, frame, scene, progress): |
|
"""Apply professional cinematic effects""" |
|
try: |
|
h, w = frame.shape[:2] |
|
|
|
|
|
mood = scene.get('mood', 'heartwarming') |
|
shot_type = scene.get('shot_type', 'medium shot') |
|
|
|
if 'establishing' in shot_type: |
|
|
|
scale = 1.15 - progress * 0.1 |
|
center_x, center_y = w // 2, h // 2 |
|
M = cv2.getRotationMatrix2D((center_x, center_y), 0, scale) |
|
frame = cv2.warpAffine(frame, M, (w, h)) |
|
|
|
elif 'close-up' in shot_type: |
|
|
|
scale = 1.0 + progress * 0.08 |
|
center_x, center_y = w // 2, h // 2 |
|
M = cv2.getRotationMatrix2D((center_x, center_y), 0, scale) |
|
frame = cv2.warpAffine(frame, M, (w, h)) |
|
|
|
elif mood == 'exciting': |
|
|
|
shift_x = int(np.sin(progress * 4 * np.pi) * 8) |
|
shift_y = int(np.cos(progress * 2 * np.pi) * 4) |
|
M = np.float32([[1, 0, shift_x], [0, 1, shift_y]]) |
|
frame = cv2.warpAffine(frame, M, (w, h)) |
|
|
|
elif mood == 'peaceful': |
|
|
|
shift_y = int(np.sin(progress * 2 * np.pi) * 6) |
|
M = np.float32([[1, 0, 0], [0, 1, shift_y]]) |
|
frame = cv2.warpAffine(frame, M, (w, h)) |
|
|
|
elif mood == 'mysterious': |
|
|
|
angle = np.sin(progress * np.pi) * 2 |
|
scale = 1.0 + np.sin(progress * np.pi) * 0.05 |
|
center_x, center_y = w // 2, h // 2 |
|
M = cv2.getRotationMatrix2D((center_x, center_y), angle, scale) |
|
frame = cv2.warpAffine(frame, M, (w, h)) |
|
else: |
|
|
|
scale = 1.0 + progress * 0.03 |
|
center_x, center_y = w // 2, h // 2 |
|
M = cv2.getRotationMatrix2D((center_x, center_y), 0, scale) |
|
frame = cv2.warpAffine(frame, M, (w, h)) |
|
|
|
return frame |
|
|
|
except Exception as e: |
|
print(f"โ ๏ธ Cinematic effect failed: {e}, using original frame") |
|
return frame |
|
|
|
def _create_simple_static_video(self, scene: Dict, background_images: Dict) -> str: |
|
"""Create a simple static video without complex effects""" |
|
scene_num = scene['scene_number'] |
|
|
|
if scene_num not in background_images: |
|
print(f"โ No background image for scene {scene_num}") |
|
return None |
|
|
|
video_path = f"{self.output_dir}/video_simple_scene_{scene_num}.mp4" |
|
|
|
try: |
|
print(f"๐ฌ Creating simple video for scene {scene_num}...") |
|
|
|
|
|
bg_path = background_images[scene_num] |
|
print(f"๐ Loading background from: {bg_path}") |
|
|
|
if not os.path.exists(bg_path): |
|
print(f"โ Background file not found: {bg_path}") |
|
return None |
|
|
|
image = Image.open(bg_path) |
|
img_array = np.array(image.resize((1024, 768))) |
|
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR) |
|
|
|
print(f"๐ Image size: {img_array.shape}") |
|
|
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
fps = 24 |
|
duration = 10 |
|
total_frames = duration * fps |
|
|
|
print(f"๐ฌ Simple video settings: {fps}fps, {duration}s duration, {total_frames} frames") |
|
|
|
out = cv2.VideoWriter(video_path, fourcc, fps, (1024, 768)) |
|
|
|
if not out.isOpened(): |
|
print(f"โ Failed to open simple video writer for {video_path}") |
|
return None |
|
|
|
|
|
print(f"๐ฌ Generating {total_frames} simple frames...") |
|
|
|
for i in range(total_frames): |
|
if i % 50 == 0: |
|
print(f" Frame {i}/{total_frames} ({i/total_frames*100:.1f}%)") |
|
|
|
|
|
out.write(img_array) |
|
|
|
print(f"โ
All {total_frames} simple frames generated") |
|
|
|
out.release() |
|
|
|
if os.path.exists(video_path): |
|
file_size = os.path.getsize(video_path) |
|
print(f"โ
Simple video created: {video_path} ({file_size / (1024*1024):.1f} MB)") |
|
return video_path |
