|
from typing import Any, List |
|
import cv2 |
|
import threading |
|
import gfpgan |
|
import os |
|
|
|
import modules.globals |
|
import modules.processors.frame.core |
|
from modules.core import update_status |
|
from modules.face_analyser import get_one_face |
|
from modules.typing import Frame, Face |
|
import platform |
|
import torch |
|
from modules.utilities import ( |
|
conditional_download, |
|
is_image, |
|
is_video, |
|
) |
|
|
|
FACE_ENHANCER = None |
|
THREAD_SEMAPHORE = threading.Semaphore() |
|
THREAD_LOCK = threading.Lock() |
|
NAME = "DLC.FACE-ENHANCER" |
|
|
|
abs_dir = os.path.dirname(os.path.abspath(__file__)) |
|
models_dir = os.path.join( |
|
os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models" |
|
) |
|
|
|
|
|
def pre_check() -> bool: |
|
download_directory_path = models_dir |
|
conditional_download( |
|
download_directory_path, |
|
[ |
|
"https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth" |
|
], |
|
) |
|
return True |
|
|
|
|
|
def pre_start() -> bool: |
|
if not is_image(modules.globals.target_path) and not is_video( |
|
modules.globals.target_path |
|
): |
|
update_status("Select an image or video for target path.", NAME) |
|
return False |
|
return True |
|
|
|
|
|
TENSORRT_AVAILABLE = False |
|
try: |
|
import torch_tensorrt |
|
TENSORRT_AVAILABLE = True |
|
except ImportError as im: |
|
print(f"TensorRT is not available: {im}") |
|
pass |
|
except Exception as e: |
|
print(f"TensorRT is not available: {e}") |
|
pass |
|
|
|
def get_face_enhancer() -> Any: |
|
global FACE_ENHANCER |
|
|
|
with THREAD_LOCK: |
|
if FACE_ENHANCER is None: |
|
model_path = os.path.join(models_dir, "GFPGANv1.4.pth") |
|
|
|
selected_device = None |
|
device_priority = [] |
|
|
|
if TENSORRT_AVAILABLE and torch.cuda.is_available(): |
|
selected_device = torch.device("cuda") |
|
device_priority.append("TensorRT+CUDA") |
|
elif torch.cuda.is_available(): |
|
selected_device = torch.device("cuda") |
|
device_priority.append("CUDA") |
|
elif torch.backends.mps.is_available() and platform.system() == "Darwin": |
|
selected_device = torch.device("mps") |
|
device_priority.append("MPS") |
|
elif not torch.cuda.is_available(): |
|
selected_device = torch.device("cpu") |
|
device_priority.append("CPU") |
|
|
|
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=selected_device) |
|
|
|
|
|
print(f"Selected device: {selected_device} and device priority: {device_priority}") |
|
return FACE_ENHANCER |
|
|
|
|
|
def enhance_face(temp_frame: Frame) -> Frame: |
|
with THREAD_SEMAPHORE: |
|
_, _, temp_frame = get_face_enhancer().enhance(temp_frame, paste_back=True) |
|
return temp_frame |
|
|
|
|
|
def process_frame(source_face: Face, temp_frame: Frame) -> Frame: |
|
target_face = get_one_face(temp_frame) |
|
if target_face: |
|
temp_frame = enhance_face(temp_frame) |
|
return temp_frame |
|
|
|
|
|
def process_frames( |
|
source_path: str, temp_frame_paths: List[str], progress: Any = None |
|
) -> None: |
|
for temp_frame_path in temp_frame_paths: |
|
temp_frame = cv2.imread(temp_frame_path) |
|
result = process_frame(None, temp_frame) |
|
cv2.imwrite(temp_frame_path, result) |
|
if progress: |
|
progress.update(1) |
|
|
|
|
|
def process_image(source_path: str, target_path: str, output_path: str) -> None: |
|
target_frame = cv2.imread(target_path) |
|
result = process_frame(None, target_frame) |
|
cv2.imwrite(output_path, result) |
|
|
|
|
|
def process_video(source_path: str, temp_frame_paths: List[str]) -> None: |
|
modules.processors.frame.core.process_video(None, temp_frame_paths, process_frames) |
|
|
|
|
|
def process_frame_v2(temp_frame: Frame) -> Frame: |
|
target_face = get_one_face(temp_frame) |
|
if target_face: |
|
temp_frame = enhance_face(temp_frame) |
|
return temp_frame |
|
|