import gradio as gr import torch import numpy as np import cv2 from PIL import Image import json import os from typing import List, Dict, Any import tempfile import subprocess from pathlib import Path import spaces import gc from huggingface_hub import hf_hub_download import threading import datetime import time # ZeroGPU-compatible imports from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from diffusers import ( StableDiffusionPipeline, DDIMScheduler, DPMSolverMultistepScheduler ) import soundfile as sf import requests # ZeroGPU compatibility - disable GPU-specific optimizations FLASH_ATTN_AVAILABLE = False TRITON_AVAILABLE = False print("āš ļø ZeroGPU mode - using CPU-optimized operations") # Global lock to prevent concurrent generations generation_lock = threading.Lock() class ProfessionalCartoonFilmGenerator: def __init__(self): # ZeroGPU compatibility - force CPU usage self.device = "cpu" self.dtype = torch.float32 # Use float32 for CPU compatibility # Use /tmp directory for Hugging Face Spaces storage self.output_dir = "/tmp" print(f"šŸ“ Using Hugging Face temp directory: {self.output_dir}") # Model configurations for ZeroGPU optimization self.models_loaded = False self.flux_available = False self.flux_pipe = None self.sd_pipe = None self.script_model = None self.script_tokenizer = None @spaces.GPU def load_models(self): """Load ZeroGPU-compatible models for professional generation""" try: print("šŸš€ Loading ZeroGPU-compatible models...") # Clear memory gc.collect() print(f"šŸŽ® Using device: {self.device} with dtype: {self.dtype}") # Load Stable Diffusion (CPU optimized) print("šŸ”„ Loading Stable Diffusion (CPU optimized)...") from diffusers import StableDiffusionPipeline, DDIMScheduler self.sd_pipe = StableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", torch_dtype=self.dtype, safety_checker=None, requires_safety_checker=False, device_map=None # Force CPU usage ) # Configure scheduler for better quality self.sd_pipe.scheduler = DDIMScheduler.from_config(self.sd_pipe.scheduler.config) # Force CPU usage for ZeroGPU self.sd_pipe = self.sd_pipe.to("cpu") self.sd_pipe.enable_sequential_cpu_offload() # Memory optimization print("āœ… Loaded Stable Diffusion v1.4 (CPU optimized)") # Load script enhancement model (CPU optimized) print("šŸ“ Loading script enhancement model...") self.script_model = AutoModelForCausalLM.from_pretrained( "microsoft/DialoGPT-medium", torch_dtype=self.dtype, device_map=None # Force CPU usage ) self.script_tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") if self.script_tokenizer.pad_token is None: self.script_tokenizer.pad_token = self.script_tokenizer.eos_token # Force CPU usage self.script_model = self.script_model.to("cpu") print(f"Device set to use {self.device}") print("āœ… Script enhancer loaded (CPU optimized)") print("šŸŽ¬ All ZeroGPU-compatible models loaded!") return True except Exception as e: print(f"āŒ Model loading failed: {e}") import traceback traceback.print_exc() return False def clear_gpu_memory(self): """Clear memory (CPU-focused for ZeroGPU)""" gc.collect() def optimize_prompt_for_clip(self, prompt: str, max_tokens: int = 70) -> str: """Optimize prompt to fit within CLIP token limit""" try: # Simple word-based token estimation (CLIP uses ~1.3 words per token) words = prompt.split() if len(words) <= max_tokens: return prompt # Truncate to fit within token limit optimized_words = words[:max_tokens] optimized_prompt = " ".join(optimized_words) print(f"šŸ“ Prompt optimized: {len(words)} words → {len(optimized_words)} words") return optimized_prompt except Exception as e: print(f"āš ļø Prompt optimization failed: {e}") # Fallback: return first 50 words words = prompt.split() return " ".join(words[:50]) def create_download_url(self, file_path: str, file_type: str = "file") -> str: """Create download info for generated content""" try: file_name = os.path.basename(file_path) file_size = os.path.getsize(file_path) / (1024*1024) # Note: Temp files cannot be accessed via direct URLs in Hugging Face Spaces download_info = f"šŸ“„ Generated {file_type}: {file_name}" download_info += f"\n šŸ“Š File size: {file_size:.1f} MB" download_info += f"\n āš ļø Note: Use Gradio File output component to download" download_info += f"\n šŸ“ Internal path: {file_path}" return download_info except Exception as e: return f"šŸ“„ Generated {file_type} (download info unavailable: {e})" def generate_professional_script(self, user_input: str) -> Dict[str, Any]: """Generate a professional cartoon script with detailed character development""" # Advanced script analysis words = user_input.lower().split() # Character analysis main_character = self._analyze_main_character(words) setting = self._analyze_setting(words) theme = self._analyze_theme(words) genre = self._analyze_genre(words) mood = self._analyze_mood(words) # Generate sophisticated character profiles characters = self._create_detailed_characters(main_character, theme, genre) # Create professional story structure (8 scenes for perfect pacing) scenes = self._create_cinematic_scenes(characters, setting, theme, genre, mood, user_input) return { "title": f"The {theme.title()}: A {genre.title()} Adventure", "genre": genre, "mood": mood, "theme": theme, "characters": characters, "scenes": scenes, "setting": setting, "style": f"Professional 2D cartoon animation in {genre} style with cinematic lighting and expressive character animation", "color_palette": self._generate_color_palette(mood, genre), "animation_notes": f"Focus on {mood} expressions, smooth character movement, and detailed background art" } def _analyze_main_character(self, words): """Sophisticated character analysis""" if any(word in words for word in ['girl', 'woman', 'princess', 'heroine', 'daughter', 'sister']): return "brave young heroine" elif any(word in words for word in ['boy', 'man', 'hero', 'prince', 'son', 'brother']): return "courageous young hero" elif any(word in words for word in ['robot', 'android', 'cyborg', 'machine', 'ai']): return "friendly robot character" elif any(word in words for word in ['cat', 'dog', 'fox', 'bear', 'wolf', 'animal']): return "adorable animal protagonist" elif any(word in words for word in ['dragon', 'fairy', 'wizard', 'witch', 'magic']): return "magical creature" elif any(word in words for word in ['alien', 'space', 'star', 'galaxy']): return "curious alien visitor" else: return "charming protagonist" def _analyze_setting(self, words): """Advanced setting analysis""" if any(word in words for word in ['forest', 'woods', 'trees', 'jungle', 'nature']): return "enchanted forest with mystical atmosphere" elif any(word in words for word in ['city', 'town', 'urban', 'street', 'building']): return "vibrant bustling city with colorful architecture" elif any(word in words for word in ['space', 'stars', 'planet', 'galaxy', 'cosmic']): return "spectacular cosmic landscape with nebulae and distant planets" elif any(word in words for word in ['ocean', 'sea', 'underwater', 'beach', 'water']): return "beautiful underwater world with coral reefs" elif any(word in words for word in ['mountain', 'cave', 'valley', 'cliff']): return "majestic mountain landscape with dramatic vistas" elif any(word in words for word in ['castle', 'kingdom', 'palace', 'medieval']): return "magical kingdom with towering castle spires" elif any(word in words for word in ['school', 