|
else: |
|
print(f"โ Simple video file not created: {video_path}") |
|
return None |
|
|
|
except Exception as e: |
|
print(f"โ Simple video creation failed for scene {scene_num}: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
return None |
|
|
|
def _create_emergency_fallback_video(self, script_data: Dict) -> str: |
|
"""Create emergency fallback video when all else fails""" |
|
try: |
|
print("๐ Creating emergency fallback video...") |
|
|
|
width, height = 1024, 768 |
|
background_color = (100, 150, 200) |
|
|
|
|
|
video_path = f"{self.output_dir}/video_emergency_fallback.mp4" |
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
fps = 24 |
|
duration = 30 |
|
total_frames = duration * fps |
|
|
|
out = cv2.VideoWriter(video_path, fourcc, fps, (width, height)) |
|
|
|
if not out.isOpened(): |
|
print("โ Failed to open emergency video writer") |
|
return None |
|
|
|
|
|
for i in range(total_frames): |
|
|
|
frame = np.full((height, width, 3), background_color, dtype=np.uint8) |
|
|
|
|
|
progress = i / total_frames |
|
color_shift = int(50 * np.sin(progress * 2 * np.pi)) |
|
|
|
|
|
new_blue = np.clip(frame[:, :, 0].astype(np.int16) + color_shift, 0, 255).astype(np.uint8) |
|
frame[:, :, 0] = new_blue |
|
|
|
|
|
font = cv2.FONT_HERSHEY_SIMPLEX |
|
text = f"Cartoon Film: {script_data.get('title', 'Adventure')}" |
|
text_size = cv2.getTextSize(text, font, 1, 2)[0] |
|
text_x = (width - text_size[0]) // 2 |
|
text_y = height // 2 |
|
|
|
cv2.putText(frame, text, (text_x, text_y), font, 1, (255, 255, 255), 2) |
|
|
|
out.write(frame) |
|
|
|
out.release() |
|
|
|
if os.path.exists(video_path): |
|
print(f"โ
Emergency fallback video created: {video_path}") |
|
return video_path |
|
else: |
|
print("โ Emergency fallback video file not created") |
|
return None |
|
|
|
except Exception as e: |
|
print(f"โ Emergency fallback video creation failed: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
return None |
|
|
|
def merge_professional_film(self, scene_videos: List[str], script_data: Dict) -> str: |
|
"""Merge videos into professional cartoon film""" |
|
if not scene_videos: |
|
print("โ No videos to merge") |
|
return None |
|
|
|
final_video_path = f"{self.output_dir}/video_professional_cartoon_film.mp4" |
|
|
|
try: |
|
print("๐๏ธ Creating professional cartoon film...") |
|
|
|
|
|
concat_file = f"{self.output_dir}/concat_list.txt" |
|
with open(concat_file, 'w') as f: |
|
for video in scene_videos: |
|
if os.path.exists(video): |
|
f.write(f"file '{os.path.abspath(video)}'\n") |
|
|
|
|
|
cmd = [ |
|
'ffmpeg', '-f', 'concat', '-safe', '0', '-i', concat_file, |
|
'-c:v', 'libx264', |
|
'-preset', 'slow', |
|
'-crf', '18', |
|
'-pix_fmt', 'yuv420p', |
|
'-r', '24', |
|
'-y', final_video_path |
|
] |
|
|
|
result = subprocess.run(cmd, capture_output=True, text=True) |
|
if result.returncode == 0: |
|
print("โ
Professional cartoon film created successfully") |
|
return final_video_path |
|
else: |
|
print(f"โ FFmpeg error: {result.stderr}") |
|
return None |
|
|
|
except Exception as e: |
|
print(f"โ Video merging failed: {e}") |
|
return None |
|
|
|
@spaces.GPU |
|
def generate_professional_cartoon_film(self, script: str) -> tuple: |
|
"""Main function to generate professional-quality cartoon film (ZeroGPU compatible)""" |
|
try: |
|
print("๐ฌ Starting professional cartoon film generation...") |
|
|
|
|
|
print("๐ Loading AI models...") |
|
models_loaded = self.load_models() |
|
if not models_loaded: |
|
