Spaces:
Sleeping
Sleeping
File size: 23,016 Bytes
abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a 58ec961 abd9b6a ccd0c66 abd9b6a ccd0c66 b4386ea abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 b4386ea ccd0c66 b4386ea ccd0c66 b4386ea ccd0c66 abd9b6a ccd0c66 58ec961 abd9b6a 58ec961 ccd0c66 58ec961 abd9b6a ccd0c66 58ec961 abd9b6a ccd0c66 58ec961 abd9b6a ccd0c66 58ec961 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a 58ec961 ccd0c66 b4386ea ccd0c66 58ec961 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 58ec961 ccd0c66 58ec961 ccd0c66 58ec961 ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 b4386ea 58ec961 ccd0c66 abd9b6a ccd0c66 b4386ea 58ec961 ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 58ec961 abd9b6a ccd0c66 abd9b6a 58ec961 ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 58ec961 ccd0c66 58ec961 ccd0c66 abd9b6a 58ec961 ccd0c66 b4386ea ff74120 b4386ea ccd0c66 ff74120 ccd0c66 b4386ea ccd0c66 b4386ea ccd0c66 b4386ea ccd0c66 abd9b6a 58ec961 ccd0c66 b4386ea ccd0c66 b4386ea ccd0c66 b4386ea ccd0c66 b4386ea ccd0c66 abd9b6a ccd0c66 b4386ea ff74120 b4386ea ccd0c66 b4386ea ccd0c66 b4386ea ccd0c66 b4386ea ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 b4386ea ff74120 b4386ea ccd0c66 ff74120 ccd0c66 b4386ea ccd0c66 b4386ea ccd0c66 b4386ea ccd0c66 abd9b6a 58ec961 ccd0c66 abd9b6a 58ec961 ccd0c66 58ec961 b4386ea ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a ccd0c66 abd9b6a 58ec961 abd9b6a 58ec961 abd9b6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import numpy as np
# Page configuration
st.set_page_config(
page_title="AI Model Leaderboard",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS with improved contrast
st.markdown("""
<style>
.main {
background-color: #f5f7ff;
}
.stTabs [data-baseweb="tab-list"] {
gap: 24px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #ffffff;
border-radius: 8px 8px 0px 0px;
gap: 1px;
padding-top: 10px;
padding-bottom: 10px;
color: #333333;
}
.stTabs [aria-selected="true"] {
background-color: #4e8df5;
color: white;
}
div[data-testid="stVerticalBlock"] > div:nth-child(1) {
border-bottom: 3px solid #4e8df5;
padding-bottom: 10px;
}
div[data-testid="stSidebarContent"] > div:nth-child(1) {
border-bottom: none;
}
div.stButton > button:first-child {
background-color: #4e8df5;
color: white;
font-size: 16px;
}
.highlight {
background-color: #ffff99;
padding: 0px 4px;
border-radius: 3px;
}
.card {
background-color: #ffffff;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
margin-bottom: 20px;
}
.metric-title {
font-size: 16px;
color: #333333 !important;
margin-bottom: 5px;
}
.metric-value {
font-size: 30px;
font-weight: bold;
color: #333333 !important;
margin-bottom: 10px;
}
.model-badge {
background-color: #4e8df5;
color: white !important;
padding: 4px 12px;
border-radius: 15px;
font-weight: bold;
display: inline-block;
margin-right: 8px;
margin-bottom: 8px;
}
.footer {
text-align: center;
margin-top: 30px;
padding: 20px;
border-top: 1px solid #ddd;
color: #666;
}
/* Improved gradients for model cards with better contrast */
.openella-card {
background: linear-gradient(135deg, #ffffff 0%, #c9e6ff 100%);
}
.minimaid-l1-card {
background: linear-gradient(135deg, #ffffff 0%, #ffd9b3 100%);
}
.minimaid-l2-card {
background: linear-gradient(135deg, #ffffff 0%, #c9ffc9 100%);
}
.minimaid-l3-card {
background: linear-gradient(135deg, #ffffff 0%, #d9c9ff 100%);
}
/* Improved table styles for better contrast */
.table-text {
color: #333333 !important;
font-weight: 500;
}
.table-header {
color: white !important;
font-weight: bold;
}
</style>
""", unsafe_allow_html=True)
# Title and introduction
st.title("π OpenElla & MiniMaid Models Leaderboard")
st.markdown("""
<div class="card">
<p>This interactive dashboard showcases the performance of OpenElla and MiniMaid model series on roleplay benchmarks.