'classroom', 'library', 'study']): return "charming school environment with warm lighting" else: return "wonderfully imaginative fantasy world" def _analyze_theme(self, words): """Identify story themes""" if any(word in words for word in ['friend', 'friendship', 'help', 'together', 'team']): return "power of friendship" elif any(word in words for word in ['treasure', 'find', 'search', 'discover', 'quest']): return "epic treasure quest" elif any(word in words for word in ['save', 'rescue', 'protect', 'danger', 'hero']): return "heroic rescue mission" elif any(word in words for word in ['magic', 'magical', 'spell', 'wizard', 'enchant']): return "magical discovery" elif any(word in words for word in ['learn', 'grow', 'change', 'journey']): return "journey of self-discovery" elif any(word in words for word in ['family', 'home', 'parent', 'love']): return "importance of family" else: return "heartwarming adventure" def _analyze_genre(self, words): """Determine animation genre""" if any(word in words for word in ['adventure', 'quest', 'journey', 'explore']): return "adventure" elif any(word in words for word in ['funny', 'comedy', 'laugh', 'silly', 'humor']): return "comedy" elif any(word in words for word in ['magic', 'fantasy', 'fairy', 'wizard', 'enchant']): return "fantasy" elif any(word in words for word in ['space', 'robot', 'future', 'sci-fi', 'technology']): return "sci-fi" elif any(word in words for word in ['mystery', 'secret', 'solve', 'detective']): return "mystery" else: return "family-friendly" def _analyze_mood(self, words): """Determine overall mood""" if any(word in words for word in ['happy', 'joy', 'fun', 'celebrate', 'party']): return "joyful" elif any(word in words for word in ['exciting', 'thrill', 'adventure', 'fast']): return "exciting" elif any(word in words for word in ['peaceful', 'calm', 'gentle', 'quiet']): return "peaceful" elif any(word in words for word in ['mysterious', 'secret', 'hidden', 'unknown']): return "mysterious" elif any(word in words for word in ['brave', 'courage', 'strong', 'bold']): return "inspiring" else: return "heartwarming" def _create_detailed_characters(self, main_char, theme, genre): """Create detailed character profiles""" characters = [] # Main character with detailed description main_desc = f"Professional cartoon-style {main_char} with large expressive eyes, detailed facial features, vibrant clothing, Disney-Pixar quality design, {genre} aesthetic, highly detailed" characters.append({ "name": main_char, "description": main_desc, "personality": f"brave, kind, determined, optimistic, perfect for {theme}", "role": "protagonist", "animation_style": "lead character quality with detailed expressions" }) # Supporting character support_desc = f"Charming cartoon companion with warm personality, detailed character design, complementary colors to main character, {genre} style, supporting role" characters.append({ "name": "loyal companion", "description": support_desc, "personality": "wise, encouraging, helpful, comic relief", "role": "supporting", "animation_style": "high-quality supporting character design" }) # Optional antagonist for conflict if theme in ["heroic rescue mission", "epic treasure quest"]: antag_desc = f"Cartoon antagonist with distinctive design, not too scary for family audience, {genre} villain aesthetic, detailed character work" characters.append({ "name": "misguided opponent", "description": antag_desc, "personality": "misunderstood, redeemable, provides conflict", "role": "antagonist", "animation_style": "memorable villain design" }) return characters def _create_cinematic_scenes(self, characters, setting, theme, genre, mood, user_input): """Create cinematically structured scenes""" main_char = characters[0]["name"] companion = characters[1]["name"] if len(characters) > 1 else "friend" # Professional scene templates with cinematic structure scene_templates = [ { "title": "Opening - World Introduction", "description": f"Establish the {setting} and introduce our {main_char} in their daily life", "purpose": "world-building and character introduction", "shot_type": "wide establishing shot transitioning to character focus" }, { "title": "Inciting Incident", "description": f"The {main_char} discovers the central challenge of {theme}", "purpose": "plot catalyst and character motivation", "shot_type": "close-up on character reaction, dramatic lighting" }, { "title": "Call to Adventure", "description": f"Meeting the {companion} and deciding to embark on the journey", "purpose": "relationship building and commitment to quest", "shot_type": "medium shots showing character interaction" }, { "title": "First Challenge", "description": f"Encountering the first obstacle in their {theme} journey", "purpose": "establish stakes and character growth", "shot_type": "dynamic action shots with dramatic angles" }, { "title": "Moment of Doubt", "description": f"The {main_char} faces setbacks and questions their ability", "purpose": "character vulnerability and emotional depth", "shot_type": "intimate character shots with emotional lighting" }, { "title": "Renewed Determination", "description": f"With support from {companion}, finding inner strength", "purpose": "character development and relationship payoff", "shot_type": "inspiring medium shots with uplifting composition" }, { "title": "Climactic Confrontation", "description": f"The final challenge of the {theme} reaches its peak", "purpose": "climax and character triumph", "shot_type": "epic wide shots and dynamic action sequences" }, { "title": "Resolution and Growth", "description": f"Celebrating success and reflecting on growth in {setting}", "purpose": "satisfying conclusion and character arc completion", "shot_type": "warm, celebratory shots returning to establishing setting" } ] scenes = [] for i, template in enumerate(scene_templates): lighting = ["golden hour sunrise", "bright daylight", "warm afternoon", "dramatic twilight", "moody evening", "hopeful dawn", "epic sunset", "peaceful twilight"][i] scenes.append({ "scene_number": i + 1, "title": template["title"], "description": template["description"], "characters_present": [main_char] if i % 3 == 0 else [main_char, companion], "dialogue": [ {"character": main_char, "text": f"This scene focuses on {template['purpose']} with {mood} emotion."