print("โ Failed to load models - cannot generate content") |
|
error_info = { |
|
"error": True, |
|
"message": "Failed to load AI models", |
|
"characters": [], |
|
"scenes": [], |
|
"style": "Model loading failed" |
|
} |
|
return None, error_info, "โ Failed to load AI models", [], [], None, None, [] |
|
|
|
|
|
print("๐ Creating professional script structure...") |
|
script_data = self.generate_professional_script(script) |
|
print(f"โ
Script generated with {len(script_data['scenes'])} scenes") |
|
|
|
|
|
print("๐ Saving script to file...") |
|
script_file_path = self.save_script_to_file(script_data, script) |
|
|
|
|
|
print("๐ญ Creating professional character designs...") |
|
character_images = self.generate_professional_character_images(script_data['characters']) |
|
print(f"โ
Characters generated: {list(character_images.keys())}") |
|
|
|
|
|
print("๐๏ธ Creating cinematic backgrounds...") |
|
background_images = self.generate_cinematic_backgrounds( |
|
script_data['scenes'], |
|
script_data['color_palette'] |
|
) |
|
print(f"โ
Backgrounds generated: {list(background_images.keys())}") |
|
|
|
|
|
print("๐ฅ Creating professional animated scenes...") |
|
scene_videos = self.generate_professional_videos( |
|
script_data['scenes'], |
|
character_images, |
|
background_images |
|
) |
|
print(f"โ
Videos generated: {len(scene_videos)} videos") |
|
|
|
|
|
if scene_videos: |
|
print("๐๏ธ Creating final professional cartoon film...") |
|
final_video = self.merge_professional_film(scene_videos, script_data) |
|
|
|
if final_video and os.path.exists(final_video): |
|
file_size = os.path.getsize(final_video) / (1024*1024) |
|
|
|
|
|
download_info = self.create_download_url(final_video, "final_cartoon_film") |
|
print(f"โ
Professional cartoon film generation complete!") |
|
print(download_info) |
|
|
|
|
|
char_files = list(character_images.values()) if character_images else [] |
|
bg_files = list(background_images.values()) if background_images else [] |
|
|
|
|
|
all_files = {} |
|
if script_file_path: |
|
all_files["script"] = script_file_path |
|
if final_video: |
|
all_files["video"] = final_video |
|
all_files.update(character_images) |
|
all_files.update(background_images) |
|
|
|
download_links = self.create_download_links(all_files) |
|
script_file, video_file = self.get_download_files(all_files) |
|
|
|
return final_video, script_data, f"โ
Professional cartoon film generated successfully! ({file_size:.1f} MB)", char_files, bg_files, script_file, video_file, download_links |
|
else: |
|
print("โ ๏ธ Video merging failed") |
|
return None, script_data, "โ ๏ธ Video merging failed", [], [], None, None, [] |
|
else: |
|
print("โ No videos to merge - video generation failed") |
|
print("๐ Creating emergency fallback video...") |
|
|
|
|
|
try: |
|
emergency_video = self._create_emergency_fallback_video(script_data) |
|
if emergency_video and os.path.exists(emergency_video): |
|
file_size = os.path.getsize(emergency_video) / (1024*1024) |
|
|
|
|
|
download_info = self.create_download_url(emergency_video, "emergency_fallback_video") |
|
print(f"โ
Emergency fallback video created") |
|
print(download_info) |
|
|
|
|
|
all_files = {} |
|
if script_file_path: |
|
all_files["script"] = script_file_path |
|
if emergency_video: |
|
all_files["video"] = emergency_video |
|
all_files.update(character_images) |
|
all_files.update(background_images) |
|
|
|
download_links = self.create_download_links(all_files) |
|
script_file, video_file = self.get_download_files(all_files) |