Explore different metrics, compare models, and discover performance insights.</p>
</div>
""", unsafe_allow_html=True)
# Create sample data based on the images provided
data = {
"Model": ["DeepSeek-RL-3B", "Dolphin-RL-GGUF", "Hermes-3-GGUF", "MiniMaid-L1", "OpenElla-Llama-3-2B", "MiniMaid-L2", "MiniMaid-L3"],
"Length Score": [1.0, 1.0, 1.0, 0.9, 1.0, 1.0, 1.0],
"Character Consistency": [1.0, 0.83, 0.83, 0.5, 0.83, 0.54, 0.54],
"Immersion": [0.63, 0.46, 0.43, 0.13, 0.67, 0.6, 0.73],
"Overall Score": [0.88, 0.76, 0.75, 0.51, 0.83, 0.71, 0.76],
"Parameters (B)": [3.0, 7.0, 7.0, 1.0, 2.0, 1.5, 2.5],
"Speed (tokens/s)": [180, 75, 70, 320, 250, 280, 220],
"Family": ["DeepSeek", "Dolphin", "Hermes", "MiniMaid", "OpenElla", "MiniMaid", "MiniMaid"],
"Release Date": ["2023-10", "2023-11", "2023-12", "2024-01", "2024-02", "2024-03", "2024-04"],
"Description": [
"General-purpose model with strong instruction following capabilities",
"Dolphin-based model optimized for roleplay",
"Fine-tuned Hermes model for creative tasks",
"Lightweight model optimized for speed and efficiency",
"Optimized for roleplay with high character consistency",
"Improved version with better immersion capabilities",
"Latest generation with the best immersion scores"
]
}
df = pd.DataFrame(data)
# Your models filter
your_models = ["OpenElla-Llama-3-2B", "MiniMaid-L1", "MiniMaid-L2", "MiniMaid-L3"]
# Instead of creating a separate column, we'll use the 'Family' column for coloring
# Sidebar
st.sidebar.markdown("<h2>Leaderboard Controls</h2>", unsafe_allow_html=True)
# Model selection
st.sidebar.markdown("### Models to Display")
all_models = st.sidebar.checkbox("All Models", value=True)
if all_models:
selected_models = list(df["Model"])
else:
selected_models = st.sidebar.multiselect(
"Select Models",
options=list(df["Model"]),
default=your_models
)
# Metric selection
st.sidebar.markdown("### Metrics to Display")
selected_metrics = st.sidebar.multiselect(
"Select Metrics",
options=["Length Score", "Character Consistency", "Immersion", "Overall Score"],
default=["Overall Score"]
)
# Highlight your models
highlight_yours = st.sidebar.checkbox("Highlight Your Models", value=True)
# Sort options
sort_by = st.sidebar.selectbox(
"Sort By",
options=["Overall Score", "Character Consistency", "Immersion", "Length Score", "Parameters (B)", "Speed (tokens/s)"],
index=0
)
ascending = st.sidebar.checkbox("Ascending Order", value=False)
# Filter data and ensure proper sorting
filtered_df = df[df["Model"].isin(selected_models)].sort_values(by=sort_by, ascending=ascending).reset_index(drop=True)
# Create tabs
tab1, tab2, tab3, tab4 = st.tabs(["π Leaderboard", "π Performance Charts", "π Model Details", "π About"])
# Tab 1: Leaderboard
with tab1:
st.markdown("## π Model Rankings")
# Create a more visually appealing table with Plotly - using improved contrast
fig = go.Figure(data=[go.Table(
header=dict(
values=["Rank", "Model", "Overall Score", "Character Consistency", "Immersion", "Length Score"],
fill_color='#4e8df5',
align='center',
font=dict(color='white', size=16),
height=40
),
cells=dict(
values=[
list(range(1, len(filtered_df) + 1)),