} ], "background": f"{setting} with {lighting} lighting, cinematic composition", "mood": mood, "duration": "35", # Slightly longer for better pacing "shot_type": template["shot_type"], "animation_notes": f"Focus on {template['purpose']} with professional character animation" }) return scenes def _generate_color_palette(self, mood, genre): """Generate appropriate color palette""" palettes = { "joyful": "bright yellows, warm oranges, sky blues, fresh greens", "exciting": "vibrant reds, electric blues, energetic purples, bright whites", "peaceful": "soft pastels, gentle greens, calming blues, warm creams", "mysterious": "deep purples, twilight blues, shadowy grays, moonlight silver", "inspiring": "bold blues, confident reds, golden yellows, pure whites" } return palettes.get(mood, "balanced warm and cool tones") @spaces.GPU def generate_professional_character_images(self, characters: List[Dict]) -> Dict[str, str]: """Generate professional character images with consistency (ZeroGPU compatible)""" character_images = {} print(f"šŸŽ­ Generating {len(characters)} professional character designs...") # Check if we have Stable Diffusion pipeline available if not hasattr(self, 'sd_pipe') or self.sd_pipe is None: print("āŒ Stable Diffusion not loaded - please call load_models() first") return character_images pipeline = self.sd_pipe model_name = "Stable Diffusion (CPU)" print(f"šŸŽØ Using {model_name} for character generation") for character in characters: character_name = character['name'] print(f"\nšŸŽØ Generating character: {character_name}") try: # Build comprehensive character prompt for CPU generation base_prompt = f"Professional cartoon character design, {character['name']}, {character['description']}" # CPU-optimized prompt prompt = f"{base_prompt}, anime style, cartoon character, clean background, high quality, detailed, 2D animation style, character sheet, simple design" # Optimize prompt for CLIP prompt = self.optimize_prompt_for_clip(prompt, max_tokens=60) # Shorter for CPU print(f"šŸ“ Character prompt: {prompt}") # CPU-optimized generation settings image = pipeline( prompt=prompt, width=512, # Smaller for CPU height=512, num_inference_steps=20, # Fewer steps for CPU guidance_scale=7.5, generator=torch.Generator(device="cpu").manual_seed(42) ).images[0] # Upscale for better quality image = image.resize((1024, 1024), Image.Resampling.LANCZOS) # Save character image char_path = f"{self.output_dir}/char_{character['name'].replace(' ', '_')}.png" image.save(char_path) # Verify file was created if os.path.exists(char_path): file_size = os.path.getsize(char_path) character_images[character_name] = char_path # Create download URL download_info = self.create_download_url(char_path, f"character_{character['name']}") print(f"šŸ“„ Generated character_{character['name']}: char_{character['name'].replace(' ', '_')}.png") print(f" šŸ“Š File size: {file_size / (1024*1024):.1f} MB") print(f" šŸ“ Internal path: {char_path}") print(download_info) # Clear memory after each generation gc.collect() else: print(f"āŒ Failed to save character image: {char_path}") except Exception as e: print(f"āŒ Error generating character {character_name}: {e}") import traceback traceback.print_exc() # Continue with next character continue print(f"\nšŸ“Š Character generation summary:") print(f" - Characters requested: {len(characters)}") print(f" - Characters generated: {len(character_images)}") print(f" - Success rate: {len(character_images)/len(characters)*100:.1f}%") return character_images @spaces.GPU def generate_cinematic_backgrounds(self, scenes: List[Dict], color_palette: str) -> Dict[int, str]: """Generate professional cinematic backgrounds for each scene (ZeroGPU compatible)""" background_images = {} print(f"šŸŽžļø Generating {len(scenes)} cinematic backgrounds...") # Check if we have Stable Diffusion pipeline available if not hasattr(self, 'sd_pipe') or self.sd_pipe is None: print("āŒ Stable Diffusion not loaded - please call load_models() first") return background_images pipeline = self.sd_pipe model_name = "Stable Diffusion (CPU)" print(f"šŸŽØ Using {model_name} for background generation") for scene in scenes: scene_num = scene['scene_number'] print(f"\nšŸŒ„ Generating background for scene {scene_num}") try: # Build cinematic background prompt for CPU generation background_desc = scene['background'] mood = scene.get('mood', 'neutral') shot_type = scene.get('shot_type', 'medium shot') lighting = scene.get('lighting', 'natural lighting') base_prompt = f"Cinematic background scene, {background_desc}, {mood} atmosphere, {lighting}" # CPU-optimized prompt prompt = f"{base_prompt}, anime style background, detailed landscape, high quality, cinematic, {color_palette} color palette, no people, simple design" # Optimize for CLIP prompt = self.optimize_prompt_for_clip(prompt, max_tokens=60) # Shorter for CPU print(f"šŸ“ Background prompt: {prompt}") # CPU-optimized generation settings image = pipeline( prompt=prompt, width=512, # Smaller for CPU height=384, # 4:3 aspect ratio num_inference_steps=20, # Fewer steps for CPU guidance_scale=7.5, generator=torch.Generator(device="cpu").manual_seed(scene_num * 10) ).images[0] # Upscale for better quality image = image.resize((1024, 768), Image.Resampling.LANCZOS) # Save background image bg_path = f"{self.output_dir}/bg_scene_{scene_num}.png" image.save(bg_path) # Verify file was created if os.path.exists(bg_path): file_size = os.path.getsize(bg_path) background_images[scene_num] = bg_path # Create download URL download_info = self.create_download_url(bg_path, f"background_scene_{scene_num}") print(f"šŸ“„ Generated background_scene_{scene_num}: bg_scene_{scene_num}.png") print(f" šŸ“Š File size: {file_size / (1024*1024):.1f} MB") print(f" šŸ“ Internal path: {bg_path}") print(download_info) # Clear memory after each generation gc.collect() else: print(f"āŒ Failed to save background image: {bg_path}") except Exception as e: print(f"āŒ Error generating background for scene {scene['scene_number']}: {e}") import traceback traceback.print_exc() # Continue with next scene continue print(f"\nšŸ“Š Background generation summary:") print(f" - Scenes requested: {len(scenes)}") print(f" - Backgrounds generated: {len(background_images)}") print(f" - Success rate: {len(background_images)/len(scenes)*100:.1f}%") return background_images def setup_opensora_for_video(self): """Setup Open-Sora for professional video generation""" try: print("šŸŽ¬ Setting up Open-Sora 2.0 for video generation...") # Import torch here to avoid the UnboundLocalError import torch # Check available GPU memory if torch.cuda.is_available(): gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3) print(f"šŸŽ® Available GPU memory: {gpu_memory:.1f} GB") if gpu_memory < 16: print("āš ļø Warning: Open-Sora requires 16GB+ GPU memory for stable operation") # Check if we're already in the right directory current_dir = os.getcwd() opensora_dir = os.path.join(current_dir, "Open-Sora") # Clone Open-Sora repository if it doesn't exist if not os.path.exists(opensora_dir): print("šŸ“„ Cloning Open-Sora repository...") try: result = subprocess.run([ "git", "clone", "https://github.com/hpcaitech/Open-Sora.git" ], check=True, capture_output=True, text=True, timeout=120) print("āœ… Repository cloned successfully") except subprocess.TimeoutExpired: print("āŒ Repository cloning timed out") return False except subprocess.CalledProcessError as e: print(f"āŒ Repository cloning failed: {e.stderr}") return False # Check if the repository was cloned successfully if not os.path.exists(opensora_dir): print("āŒ Failed to clone Open-Sora repository") return False # Check for required scripts script_path = os.path.join(opensora_dir, "scripts/diffusion/inference.py") config_path = os.path.join(opensora_dir, "configs/diffusion/inference/t2i2v_256px.py") print(f"šŸ“ Checking for script: {script_path}") print(f"šŸ“ Checking for config: {config_path}") if not os.path.exists(script_path): print(f"āŒ Required script not found: {script_path}") # List available files for debugging scripts_dir = os.path.join(opensora_dir, "scripts") if os.path.exists(scripts_dir): print(f"šŸ“ Available in scripts/: {os.listdir(scripts_dir)}") return False if not os.path.exists(config_path): print(f"āŒ Required config not found: {config_path}") # List available configs for debugging configs_dir = os.path.join(opensora_dir, "configs") if os.path.exists(configs_dir): print(f"šŸ“ Available in configs/: {os.listdir(configs_dir)}") return False # Check if model weights exist ckpts_dir = os.path.join(opensora_dir, "ckpts") if not os.path.exists(ckpts_dir): print("šŸ“„ Downloading Open-Sora 2.0 model...") try: # Use smaller timeout and check if huggingface-cli is available result = subprocess.run([ "huggingface-cli", "download", "hpcai-tech/Open-Sora-v2", "--local-dir", ckpts_dir ], check=True, capture_output=True, text=True, timeout=300) print("āœ… Model downloaded successfully") except subprocess.TimeoutExpired: print("āŒ Model download timed out (5 minutes)") return False except subprocess.CalledProcessError as e: print(f"āŒ Model download failed: {e.stderr}") return False except FileNotFoundError: print("āŒ huggingface-cli not found - cannot download model") return False else: print("āœ… Model weights already exist") # Check dependencies try: import torch.distributed print("āœ… torch.distributed available") except ImportError: print("āŒ torch.distributed not available") return False # Test if torchrun is available try: result = subprocess.run(["torchrun", "--help"], capture_output=True, text=True, timeout=10) if result.returncode == 0: print("āœ… torchrun available") else: print("āŒ torchrun not working properly") return False except (subprocess.TimeoutExpired, FileNotFoundError): print("āŒ torchrun not found") return False print("āœ… Open-Sora setup completed") return True except Exception as e: print(f"āŒ Open-Sora setup failed: {e}") import traceback traceback.print_exc() return False @spaces.GPU def generate_professional_videos(self, scenes: List[Dict], character_images: Dict, background_images: Dict) -> List[str]: """Generate professional videos using Open-Sora 2.0""" scene_videos = [] print(f"šŸŽ„ Starting video generation for {len(scenes)} scenes...") print(f"šŸ“ Background images available: {list(background_images.keys())}") # Try to use Open-Sora for professional video generation opensora_available = self.setup_opensora_for_video() print(f"šŸŽ¬ Open-Sora available: {opensora_available}") for scene in scenes: scene_num = scene['scene_number'] print(f"\nšŸŽ¬ Processing scene {scene_num}...") try: if opensora_available: print(f"šŸŽ¬ Attempting Open-Sora generation for scene {scene_num}...") video_path = self._generate_opensora_video(scene, character_images, background_images) if video_path: print(f"āœ… Open-Sora video generated for scene {scene_num}") else: print(f"āŒ Open-Sora failed for scene {scene_num}, trying lightweight animation...") video_path = self._create_lightweight_animated_video(scene, character_images, background_images) if not video_path: print(f"šŸ”„ Lightweight animation failed, trying static video...") video_path = self._create_professional_static_video(scene, background_images) # If professional video fails, try simple video if not video_path: print(f"šŸ”„ All methods failed, trying simple video for scene {scene_num}...") video_path = self._create_simple_static_video(scene, background_images) else: print(f"šŸŽ¬ Open-Sora not available, using lightweight animation for scene {scene_num}...") # First try lightweight animation, then fallback to static video_path = self._create_lightweight_animated_video(scene, character_images, background_images) if not video_path: print(f"šŸ”„ Lightweight animation failed, using static video fallback...") video_path = self._create_professional_static_video(scene, background_images) if video_path and os.path.exists(video_path): scene_videos.append(video_path) # Create download URL for video download_info = self.create_download_url(video_path, f"video_scene_{scene_num}") print(f"āœ… Generated professional video for scene {scene_num}") print(download_info) else: print(f"āŒ No video generated for scene {scene_num}") except Exception as e: print(f"āŒ Error in scene {scene_num}: {e}") # Create fallback video if scene_num in background_images: print(f"šŸ†˜ Creating emergency fallback for scene {scene_num}...") try: video_path = self._create_professional_static_video(scene, background_images) if video_path and os.path.exists(video_path): scene_videos.append(video_path) print(f"āœ… Emergency fallback video created for scene {scene_num}") except Exception as e2: print(f"āŒ Emergency fallback also failed for scene {scene_num}: {e2}") print(f"\nšŸ“Š Video generation summary:") print(f" - Scenes processed: {len(scenes)}") print(f" - Videos generated: {len(scene_videos)}") print(f" - Videos list: {scene_videos}") return scene_videos def _generate_opensora_video(self, scene: Dict, character_images: Dict, background_images: Dict) -> str: """Generate video using Open-Sora 2.0""" try: characters_text = ", ".join(scene['characters_present']) # Professional prompt for Open-Sora (optimized for CLIP token limit) characters_text = characters_text[:60] # Limit character text background_desc = scene['background'][:60] mood = scene['mood'][:20] shot_type = scene.get('shot_type', 'medium shot')[:15] animation_notes = scene.get('animation_notes', 'high-quality animation')[:30] prompt = f"Professional 2D cartoon animation, {characters_text} in {background_desc}, {mood} mood, {shot_type}, smooth animation, Disney quality, cinematic lighting, {animation_notes}" # Use the optimization function to ensure CLIP compatibility prompt = self.optimize_prompt_for_clip(prompt) print(f"šŸŽ¬ Open-Sora prompt: {prompt}") video_path = f"{self.output_dir}/video_scene_{scene['scene_number']}.mp4" # Get the correct Open-Sora directory current_dir = os.getcwd() opensora_dir = os.path.join(current_dir, "Open-Sora") if not os.path.exists(opensora_dir): print("āŒ Open-Sora directory not found") return None # Check for required files script_path = os.path.join(opensora_dir, "scripts/diffusion/inference.py") config_path = os.path.join(opensora_dir, "configs/diffusion/inference/t2i2v_256px.py") if not os.path.exists(script_path): print(f"āŒ Open-Sora script not found: {script_path}") return None if not os.path.exists(config_path): print(f"āŒ Open-Sora config not found: {config_path}") return None # Run Open-Sora inference cmd = [ "torchrun", "--nproc_per_node", "1", "--standalone", "scripts/diffusion/inference.py", "configs/diffusion/inference/t2i2v_256px.py", "--save-dir", self.output_dir, "--prompt", prompt, "--num_frames", "25", # ~1 second at 25fps "--aspect_ratio", "4:3", "--motion-score", "6" # High motion for dynamic scenes ] print(f"šŸŽ¬ Running Open-Sora command: {' '.join(cmd)}") result = subprocess.run(cmd, capture_output=True, text=True, cwd=opensora_dir, timeout=300) print(f"šŸŽ¬ Open-Sora return code: {result.returncode}") if result.stdout: print(f"šŸŽ¬ Open-Sora stdout: {result.stdout}") if result.stderr: print(f"āŒ Open-Sora stderr: {result.stderr}") if result.returncode == 0: # Find generated video file for file in os.listdir(self.output_dir): if file.endswith('.mp4') and 'scene' not in file: src_path = os.path.join(self.output_dir, file) os.rename(src_path, video_path) print(f"āœ… Open-Sora video generated: {video_path}") return video_path print("āŒ Open-Sora completed but no video file found") return None else: print(f"āŒ Open-Sora failed with return code: {result.returncode}") return None except subprocess.TimeoutExpired: print("āŒ Open-Sora generation timed out (5 minutes)") return None except Exception as e: print(f"āŒ Open-Sora generation failed: {e}") import traceback traceback.print_exc() return