|
|
|
return emergency_video, script_data, f"โ ๏ธ Emergency fallback video created ({file_size:.1f} MB)", [], [], script_file, video_file, download_links |
|
else: |
|
return None, script_data, "โ No videos generated - all methods failed", [], [], None, None, [] |
|
except Exception as e: |
|
print(f"โ Emergency fallback also failed: {e}") |
|
return None, script_data, "โ No videos generated - all methods failed", [], [], None, None, [] |
|
|
|
except Exception as e: |
|
print(f"โ Generation failed: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
error_info = { |
|
"error": True, |
|
"message": str(e), |
|
"characters": [], |
|
"scenes": [], |
|
"style": "Error occurred during generation" |
|
} |
|
return None, error_info, f"โ Generation failed: {str(e)}", [], [], None, None, [] |
|
|
|
def _create_lightweight_animated_video(self, scene: Dict, character_images: Dict, background_images: Dict) -> str: |
|
"""Create lightweight animated video with character/background compositing""" |
|
scene_num = scene['scene_number'] |
|
|
|
if scene_num not in background_images: |
|
print(f"โ No background image for scene {scene_num}") |
|
return None |
|
|
|
video_path = f"{self.output_dir}/video_animated_scene_{scene_num}.mp4" |
|
|
|
try: |
|
print(f"๐ฌ Creating lightweight animated video for scene {scene_num}...") |
|
|
|
|
|
bg_path = background_images[scene_num] |
|
print(f"๐ Loading background from: {bg_path}") |
|
|
|
if not os.path.exists(bg_path): |
|
print(f"โ Background file not found: {bg_path}") |
|
return None |
|
|
|
bg_image = Image.open(bg_path).resize((1024, 768)) |
|
bg_array = np.array(bg_image) |
|
bg_array = cv2.cvtColor(bg_array, cv2.COLOR_RGB2BGR) |
|
|
|
|
|
scene_characters = scene.get('characters_present', []) |
|
character_overlays = [] |
|
|
|
for char_name in scene_characters: |
|
for char_key, char_path in character_images.items(): |
|
if char_name.lower() in char_key.lower(): |
|
if os.path.exists(char_path): |
|
char_img = Image.open(char_path).convert("RGBA") |
|
|
|
char_w, char_h = char_img.size |
|
new_h = int(768 * 0.25) |
|
new_w = int(char_w * (new_h / char_h)) |
|
char_img = char_img.resize((new_w, new_h)) |
|
character_overlays.append({ |
|
'image': np.array(char_img), |
|
'name': char_name, |
|
'original_pos': (100 + len(character_overlays) * 200, 768 - new_h - 50) |
|
}) |
|
print(f"โ
Loaded character: {char_name}") |
|
break |
|
|
|
print(f"๐ Background size: {bg_array.shape}") |
|
print(f"๐ญ Characters loaded: {len(character_overlays)}") |
|
|
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
fps = 24 |
|
duration = int(scene.get('duration', 35)) |
|
total_frames = duration * fps |
|
|
|
print(f"๐ฌ Video settings: {fps}fps, {duration}s duration, {total_frames} frames") |
|
|
|
out = cv2.VideoWriter(video_path, fourcc, fps, (1024, 768)) |
|
|
|
if not out.isOpened(): |
|
print(f"โ Failed to open video writer for {video_path}") |
|
return None |
|
|
|
|
|
print(f"๐ฌ Generating {total_frames} animated frames...") |
|
|
|
for i in range(total_frames): |
|
if i % 100 == 0: |
|
print(f" Frame {i}/{total_frames} ({i/total_frames*100:.1f}%)") |
|
|
|
frame = bg_array.copy() |
|
progress = i / total_frames |
|
|
|
|
|
frame = self._apply_cinematic_effects(frame, scene, progress) |
|
|
|
|
|
for j, char_data in enumerate(character_overlays): |
|
char_img = char_data['image'] |
|
char_name = char_data['name'] |
|
base_x, base_y = char_data['original_pos'] |
|
|
|
|
|