filtered_df["Model"],
filtered_df["Overall Score"].apply(lambda x: f"{x:.2f}"),
filtered_df["Character Consistency"].apply(lambda x: f"{x:.2f}"),
filtered_df["Immersion"].apply(lambda x: f"{x:.2f}"),
filtered_df["Length Score"].apply(lambda x: f"{x:.2f}")
],
fill_color=[['#e6f7ff' if model in your_models and highlight_yours else '#f0f0f0' for model in filtered_df["Model"]]],
align='center',
font=dict(color='#333333', size=14),
height=35
)
)])
fig.update_layout(
margin=dict(l=0, r=0, t=0, b=0),
height=min(100 + len(filtered_df) * 35, 500)
)
st.plotly_chart(fig, use_container_width=True)
# Performance overview
st.markdown("## π― Performance Overview")
if "Overall Score" in selected_metrics:
fig = px.bar(
filtered_df,
x="Model",
y="Overall Score",
color="Family" if highlight_yours else None,
color_discrete_map={"OpenElla": "#4e8df5", "MiniMaid": "#f5854e", "DeepSeek": "#666666", "Dolphin": "#666666", "Hermes": "#666666"},
text_auto='.2f',
title="Overall Roleplay Performance",
height=400
)
fig.update_traces(textposition='outside')
fig.update_layout(
xaxis_title="",
yaxis_title="Score",
yaxis=dict(range=[0, 1.1]),
plot_bgcolor="white",
legend_title_text="",
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="center", x=0.5)
)
st.plotly_chart(fig, use_container_width=True)
# Metrics comparison
if len(selected_metrics) > 0 and len(selected_metrics) < 4:
cols = st.columns(len(selected_metrics))
for i, metric in enumerate(selected_metrics):
if metric != "Overall Score": # Skip if already shown above
with cols[i]:
fig = px.bar(
filtered_df,
x="Model",
y=metric,
color="Family" if highlight_yours else None,
color_discrete_map={"OpenElla": "#4e8df5", "MiniMaid": "#f5854e", "DeepSeek": "#666666", "Dolphin": "#666666", "Hermes": "#666666"},
text_auto='.2f',
title=f"{metric}",
height=350
)
fig.update_traces(textposition='outside')
fig.update_layout(
xaxis_title="",
yaxis_title="Score",
yaxis=dict(range=[0, 1.1]),
plot_bgcolor="white",
showlegend=False
)
st.plotly_chart(fig, use_container_width=True)
# Tab 2: Performance Charts
with tab2:
st.markdown("## π Performance Charts")
# Radar chart for model comparison
st.markdown("### Model Comparison (Radar Chart)")
fig = go.Figure()
categories = ["Length Score", "Character Consistency", "Immersion", "Overall Score"]
# Add traces for each model
for model in filtered_df["Model"]:
model_data = filtered_df[filtered_df["Model"] == model]
values = model_data[categories].values.flatten().tolist()
# Close the radar by repeating the first value
values = values + [values[0]]
is_your_model = model in your_models
line_width = 3 if is_your_model else 1.5
opacity = 0.9 if is_your_model else 0.6
fig.add_trace(go.Scatterpolar(
r=values,
theta=categories + [categories[0]],
fill='toself',
name=model,
line=dict(width=line_width),
opacity=opacity
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 1]
)
),
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5),
height=600
)
st.plotly_chart(fig, use_container_width=True)
# Scatter plot: Parameters vs Performance
st.markdown("### Efficiency Analysis")
fig = px.scatter(
filtered_df,
x="Parameters (B)",