None def _create_professional_static_video(self, scene: Dict, background_images: Dict) -> str: """Create professional static video with advanced effects""" scene_num = scene['scene_number'] if scene_num not in background_images: print(f"āŒ No background image for scene {scene_num}") return None video_path = f"{self.output_dir}/video_scene_{scene_num}.mp4" try: print(f"šŸŽ¬ Creating static video for scene {scene_num}...") # Load background image bg_path = background_images[scene_num] print(f"šŸ“ Loading background from: {bg_path}") if not os.path.exists(bg_path): print(f"āŒ Background file not found: {bg_path}") return None image = Image.open(bg_path) img_array = np.array(image.resize((1024, 768))) # 4:3 aspect ratio img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR) print(f"šŸ“ Image size: {img_array.shape}") # Professional video settings fourcc = cv2.VideoWriter_fourcc(*'mp4v') fps = 24 # Cinematic frame rate duration = int(scene.get('duration', 35)) total_frames = duration * fps print(f"šŸŽ¬ Video settings: {fps}fps, {duration}s duration, {total_frames} frames") out = cv2.VideoWriter(video_path, fourcc, fps, (1024, 768)) if not out.isOpened(): print(f"āŒ Failed to open video writer for {video_path}") return None # Advanced animation effects based on scene mood and type print(f"šŸŽ¬ Generating {total_frames} frames...") for i in range(total_frames): if i % 100 == 0: # Progress update every 100 frames print(f" Frame {i}/{total_frames} ({i/total_frames*100:.1f}%)") frame = img_array.copy() progress = i / total_frames # Apply professional animation effects frame = self._apply_cinematic_effects(frame, scene, progress) out.write(frame) print(f"āœ… All {total_frames} frames generated") out.release() if os.path.exists(video_path): file_size = os.path.getsize(video_path) print(f"āœ… Static video created: {video_path} ({file_size / (1024*1024):.1f} MB)") return video_path else: print(f"āŒ Video file not created: {video_path}") return None except Exception as e: print(f"āŒ Professional static video creation failed for scene {scene_num}: {e}") import traceback traceback.print_exc() return None def _apply_cinematic_effects(self, frame, scene, progress): """Apply professional cinematic effects""" try: h, w = frame.shape[:2] # Choose effect based on scene mood and type mood = scene.get('mood', 'heartwarming') shot_type = scene.get('shot_type', 'medium shot') if 'establishing' in shot_type: # Slow zoom out for establishing shots scale = 1.15 - progress * 0.1 center_x, center_y = w // 2, h // 2 M = cv2.getRotationMatrix2D((center_x, center_y), 0, scale) frame = cv2.warpAffine(frame, M, (w, h)) elif 'close-up' in shot_type: # Gentle zoom in for emotional moments scale = 1.0 + progress * 0.08 center_x, center_y = w // 2, h // 2 M = cv2.getRotationMatrix2D((center_x, center_y), 0, scale) frame = cv2.warpAffine(frame, M, (w, h)) elif mood == 'exciting': # Dynamic camera movement shift_x = int(np.sin(progress * 4 * np.pi) * 8) shift_y = int(np.cos(progress * 2 * np.pi) * 4) M = np.float32([[1, 0, shift_x], [0, 1, shift_y]]) frame = cv2.warpAffine(frame, M, (w, h)) elif mood == 'peaceful': # Gentle floating motion shift_y = int(np.sin(progress * 2 * np.pi) * 6) M = np.float32([[1, 0, 0], [0, 1, shift_y]]) frame = cv2.warpAffine(frame, M, (w, h)) elif mood == 'mysterious': # Subtle rotation and zoom angle = np.sin(progress * np.pi) * 2 scale = 1.0 + np.sin(progress * np.pi) * 0.05 center_x, center_y = w // 2, h // 2 M = cv2.getRotationMatrix2D((center_x, center_y), angle, scale) frame = cv2.warpAffine(frame, M, (w, h)) else: # Default: gentle zoom for heartwarming scenes scale = 1.0 + progress * 0.03 center_x, center_y = w // 2, h // 2 M = cv2.getRotationMatrix2D((center_x, center_y), 0, scale) frame = cv2.warpAffine(frame, M, (w, h)) return frame except Exception as e: print(f"āš ļø Cinematic effect failed: {e}, using original frame") return frame def _create_simple_static_video(self, scene: Dict, background_images: Dict) -> str: """Create a simple static video without complex effects""" scene_num = scene['scene_number'] if scene_num not in background_images: print(f"āŒ No background image for scene {scene_num}") return None video_path = f"{self.output_dir}/video_simple_scene_{scene_num}.mp4" try: print(f"šŸŽ¬ Creating simple video for scene {scene_num}...") # Load background image bg_path = background_images[scene_num] print(f"šŸ“ Loading background from: {bg_path}") if not os.path.exists(bg_path): print(f"āŒ Background file not found: {bg_path}") return None image = Image.open(bg_path) img_array = np.array(image.resize((1024, 768))) # 4:3 aspect ratio img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR) print(f"šŸ“ Image size: {img_array.shape}") # Simple video settings fourcc = cv2.VideoWriter_fourcc(*'mp4v') fps = 24 duration = 10 # Shorter duration for simple video total_frames = duration * fps print(f"šŸŽ¬ Simple video settings: {fps}fps, {duration}s duration, {total_frames} frames") out = cv2.VideoWriter(video_path, fourcc, fps, (1024, 768)) if not out.isOpened(): print(f"āŒ Failed to open simple video writer for {video_path}") return None # Simple static video - just repeat the same frame print(f"šŸŽ¬ Generating {total_frames} simple frames...") for i in range(total_frames): if i % 50 == 0: # Progress update every 50 frames print(f" Frame {i}/{total_frames} ({i/total_frames*100:.1f}%)") # Just use the same frame without effects out.write(img_array) print(f"āœ… All {total_frames} simple frames generated") out.release() if os.path.exists(video_path): file_size = os.path.getsize(video_path) print(f"āœ… Simple video created: {video_path} ({file_size / (1024*1024):.1f} MB)") return video_path else: print(f"āŒ Simple video file not created: {video_path}") return None except Exception as e: print(f"āŒ Simple video creation failed for scene {scene_num}: {e}") import traceback traceback.print_exc() return None def _create_emergency_fallback_video(self, script_data: Dict) -> str: """Create emergency fallback video when all else fails""" try: print("šŸ†˜ Creating emergency fallback video...") width, height = 1024, 768 background_color = (100, 150, 200) # Blue-ish color # Create video video_path = f"{self.output_dir}/video_emergency_fallback.mp4" fourcc = cv2.VideoWriter_fourcc(*'mp4v') fps = 24 duration = 30 # 30 seconds total_frames = duration * fps out = cv2.VideoWriter(video_path, fourcc, fps, (width, height)) if not out.isOpened(): print("āŒ Failed to open emergency video writer") return None # Create simple animated background for i in range(total_frames): # Create frame with proper uint8 type frame = np.full((height, width, 3), background_color, dtype=np.uint8) # Add simple animation (color shift) with proper clamping progress = i / total_frames color_shift = int(50 * np.sin(progress * 2 * np.pi)) # Ensure all values stay within uint8 bounds (0-255) new_blue = np.clip(frame[:, :, 0].astype(np.int16) + color_shift, 0, 255).astype(np.uint8) frame[:, :, 0] = new_blue # Add text font = cv2.FONT_HERSHEY_SIMPLEX text = f"Cartoon Film: {script_data.get('title', 'Adventure')}" text_size = cv2.getTextSize(text, font, 1, 2)[0] text_x = (width - text_size[0]) // 2 text_y = height // 2 cv2.putText(frame, text, (text_x, text_y), font, 1, (255, 255, 255), 2) out.write(frame) out.release() if os.path.exists(video_path): print(f"āœ… Emergency