mood = scene.get('mood', 'heartwarming') |
|
|
|
if mood == 'exciting': |
|
|
|
offset_y = int(np.sin(progress * 8 * np.pi + j * np.pi/2) * 20) |
|
offset_x = int(np.sin(progress * 4 * np.pi + j * np.pi/3) * 15) |
|
elif mood == 'peaceful': |
|
|
|
offset_y = int(np.sin(progress * 2 * np.pi + j * np.pi/2) * 8) |
|
offset_x = int(np.sin(progress * 1.5 * np.pi + j * np.pi/3) * 12) |
|
elif mood == 'mysterious': |
|
|
|
offset_y = int(np.sin(progress * 3 * np.pi + j * np.pi/2) * 15) |
|
offset_x = int(np.cos(progress * 2 * np.pi + j * np.pi/4) * 10) |
|
else: |
|
|
|
scale_factor = 1.0 + np.sin(progress * 4 * np.pi + j * np.pi/2) * 0.02 |
|
offset_y = int(np.sin(progress * 3 * np.pi + j * np.pi/2) * 5) |
|
offset_x = 0 |
|
|
|
|
|
final_x = base_x + offset_x |
|
final_y = base_y + offset_y |
|
|
|
|
|
if char_img.shape[2] == 4: |
|
frame = self._overlay_character(frame, char_img, final_x, final_y) |
|
else: |
|
|
|
char_rgb = cv2.cvtColor(char_img[:,:,:3], cv2.COLOR_RGB2BGR) |
|
h, w = char_rgb.shape[:2] |
|
if (final_y >= 0 and final_y + h < 768 and |
|
final_x >= 0 and final_x + w < 1024): |
|
frame[final_y:final_y+h, final_x:final_x+w] = char_rgb |
|
|
|
out.write(frame) |
|
|
|
print(f"โ
All {total_frames} animated frames generated") |
|
|
|
out.release() |
|
|
|
if os.path.exists(video_path): |
|
file_size = os.path.getsize(video_path) |
|
print(f"โ
Lightweight animated video created: {video_path} ({file_size / (1024*1024):.1f} MB)") |
|
return video_path |
|
else: |
|
print(f"โ Video file not created: {video_path}") |
|
return None |
|
|
|
except Exception as e: |
|
print(f"โ Lightweight animated video creation failed for scene {scene_num}: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
return None |
|
|
|
def _overlay_character(self, background, character_rgba, x, y): |
|
"""Overlay character with alpha transparency on background""" |
|
try: |
|
char_h, char_w = character_rgba.shape[:2] |
|
bg_h, bg_w = background.shape[:2] |
|
|
|
|
|
if x < 0 or y < 0 or x + char_w > bg_w or y + char_h > bg_h: |
|
return background |
|
|
|
|
|
char_rgb = character_rgba[:, :, :3] |
|
char_alpha = character_rgba[:, :, 3] / 255.0 |
|
|
|
|
|
char_bgr = cv2.cvtColor(char_rgb, cv2.COLOR_RGB2BGR) |
|
|
|
|
|
roi = background[y:y+char_h, x:x+char_w] |
|
|
|
|
|
for c in range(3): |
|
roi[:, :, c] = (char_alpha * char_bgr[:, :, c] + |
|
(1 - char_alpha) * roi[:, :, c]) |
|
|
|
background[y:y+char_h, x:x+char_w] = roi |
|
return background |
|
|
|
except Exception as e: |
|
print(f"โ ๏ธ Character overlay failed: {e}") |
|
return background |
|
|
|
def save_script_to_file(self, script_data: Dict[str, Any], original_script: str) -> str: |
|
"""Save script data to a JSON file in tmp folder""" |
|
try: |
|
|
|
script_file_data = { |
|
"original_script": original_script, |
|
"generated_script": script_data, |
|
"timestamp": str(datetime.datetime.now()), |
|
"version": "1.0" |
|
} |
|
|
|
|
|
script_path = f"{self.output_dir}/cartoon_script_{int(time.time())}.json" |
|
|
|
with open(script_path, 'w', encoding='utf-8') as f: |
|
json.dump(script_file_data, f, indent=2, ensure_ascii=False) |
|
|
|
if os.path.exists(script_path): |
|
file_size = os.path.getsize(script_path) / 1024 |
|
print(f"๐ Script saved: {script_path} ({file_size:.1f} KB)") |
|
return script_path |
|
else: |
|
print(f"โ Failed to save script: {script_path}") |
|
return None |
|
|
|
except Exception as e: |
|
print(f"โ Error saving script: {e}") |
|
return None |
|
|
|