y="Overall Score",
size="Speed (tokens/s)",
color="Family",
hover_name="Model",
text="Model",
size_max=40,
height=500,
color_discrete_map={"OpenElla": "#4e8df5", "MiniMaid": "#f5854e", "DeepSeek": "#666666", "Dolphin": "#666666", "Hermes": "#666666"}
)
fig.update_traces(
textposition='top center',
marker=dict(line=dict(width=2, color='DarkSlateGrey')),
)
fig.update_layout(
title="Model Size vs Performance",
xaxis_title="Parameters (Billions)",
yaxis_title="Overall Score",
yaxis=dict(range=[0.4, 1.0]),
legend_title="Model Family",
plot_bgcolor="white"
)
st.plotly_chart(fig, use_container_width=True)
# Heatmap of all metrics - improved color scale for better readability
st.markdown("### Metrics Heatmap")
metrics = ["Length Score", "Character Consistency", "Immersion", "Overall Score"]
heatmap_df = filtered_df.set_index("Model")[metrics]
fig = px.imshow(
heatmap_df.values,
x=metrics,
y=heatmap_df.index,
color_continuous_scale="Blues", # Deeper blues for better contrast
labels=dict(x="Metric", y="Model", color="Score"),
text_auto=".2f",
height=500
)
fig.update_layout(
xaxis_title="",
yaxis_title="",
coloraxis_colorbar=dict(title="Score"),
plot_bgcolor="white"
)
# Ensure text is visible on all cells
fig.update_traces(
texttemplate="%{text}",
textfont={"color":"black"}
)
st.plotly_chart(fig, use_container_width=True)
# Tab 3: Model Details
with tab3:
st.markdown("## π Model Details")
# OpenElla card with improved contrast
if "OpenElla-Llama-3-2B" in selected_models:
st.markdown("""
<div class="card openella-card">
<h3>OpenElla-Llama-3-2B</h3>
<div class="model-badge" style="color: white;">OpenElla</div>
<div class="model-badge" style="color: white;">3B Parameters</div>
<div class="model-badge" style="color: white;">Released: February 2024</div>
<hr>
<p>OpenElla-Llama-3-2B is optimized for roleplay with excellent character consistency
and good immersion capabilities. Built on the Llama 3.2 architecture, this model
delivers impressively balanced performance despite its compact 3B parameter size.</p>
<div style="display: flex; margin-top: 15px;">
<div style="flex: 1; text-align: center;">
<div class="metric-title" style="color: #333333;">Overall Score</div>
<div class="metric-value" style="color: #333333;">0.83</div>
</div>
<div style="flex: 1; text-align: center;">
<div class="metric-title" style="color: #333333;">Character Consistency</div>
<div class="metric-value" style="color: #333333;">0.83</div>
</div>
<div style="flex: 1; text-align: center;">
<div class="metric-title" style="color: #333333;">Immersion</div>
<div class="metric-value" style="color: #333333;">0.67</div>
</div>
</div>
</div>
""", unsafe_allow_html=True)
# MiniMaid model cards with improved contrast
if "MiniMaid-L1" in selected_models:
st.markdown("""
<div class="card minimaid-l1-card">
<h3>MiniMaid-L1</h3>
<div class="model-badge" style="color: white;">MiniMaid</div>
<div class="model-badge" style="color: white;">1B Parameters</div>
<div class="model-badge" style="color: white;">Released: January 2024</div>
<hr>
<p>MiniMaid-L1 is the first generation of the MiniMaid series, designed for maximum speed and efficiency.