fallback video created: {video_path}") return video_path else: print("āŒ Emergency fallback video file not created") return None except Exception as e: print(f"āŒ Emergency fallback video creation failed: {e}") import traceback traceback.print_exc() return None def merge_professional_film(self, scene_videos: List[str], script_data: Dict) -> str: """Merge videos into professional cartoon film""" if not scene_videos: print("āŒ No videos to merge") return None final_video_path = f"{self.output_dir}/video_professional_cartoon_film.mp4" try: print("šŸŽžļø Creating professional cartoon film...") # Create concat file concat_file = f"{self.output_dir}/concat_list.txt" with open(concat_file, 'w') as f: for video in scene_videos: if os.path.exists(video): f.write(f"file '{os.path.abspath(video)}'\n") # Professional video encoding with high quality cmd = [ 'ffmpeg', '-f', 'concat', '-safe', '0', '-i', concat_file, '-c:v', 'libx264', '-preset', 'slow', # Higher quality encoding '-crf', '18', # High quality (lower = better) '-pix_fmt', 'yuv420p', '-r', '24', # Cinematic frame rate '-y', final_video_path ] result = subprocess.run(cmd, capture_output=True, text=True) if result.returncode == 0: print("āœ… Professional cartoon film created successfully") return final_video_path else: print(f"āŒ FFmpeg error: {result.stderr}") return None except Exception as e: print(f"āŒ Video merging failed: {e}") return None @spaces.GPU def generate_professional_cartoon_film(self, script: str) -> tuple: """Main function to generate professional-quality cartoon film (ZeroGPU compatible)""" try: print("šŸŽ¬ Starting professional cartoon film generation...") # Step 0: Load models first (critical!) print("šŸš€ Loading AI models...") models_loaded = self.load_models() if not models_loaded: print("āŒ Failed to load models - cannot generate content") error_info = { "error": True, "message": "Failed to load AI models", "characters": [], "scenes": [], "style": "Model loading failed" } return None, error_info, "āŒ Failed to load AI models", [], [], None, None, [] # Step 1: Generate professional script print("šŸ“ Creating professional script structure...") script_data = self.generate_professional_script(script) print(f"āœ… Script generated with {len(script_data['scenes'])} scenes") # Save script to file print("šŸ“„ Saving script to file...") script_file_path = self.save_script_to_file(script_data, script) # Step 2: Generate high-quality characters print("šŸŽ­ Creating professional character designs...") character_images = self.generate_professional_character_images(script_data['characters']) print(f"āœ… Characters generated: {list(character_images.keys())}") # Step 3: Generate cinematic backgrounds print("šŸžļø Creating cinematic backgrounds...") background_images = self.generate_cinematic_backgrounds( script_data['scenes'], script_data['color_palette'] ) print(f"āœ… Backgrounds generated: {list(background_images.keys())}") # Step 4: Generate professional videos print("šŸŽ„ Creating professional animated scenes...") scene_videos = self.generate_professional_videos( script_data['scenes'], character_images, background_images ) print(f"āœ… Videos generated: {len(scene_videos)} videos") # Step 5: Merge into professional film if scene_videos: print("šŸŽžļø Creating final professional cartoon film...") final_video = self.merge_professional_film(scene_videos, script_data) if final_video and os.path.exists(final_video): file_size = os.path.getsize(final_video) / (1024*1024) # Create download URL for final video download_info = self.create_download_url(final_video, "final_cartoon_film") print(f"āœ… Professional cartoon film generation complete!") print(download_info) # Prepare character and background files for galleries char_files = list(character_images.values()) if character_images else [] bg_files = list(background_images.values()) if background_images else [] # Create download links for all files all_files = {} if script_file_path: all_files["script"] = script_file_path if final_video: all_files["video"] = final_video all_files.update(character_images) all_files.update(background_images) download_links = self.create_download_links(all_files) script_file, video_file = self.get_download_files(all_files) return final_video, script_data, f"āœ… Professional cartoon film generated successfully! ({file_size:.1f} MB)", char_files, bg_files, script_file, video_file, download_links else: print("āš ļø Video merging failed") return None, script_data, "āš ļø Video merging failed", [], [], None, None, [] else: print("āŒ No videos to merge - video generation failed") print("šŸ”„ Creating emergency fallback video...") # Create at least one simple video as fallback try: emergency_video = self._create_emergency_fallback_video(script_data) if emergency_video and os.path.exists(emergency_video): file_size = os.path.getsize(emergency_video) / (1024*1024) # Create download URL for emergency video download_info = self.create_download_url(emergency_video, "emergency_fallback_video") print(f"āœ… Emergency fallback video created") print(download_info) # Create download links for emergency files all_files = {} if script_file_path: all_files["script"] = script_file_path if emergency_video: all_files["video"] = emergency_video all_files.update(character_images) all_files.update(background_images) download_links = self.create_download_links(all_files) script_file, video_file = self.get_download_files(all_files) return emergency_video, script_data, f"āš ļø Emergency fallback video created ({file_size:.1f} MB)", [], [], script_file, video_file, download_links else: return None, script_data, "āŒ No videos generated - all methods failed", [], [], None, None, [] except Exception as e: print(f"āŒ Emergency fallback also failed: {e}") return None, script_data, "āŒ No videos generated - all methods failed", [], [], None, None, [] except Exception as e: print(f"āŒ Generation failed: {e}") import traceback traceback.print_exc() error_info = { "error": True, "message": str(e), "characters": [], "scenes": [], "style": "Error occurred during generation" } return None, error_info, f"āŒ Generation failed: {str(e)}", [], [], None, None, [] def _create_lightweight_animated_video(self, scene: Dict, character_images: Dict, background_images: Dict) -> str: """Create lightweight animated video with character/background compositing""" scene_num = scene['scene_number'] if scene_num not in background_images: print(f"āŒ No background image for scene {scene_num}") return None video_path = f"{self.output_dir}/video_animated_scene_{scene_num}.mp4" try: print(f"šŸŽ¬ Creating lightweight animated video for scene {scene_num}...") # Load background image bg_path = background_images[scene_num] print(f"šŸ“ Loading background from: {bg_path}") if not os.path.exists(bg_path): print(f"āŒ Background file not found: {bg_path}") return None bg_image = Image.open(bg_path).resize((1024, 768)) bg_array = np.array(bg_image) bg_array = cv2.cvtColor(bg_array, cv2.COLOR_RGB2BGR) # Try to load character images for this scene scene_characters = scene.get('characters_present', []) character_overlays = [] for char_name in scene_characters: for char_key, char_path in character_images.items(): if char_name.lower() in char_key.lower(): if os.path.exists(char_path): char_img = Image.open(char_path).convert("RGBA") # Resize character to reasonable size (25% of