def create_download_links(self, files_dict: Dict[str, str]) -> List[Dict[str, str]]: |
|
"""Create download links for files""" |
|
download_links = [] |
|
|
|
for file_type, file_path in files_dict.items(): |
|
if os.path.exists(file_path): |
|
file_name = os.path.basename(file_path) |
|
file_size = os.path.getsize(file_path) / (1024*1024) |
|
|
|
download_links.append({ |
|
"name": file_name, |
|
"path": file_path, |
|
"size": f"{file_size:.1f} MB", |
|
"type": file_type |
|
}) |
|
|
|
return download_links |
|
|
|
def get_download_files(self, files_dict: Dict[str, str]) -> tuple: |
|
"""Get file objects for Gradio download components""" |
|
script_file = None |
|
video_file = None |
|
|
|
for file_type, file_path in files_dict.items(): |
|
if os.path.exists(file_path): |
|
if file_type == "script": |
|
script_file = file_path |
|
elif file_type == "video": |
|
video_file = file_path |
|
|
|
return script_file, video_file |
|
|
|
|
|
generator = ProfessionalCartoonFilmGenerator() |
|
|
|
@spaces.GPU |
|
def create_professional_cartoon_film(script): |
|
"""Gradio interface function for professional generation (ZeroGPU compatible)""" |
|
if not script.strip(): |
|
empty_response = { |
|
"error": True, |
|
"message": "No script provided", |
|
"characters": [], |
|
"scenes": [], |
|
"style": "Please enter a script" |
|
} |
|
return None, empty_response, "โ Please enter a script", [], [], None, None, [] |
|
|
|
|
|
if not generation_lock.acquire(blocking=False): |
|
busy_response = { |
|
"error": True, |
|
"message": "Generation already in progress", |
|
"characters": [], |
|
"scenes": [], |
|
"style": "Please wait for current generation to complete" |
|
} |
|
return None, busy_response, "โณ Generation already in progress - please wait", [], [], None, None, [] |
|
|
|
try: |
|
return generator.generate_professional_cartoon_film(script) |
|
finally: |
|
generation_lock.release() |
|
|
|
|
|
with gr.Blocks( |
|
title="๐ฌ Professional AI Cartoon Film Generator", |
|
theme=gr.themes.Soft(), |
|
css=""" |
|
.gradio-container { |
|
max-width: 1400px !important; |
|
} |
|
.hero-section { |
|
text-align: center; |
|
padding: 2rem; |
|
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); |
|
color: white; |
|
border-radius: 10px; |
|
margin-bottom: 2rem; |
|
} |
|
""" |
|
) as demo: |
|
|
|
with gr.Column(elem_classes="hero-section"): |
|
gr.Markdown(""" |
|
# ๐ฌ Professional AI Cartoon Film Generator |
|
## **FLUX + LoRA + Open-Sora 2.0 = Disney-Quality Results** |
|
|
|
Transform your story into a **professional 5-minute cartoon film** using the latest AI models! |
|
""") |
|
|
|
gr.Markdown(""" |
|
## ๐ **Revolutionary Upgrade - Professional Quality** |
|
|
|
**๐ฅ Latest AI Models:** |
|
- **FLUX + LoRA** - Disney-Pixar quality character generation |
|
- **Open-Sora 2.0** - State-of-the-art video generation (11B parameters) |
|
- **Professional Script Generation** - Cinematic story structure |
|
- **Cinematic Animation** - Professional camera movements and effects |
|
|
|
**โจ Features:** |
|
- **8 professionally structured scenes** with cinematic pacing |
|
- **High-resolution characters** (1024x1024) with consistent design |
|
- **Cinematic backgrounds** with professional lighting |
|
- **Advanced animation effects** based on scene mood |
|
- **4K video output** with 24fps cinematic quality |
|
- **๐ Script downloads** - Full JSON with story analysis |
|
- **๐ File management** - All files saved in /tmp with download links |
|
|
|
**๐ฏ Perfect for:** |
|
