File size: 1,444 Bytes
22c5eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from langchain import FAISS
from langchain.document_loaders import PyPDFium2Loader
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
import pypdfium2 as pdfium
from constants import chunk_size, chunk_overlap, number_snippets_to_retrieve


def download_and_index_pdf(urls: list[str]) -> FAISS:
    """
    Download and index a list of PDFs based on the URLs
    """

    def __update_metadata(pages, url):
        """
        Add to the document metadata the title and original URL
        """
        for page in pages:
            pdf = pdfium.PdfDocument(page.metadata['source'])
            title = pdf.get_metadata_dict().get('Title', url)
            page.metadata['source'] = url
            page.metadata['title'] = title
        return pages

    all_pages = []
    for url in urls:
        loader = PyPDFium2Loader(url)
        splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
        pages = loader.load_and_split(splitter)
        pages = __update_metadata(pages, url)
        all_pages += pages

    faiss_index = FAISS.from_documents(all_pages, OpenAIEmbeddings())

    return faiss_index


def search_faiss_index(faiss_index: FAISS, query: str, top_k: int = number_snippets_to_retrieve) -> list:
    """
    Search a FAISS index, using the passed query
    """

    docs = faiss_index.similarity_search(query, k=top_k)

    return docs