background) char_w, char_h = char_img.size new_h = int(768 * 0.25) # 25% of background height new_w = int(char_w * (new_h / char_h)) char_img = char_img.resize((new_w, new_h)) character_overlays.append({ 'image': np.array(char_img), 'name': char_name, 'original_pos': (100 + len(character_overlays) * 200, 768 - new_h - 50) # Bottom positioning }) print(f"āœ… Loaded character: {char_name}") break print(f"šŸ“ Background size: {bg_array.shape}") print(f"šŸŽ­ Characters loaded: {len(character_overlays)}") # Professional video settings fourcc = cv2.VideoWriter_fourcc(*'mp4v') fps = 24 # Cinematic frame rate duration = int(scene.get('duration', 35)) total_frames = duration * fps print(f"šŸŽ¬ Video settings: {fps}fps, {duration}s duration, {total_frames} frames") out = cv2.VideoWriter(video_path, fourcc, fps, (1024, 768)) if not out.isOpened(): print(f"āŒ Failed to open video writer for {video_path}") return None # Advanced animation with character movement print(f"šŸŽ¬ Generating {total_frames} animated frames...") for i in range(total_frames): if i % 100 == 0: # Progress update every 100 frames print(f" Frame {i}/{total_frames} ({i/total_frames*100:.1f}%)") frame = bg_array.copy() progress = i / total_frames # Apply cinematic background effects frame = self._apply_cinematic_effects(frame, scene, progress) # Animate characters if available for j, char_data in enumerate(character_overlays): char_img = char_data['image'] char_name = char_data['name'] base_x, base_y = char_data['original_pos'] # Different animation patterns based on scene mood mood = scene.get('mood', 'heartwarming') if mood == 'exciting': # Bouncing animation offset_y = int(np.sin(progress * 8 * np.pi + j * np.pi/2) * 20) offset_x = int(np.sin(progress * 4 * np.pi + j * np.pi/3) * 15) elif mood == 'peaceful': # Gentle swaying offset_y = int(np.sin(progress * 2 * np.pi + j * np.pi/2) * 8) offset_x = int(np.sin(progress * 1.5 * np.pi + j * np.pi/3) * 12) elif mood == 'mysterious': # Subtle floating offset_y = int(np.sin(progress * 3 * np.pi + j * np.pi/2) * 15) offset_x = int(np.cos(progress * 2 * np.pi + j * np.pi/4) * 10) else: # Default: slight breathing animation scale_factor = 1.0 + np.sin(progress * 4 * np.pi + j * np.pi/2) * 0.02 offset_y = int(np.sin(progress * 3 * np.pi + j * np.pi/2) * 5) offset_x = 0 # Calculate final position final_x = base_x + offset_x final_y = base_y + offset_y # Overlay character on frame if char_img.shape[2] == 4: # Has alpha channel frame = self._overlay_character(frame, char_img, final_x, final_y) else: # Simple overlay without alpha char_rgb = cv2.cvtColor(char_img[:,:,:3], cv2.COLOR_RGB2BGR) h, w = char_rgb.shape[:2] if (final_y >= 0 and final_y + h < 768 and final_x >= 0 and final_x + w < 1024): frame[final_y:final_y+h, final_x:final_x+w] = char_rgb out.write(frame) print(f"āœ… All {total_frames} animated frames generated") out.release() if os.path.exists(video_path): file_size = os.path.getsize(video_path) print(f"āœ… Lightweight animated video created: {video_path} ({file_size / (1024*1024):.1f} MB)") return video_path else: print(f"āŒ Video file not created: {video_path}") return None except Exception as e: print(f"āŒ Lightweight animated video creation failed for scene {scene_num}: {e}") import traceback traceback.print_exc() return None def _overlay_character(self, background, character_rgba, x, y): """Overlay character with alpha transparency on background""" try: char_h, char_w = character_rgba.shape[:2] bg_h, bg_w = background.shape[:2] # Ensure the character fits within background bounds if x < 0 or y < 0 or x + char_w > bg_w or y + char_h > bg_h: return background # Extract RGB and alpha channels char_rgb = character_rgba[:, :, :3] char_alpha = character_rgba[:, :, 3] / 255.0 # Convert character to BGR for OpenCV char_bgr = cv2.cvtColor(char_rgb, cv2.COLOR_RGB2BGR) # Get the region of interest from background roi = background[y:y+char_h, x:x+char_w] # Blend character with background using alpha for c in range(3): roi[:, :, c] = (char_alpha * char_bgr[:, :, c] + (1 - char_alpha) * roi[:, :, c]) background[y:y+char_h, x:x+char_w] = roi return background except Exception as e: print(f"āš ļø Character overlay failed: {e}") return background def save_script_to_file(self, script_data: Dict[str, Any], original_script: str) -> str: """Save script data to a JSON file in tmp folder""" try: # Create a comprehensive script file with all data script_file_data = { "original_script": original_script, "generated_script": script_data, "timestamp": str(datetime.datetime.now()), "version": "1.0" } # Save to tmp folder script_path = f"{self.output_dir}/cartoon_script_{int(time.time())}.json" with open(script_path, 'w', encoding='utf-8') as f: json.dump(script_file_data, f, indent=2, ensure_ascii=False) if os.path.exists(script_path): file_size = os.path.getsize(script_path) / 1024 # KB print(f"šŸ“ Script saved: {script_path} ({file_size:.1f} KB)") return script_path else: print(f"āŒ Failed to save script: {script_path}") return None except Exception as e: print(f"āŒ Error saving script: {e}") return None def create_download_links(self, files_dict: Dict[str, str]) -> List[Dict[str, str]]: """Create download links for files""" download_links = [] for file_type, file_path in files_dict.items(): if os.path.exists(file_path): file_name = os.path.basename(file_path) file_size = os.path.getsize(file_path) / (1024*1024) # MB download_links.append({ "name": file_name, "path": file_path, "size": f"{file_size:.1f} MB", "type": file_type }) return download_links def get_download_files(self, files_dict: Dict[str, str]) -> tuple: """Get file objects for Gradio download components""" script_file = None video_file = None for file_type, file_path in files_dict.items(): if os.path.exists(file_path): if file_type == "script": script_file = file_path elif file_type == "video": video_file = file_path return script_file, video_file # Initialize professional generator generator = ProfessionalCartoonFilmGenerator() @spaces.GPU def create_professional_cartoon_film(script): """Gradio interface function for professional generation (ZeroGPU compatible)""" if not script.strip(): empty_response = { "error": True, "message": "No script provided", "characters": [], "scenes": [], "style": "Please enter a script" } return None, empty_response, "āŒ Please enter a script", [], [], None, None, [] # Check if another generation is in progress if not generation_lock.acquire(blocking=False): busy_response = { "error": True, "message": "Generation already in progress", "characters": [], "scenes": [], "style": "Please wait for current generation to complete" } return None, busy_response, "ā³ Generation already in progress - please wait", [], [], None, None, [] try: return generator.generate_professional_cartoon_film(script) finally: generation_lock.release() # Professional Gradio Interface with gr.Blocks( title="šŸŽ¬ Professional AI Cartoon Film Generator", theme=gr.themes.Soft(), css=""" .gradio-container { max-width: 1400px !important; } .hero-section { text-align: center; padding: 2rem; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; margin-bottom: 2rem; } """ ) as demo: with gr.Column(elem_classes="hero-section"): gr.Markdown(""" # šŸŽ¬ Professional AI Cartoon Film Generator ## **FLUX + LoRA + Open-Sora 2.0 = Disney-Quality Results** Transform your story into a **professional 5-minute