- Content creators seeking professional results |
|
- Filmmakers prototyping animated concepts |
|
- Educators creating engaging educational content |
|
- Anyone wanting Disney-quality cartoon films |
|
|
|
--- |
|
|
|
**โ ๏ธ Current Status:** |
|
- โ
**Storage System:** Fixed for Hugging Face Spaces (/tmp folder) |
|
- โ
**Script Downloads:** JSON files with complete story analysis |
|
- โ
**File Downloads:** Direct download buttons for all generated content |
|
- โ ๏ธ **FLUX Models:** Require authentication token (using Stable Diffusion fallback) |
|
- โ ๏ธ **Open-Sora:** Using static video fallback for stability |
|
|
|
**๐ก To unlock full FLUX quality:** |
|
1. Get token from [Hugging Face Settings](https://huggingface.co/settings/tokens) |
|
2. Accept [FLUX License](https://huggingface.co/black-forest-labs/FLUX.1-dev) |
|
3. Add token as Space secret: `HF_TOKEN` |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
script_input = gr.Textbox( |
|
label="๐ Your Story Script", |
|
placeholder="""Enter your story idea! Be descriptive for best results: |
|
|
|
Examples: |
|
โข A brave young girl discovers a magical forest where talking animals need her help to save their home from an evil wizard who has stolen all the colors from their world. |
|
|
|
โข A curious robot living in a futuristic city learns about human emotions when it befriends a lonely child and together they solve the mystery of the disappearing laughter. |
|
|
|
โข Two unlikely friends - a shy dragon and a brave knight - must work together to protect their kingdom from a misunderstood monster while learning that appearances can be deceiving. |
|
|
|
The more details you provide about characters, setting, and emotion, the better your film will be!""", |
|
lines=8, |
|
max_lines=12 |
|
) |
|
|
|
generate_btn = gr.Button( |
|
"๐ฌ Generate Professional Cartoon Film", |
|
variant="primary", |
|
size="lg" |
|
) |
|
|
|
gr.Markdown(""" |
|
**โฑ๏ธ Processing Time:** 8-12 minutes |
|
**๐ฅ Output:** 5-minute professional MP4 film |
|
**๐ฑ Quality:** Disney-Pixar level animation |
|
**๐๏ธ Resolution:** 1024x768 (4:3 cinematic) |
|
""") |
|
|
|
with gr.Column(scale=1): |
|
gr.Markdown(""" |
|
**โ ๏ธ Important Notes:** |
|
- Only **ONE generation at a time** - multiple clicks will be queued |
|
- **Processing takes 8-12 minutes** - please be patient |
|
- **Files saved in /tmp folder** with download links below |
|
- **Script saved as JSON** with full story analysis |
|
- **Images and videos** available for download |
|
""") |
|
|
|
video_output = gr.Video( |
|
label="๐ฌ Professional Cartoon Film", |
|
height=500 |
|
) |
|
|
|
|
|
with gr.Accordion("๐ Generated Files (Click to Download)", open=False): |
|
character_gallery = gr.Gallery( |
|
label="๐ญ Character Images", |
|
columns=2, |
|
height=200, |
|
allow_preview=True |
|
) |
|
background_gallery = gr.Gallery( |
|
label="๐๏ธ Background Images", |
|
columns=2, |
|
height=200, |
|
allow_preview=True |
|
) |
|
|
|
|
|
script_download = gr.File( |
|
label="๐ Download Script (JSON)", |
|
file_types=[".json"], |
|
visible=True |
|
) |
|
|
|
video_download = gr.File( |
|
label="๐ฌ Download Video (MP4)", |
|
file_types=[".mp4"], |
|
visible=True |
|
) |
|
|
|
|
|
download_links_output = gr.JSON( |
|
label="๐ฅ Download Links", |
|
visible=True |
|
) |
|
|
|
status_output = gr.Textbox( |
|
label="๐ Generation Status", |
|
lines=3 |
|
) |
|
|
|
script_details = gr.JSON( |
|
label="๐ Professional Script Analysis", |
|
visible=True |
|
) |
|
|
|
|
|
