Update app.py
Browse files
app.py
CHANGED
@@ -26,55 +26,55 @@ from transformers import AutoTokenizer
|
|
26 |
from huggingface_hub import HfApi
|
27 |
import requests
|
28 |
|
29 |
-
list_llm = ["
|
30 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
31 |
|
32 |
-
class ZephyrLLM(LLM):
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
def _call(self, prompt, stop=None):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
|
74 |
|
75 |
-
@property
|
76 |
-
def _llm_type(self) -> str:
|
77 |
-
|
78 |
|
79 |
|
80 |
# Load and split PDF document
|
@@ -102,21 +102,22 @@ def create_db(splits):
|
|
102 |
|
103 |
# Initialize langchain LLM chain
|
104 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
105 |
-
if llm_model == "HuggingFaceH4/zephyr-7b-beta":
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
repo_id=llm_model,
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
111 |
)
|
112 |
-
# if llm_model == "meta-llama/Llama-3.1-8B-Instruct":
|
113 |
-
# llm = HuggingFaceEndpoint(
|
114 |
-
# repo_id=llm_model,
|
115 |
-
# huggingfacehub_api_token = api_token,
|
116 |
-
# temperature = temperature,
|
117 |
-
# max_new_tokens = max_tokens,
|
118 |
-
# top_k = top_k,
|
119 |
-
# )
|
120 |
|
121 |
# llm = HuggingFaceHub(
|
122 |
# repo_id="mistralai/Mistral-7B-Instruct-v0.2",
|
@@ -127,7 +128,8 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
127 |
else:
|
128 |
llm = HuggingFaceEndpoint(
|
129 |
huggingfacehub_api_token = api_token,
|
130 |
-
repo_id=llm_model,
|
|
|
131 |
temperature = temperature,
|
132 |
max_new_tokens = max_tokens,
|
133 |
top_k = top_k,
|
|
|
26 |
from huggingface_hub import HfApi
|
27 |
import requests
|
28 |
|
29 |
+
list_llm = ["meta-llama/Llama-3.1-8B-Instruct"] # , "HuggingFaceH4/zephyr-7b-beta"] # "mistralai/Mistral-7B-Instruct-v0.2" # meta-llama/Meta-Llama-3-8B-Instruct
|
30 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
31 |
|
32 |
+
# class ZephyrLLM(LLM):
|
33 |
+
# def __init__(self, repo_id, huggingfacehub_api_token, max_new_tokens=512, temperature=0.7, **kwargs):
|
34 |
+
# super().__init__(**kwargs)
|
35 |
+
# self.repo_id = repo_id
|
36 |
+
# self.api_token = huggingfacehub_api_token
|
37 |
+
# self.api_url = f"https://api-inference.huggingface.co/models/{repo_id}"
|
38 |
+
# self.headers = {"Authorization": f"Bearer {huggingfacehub_api_token}"}
|
39 |
+
# self.tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
40 |
+
# self.max_new_tokens = max_new_tokens
|
41 |
+
# self.temperature = temperature
|
42 |
+
|
43 |
+
# def _call(self, prompt, stop=None):
|
44 |
+
# # Format as chat message
|
45 |
+
# messages = [{"role": "user", "content": prompt}]
|
46 |
+
|
47 |
+
# # Apply Zephyr's chat template
|
48 |
+
# formatted_prompt = self.tokenizer.apply_chat_template(
|
49 |
+
# messages, tokenize=False, add_generation_prompt=True
|
50 |
+
# )
|
51 |
+
# # Send request to Hugging Face Inference API
|
52 |
+
# payload = {
|
53 |
+
# "inputs": formatted_prompt,
|
54 |
+
# "parameters": {
|
55 |
+
# "max_new_tokens": self.max_new_tokens,
|
56 |
+
# "temperature": self.temperature
|
57 |
+
# }
|
58 |
+
# }
|
59 |
+
# response = requests.post(self.api_url, headers=self.headers, json=payload)
|
60 |
+
|
61 |
+
# if response.status_code == 200:
|
62 |
+
# full_response = response.json()[0]["generated_text"]
|
63 |
+
|
64 |
+
# # Extract the assistant reply from the full response
|
65 |
+
# # After <|assistant|>\n, everything is the model's answer
|
66 |
+
# if "<|assistant|>" in full_response:
|
67 |
+
# return full_response.split("<|assistant|>")[-1].strip()
|
68 |
+
# else:
|
69 |
+
# return full_response.strip()
|
70 |
|
71 |
+
# else:
|
72 |
+
# raise Exception(f"Failed call [{response.status_code}]: {response.text}")
|
73 |
|
74 |
|
75 |
+
# @property
|
76 |
+
# def _llm_type(self) -> str:
|
77 |
+
# return "zephyr-custom"
|
78 |
|
79 |
|
80 |
# Load and split PDF document
|
|
|
102 |
|
103 |
# Initialize langchain LLM chain
|
104 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
105 |
+
# if llm_model == "HuggingFaceH4/zephyr-7b-beta":
|
106 |
+
# llm = ZephyrLLM(
|
107 |
+
# repo_id=llm_model,
|
108 |
+
# huggingfacehub_api_token=api_token,
|
109 |
+
# temperature=temperature,
|
110 |
+
# max_new_tokens=max_tokens,
|
111 |
+
# )
|
112 |
+
if llm_model == "meta-llama/Llama-3.1-8B-Instruct":
|
113 |
+
llm = HuggingFaceEndpoint(
|
114 |
repo_id=llm_model,
|
115 |
+
task="text-generation",
|
116 |
+
huggingfacehub_api_token = api_token,
|
117 |
+
temperature = temperature,
|
118 |
+
max_new_tokens = max_tokens,
|
119 |
+
top_k = top_k,
|
120 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
# llm = HuggingFaceHub(
|
123 |
# repo_id="mistralai/Mistral-7B-Instruct-v0.2",
|
|
|
128 |
else:
|
129 |
llm = HuggingFaceEndpoint(
|
130 |
huggingfacehub_api_token = api_token,
|
131 |
+
repo_id=llm_model,
|
132 |
+
task="text-generation",
|
133 |
temperature = temperature,
|
134 |
max_new_tokens = max_tokens,
|
135 |
top_k = top_k,
|