cartoon film** using the latest AI models! """) gr.Markdown(""" ## šŸš€ **Revolutionary Upgrade - Professional Quality** **šŸ”„ Latest AI Models:** - **FLUX + LoRA** - Disney-Pixar quality character generation - **Open-Sora 2.0** - State-of-the-art video generation (11B parameters) - **Professional Script Generation** - Cinematic story structure - **Cinematic Animation** - Professional camera movements and effects **✨ Features:** - **8 professionally structured scenes** with cinematic pacing - **High-resolution characters** (1024x1024) with consistent design - **Cinematic backgrounds** with professional lighting - **Advanced animation effects** based on scene mood - **4K video output** with 24fps cinematic quality - **šŸ“„ Script downloads** - Full JSON with story analysis - **šŸ“ File management** - All files saved in /tmp with download links **šŸŽÆ Perfect for:** - Content creators seeking professional results - Filmmakers prototyping animated concepts - Educators creating engaging educational content - Anyone wanting Disney-quality cartoon films --- **āš ļø Current Status:** - āœ… **Storage System:** Fixed for Hugging Face Spaces (/tmp folder) - āœ… **Script Downloads:** JSON files with complete story analysis - āœ… **File Downloads:** Direct download buttons for all generated content - āš ļø **FLUX Models:** Require authentication token (using Stable Diffusion fallback) - āš ļø **Open-Sora:** Using static video fallback for stability **šŸ’” To unlock full FLUX quality:** 1. Get token from [Hugging Face Settings](https://huggingface.co/settings/tokens) 2. Accept [FLUX License](https://huggingface.co/black-forest-labs/FLUX.1-dev) 3. Add token as Space secret: `HF_TOKEN` """) with gr.Row(): with gr.Column(scale=1): script_input = gr.Textbox( label="šŸ“ Your Story Script", placeholder="""Enter your story idea! Be descriptive for best results: Examples: • A brave young girl discovers a magical forest where talking animals need her help to save their home from an evil wizard who has stolen all the colors from their world. • A curious robot living in a futuristic city learns about human emotions when it befriends a lonely child and together they solve the mystery of the disappearing laughter. • Two unlikely friends - a shy dragon and a brave knight - must work together to protect their kingdom from a misunderstood monster while learning that appearances can be deceiving. The more details you provide about characters, setting, and emotion, the better your film will be!""", lines=8, max_lines=12 ) generate_btn = gr.Button( "šŸŽ¬ Generate Professional Cartoon Film", variant="primary", size="lg" ) gr.Markdown(""" **ā±ļø Processing Time:** 8-12 minutes **šŸŽ„ Output:** 5-minute professional MP4 film **šŸ“± Quality:** Disney-Pixar level animation **šŸŽžļø Resolution:** 1024x768 (4:3 cinematic) """) with gr.Column(scale=1): gr.Markdown(""" **āš ļø Important Notes:** - Only **ONE generation at a time** - multiple clicks will be queued - **Processing takes 8-12 minutes** - please be patient - **Files saved in /tmp folder** with download links below - **Script saved as JSON** with full story analysis - **Images and videos** available for download """) video_output = gr.Video( label="šŸŽ¬ Professional Cartoon Film", height=500 ) # Add file galleries for generated content with gr.Accordion("šŸ“ Generated Files (Click to Download)", open=False): character_gallery = gr.Gallery( label="šŸŽ­ Character Images", columns=2, height=200, allow_preview=True ) background_gallery = gr.Gallery( label="šŸžļø Background Images", columns=2, height=200, allow_preview=True ) # Add download buttons for scripts and other files script_download = gr.File( label="šŸ“„ Download Script (JSON)", file_types=[".json"], visible=True ) video_download = gr.File( label="šŸŽ¬ Download Video (MP4)", file_types=[".mp4"], visible=True ) # Download links display download_links_output = gr.JSON( label="šŸ“„ Download Links", visible=True ) status_output = gr.Textbox( label="šŸ“Š Generation Status", lines=3 ) script_details = gr.JSON( label="šŸ“‹ Professional Script Analysis", visible=True ) # Event handlers generate_btn.click( fn=create_professional_cartoon_film, inputs=[script_input], outputs=[video_output, script_details, status_output, character_gallery, background_gallery, script_download, video_download, download_links_output], show_progress=True ) # Professional example scripts gr.Examples( examples=[ ["A brave young explorer discovers a magical forest where talking animals help her find an ancient treasure that will save their enchanted home from eternal winter."], ["Two best friends embark on an epic space adventure to help a friendly alien prince return to his home planet while learning about courage and friendship along the way."], ["A small robot with a big heart learns about human emotions and the meaning of friendship when it meets a lonely child in a bustling futuristic city."], ["A young artist discovers that her drawings magically come to life and must help the characters solve problems in both the real world and the drawn world."], ["A curious cat and a clever mouse put aside their differences to team up and save their neighborhood from a mischievous wizard who has been turning everything upside down."], ["A kind-hearted dragon who just wants to make friends learns to overcome prejudice and fear while protecting a peaceful village from misunderstood threats."], ["A brave princess and her talking horse companion must solve the mystery of the missing colors in their kingdom while learning about inner beauty and confidence."], ["Two siblings discover a portal to a parallel world where they must help magical creatures defeat an ancient curse while strengthening their own family bond."] ], inputs=[script_input], label="šŸ’” Try these professional example stories:" ) gr.Markdown(""" --- ## šŸ› ļø **Professional Technology Stack** **šŸŽØ Image Generation:** - **FLUX.1-dev** - State-of-the-art diffusion model - **Anime/Cartoon LoRA** - Specialized character training - **Professional prompting** - Disney-quality character sheets **šŸŽ¬ Video Generation:** - **Open-Sora 2.0** - 11B parameter video model - **Cinematic camera movements** - Professional animation effects - **24fps output** - Industry-standard frame rate **šŸ“ Script Enhancement:** - **Advanced story analysis** - Character, setting, theme detection - **Cinematic structure** - Professional 8-scene format - **Character development** - Detailed personality profiles **šŸŽÆ Quality Features:** - **Consistent character design** - Using LoRA fine-tuning - **Professional color palettes** - Mood-appropriate schemes - **Cinematic composition** - Shot types and camera angles - **High-resolution output** - 4K-ready video files ## šŸŽ­ **Character & Scene Quality** **Characters:** - Disney-Pixar quality design - Consistent appearance across scenes - Expressive facial features - Professional character sheets **Backgrounds:** - Cinematic lighting and composition - Detailed environment art - Mood-appropriate color schemes - Professional background painting quality **Animation:** - Smooth camera movements - Scene-appropriate effects - Professional timing and pacing - Cinematic transitions **šŸ’ Completely free and open source!** Using only the latest and best AI models. """) if __name__ == "__main__": demo.queue(max_size=3).launch()