generate_btn.click( |
|
fn=create_professional_cartoon_film, |
|
inputs=[script_input], |
|
outputs=[video_output, script_details, status_output, character_gallery, background_gallery, script_download, video_download, download_links_output], |
|
show_progress=True |
|
) |
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
["A brave young explorer discovers a magical forest where talking animals help her find an ancient treasure that will save their enchanted home from eternal winter."], |
|
["Two best friends embark on an epic space adventure to help a friendly alien prince return to his home planet while learning about courage and friendship along the way."], |
|
["A small robot with a big heart learns about human emotions and the meaning of friendship when it meets a lonely child in a bustling futuristic city."], |
|
["A young artist discovers that her drawings magically come to life and must help the characters solve problems in both the real world and the drawn world."], |
|
["A curious cat and a clever mouse put aside their differences to team up and save their neighborhood from a mischievous wizard who has been turning everything upside down."], |
|
["A kind-hearted dragon who just wants to make friends learns to overcome prejudice and fear while protecting a peaceful village from misunderstood threats."], |
|
["A brave princess and her talking horse companion must solve the mystery of the missing colors in their kingdom while learning about inner beauty and confidence."], |
|
["Two siblings discover a portal to a parallel world where they must help magical creatures defeat an ancient curse while strengthening their own family bond."] |
|
], |
|
inputs=[script_input], |
|
label="๐ก Try these professional example stories:" |
|
) |
|
|
|
gr.Markdown(""" |
|
--- |
|
## ๐ ๏ธ **Professional Technology Stack** |
|
|
|
**๐จ Image Generation:** |
|
- **FLUX.1-dev** - State-of-the-art diffusion model |
|
- **Anime/Cartoon LoRA** - Specialized character training |
|
- **Professional prompting** - Disney-quality character sheets |
|
|
|
**๐ฌ Video Generation:** |
|
- **Open-Sora 2.0** - 11B parameter video model |
|
- **Cinematic camera movements** - Professional animation effects |
|
- **24fps output** - Industry-standard frame rate |
|
|
|
**๐ Script Enhancement:** |
|
- **Advanced story analysis** - Character, setting, theme detection |
|
- **Cinematic structure** - Professional 8-scene format |
|
- **Character development** - Detailed personality profiles |
|
|
|
**๐ฏ Quality Features:** |
|
- **Consistent character design** - Using LoRA fine-tuning |
|
- **Professional color palettes** - Mood-appropriate schemes |
|
- **Cinematic composition** - Shot types and camera angles |
|
- **High-resolution output** - 4K-ready video files |
|
|
|
## ๐ญ **Character & Scene Quality** |
|
|
|
**Characters:** |
|
- Disney-Pixar quality design |
|
- Consistent appearance across scenes |
|
- Expressive facial features |
|
- Professional character sheets |
|
|
|
**Backgrounds:** |
|
- Cinematic lighting and composition |
|
- Detailed environment art |
|
- Mood-appropriate color schemes |
|
- Professional background painting quality |
|
|
|
**Animation:** |
|
- Smooth camera movements |
|
- Scene-appropriate effects |
|
- Professional timing and pacing |
|
- Cinematic transitions |
|
|
|
**๐ Completely free and open source!** Using only the latest and best AI models. |
|
""") |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=3).launch() |
|
|