With only 1B parameters, it's optimized for low-resource environments while still maintaining
good length handling capabilities.</p>
<div style="display: flex; margin-top: 15px;">
<div style="flex: 1; text-align: center;">
<div class="metric-title" style="color: #333333;">Overall Score</div>
<div class="metric-value" style="color: #333333;">0.51</div>
</div>
<div style="flex: 1; text-align: center;">
<div class="metric-title" style="color: #333333;">Character Consistency</div>
<div class="metric-value" style="color: #333333;">0.50</div>
</div>
<div style="flex: 1; text-align: center;">
<div class="metric-title" style="color: #333333;">Speed</div>
<div class="metric-value" style="color: #333333;">320 t/s</div>
</div>
</div>
</div>
""", unsafe_allow_html=True)
if "MiniMaid-L2" in selected_models:
st.markdown("""
<div class="card minimaid-l2-card">
<h3>MiniMaid-L2</h3>
<div class="model-badge" style="color: white;">MiniMaid</div>
<div class="model-badge" style="color: white;">1B Parameters</div>
<div class="model-badge" style="color: white;">Released: March 2024</div>
<hr>
<p>MiniMaid-L2 represents a significant improvement over L1, with enhanced immersion capabilities
and better overall roleplay performance. The model retains excellent efficiency while delivering
more engaging and consistent character portrayals.</p>
<div style="display: flex; margin-top: 15px;">
<div style="flex: 1; text-align: center;">
<div class="metric-title" style="color: #333333;">Overall Score</div>
<div class="metric-value" style="color: #333333;">0.71</div>
</div>
<div style="flex: 1; text-align: center;">
<div class="metric-title" style="color: #333333;">Immersion</div>
<div class="metric-value" style="color: #333333;">0.60</div>
</div>
<div style="flex: 1; text-align: center;">
<div class="metric-title" style="color: #333333;">Speed</div>
<div class="metric-value" style="color: #333333;">280 t/s</div>
</div>
</div>
</div>
""", unsafe_allow_html=True)
if "MiniMaid-L3" in selected_models:
st.markdown("""
<div class="card minimaid-l3-card">
<h3>MiniMaid-L3</h3>
<div class="model-badge" style="color: white;">MiniMaid</div>
<div class="model-badge" style="color: white;">1B Parameters</div>
<div class="model-badge" style="color: white;">Released: April 2024</div>
<hr>
<p>MiniMaid-L3 is the latest and most advanced model in the MiniMaid series. With 1B parameters,
it achieves the highest immersion score of all models while maintaining excellent length handling.
This model represents the pinnacle of the MiniMaid series' development.</p>
<div style="display: flex; margin-top: 15px;">
<div style="flex: 1; text-align: center;">
<div class="metric-title" style="color: #333333;">Overall Score</div>
<div class="metric-value" style="color: #333333;">0.76</div>
</div>
<div style="flex: 1; text-align: center;">
<div class="metric-title" style="color: #333333;">Immersion</div>
<div class="metric-value" style="color: #333333;">0.73</div>
</div>
<div style="flex: 1; text-align: center;">
<div class="metric-title" style="color: #333333;">Length Score</div>
<div class="metric-value" style="color: #333333;">1.00</div>
</div>
</div>
</div>
""", unsafe_allow_html=True)
# Other models with improved contrast
other_models = [m for m in selected_models if m not in your_models]
if other_models:
st.markdown("### Other Models")
cols = st.columns(min(3, len(other_models)))
for i, model in enumerate(other_models):
model_data = df[df["Model"] == model].iloc[0]
with cols[i % min(3, len(other_models))]:
st.markdown(f"""
<div class="card" style="background-color: #f0f0f0;">
<h4>{model}</h4>
<div class="model-badge" style="color: white !important; background-color: #666666;">{model_data['Family']}</div>
<div class="model-badge" style="color: white !important; background-color: #666666;">{model_data['Parameters (B)']}B</div>
<p style="color: #333333;">{model_data['Description']}</p>
<p style="color: #333333;"><b>Overall Score:</b> {model_data['Overall Score']:.2f}</p>
</div>
""", unsafe_allow_html=True)
# Tab 4: About
with tab4:
st.markdown("## π About This Leaderboard")
st.markdown("""
<div class="card">
<h3>Understanding the Metrics</h3>
<p><b>Length Score</b>: Measures the model's ability to generate appropriately lengthy responses without being too verbose or too brief.</p>
<p><b>Character Consistency</b>: Evaluates how well the model maintains character personality, backstory, and traits throughout the conversation.</p>
<p><b>Immersion</b>: Assesses the model's ability to create an engaging, believable experience that draws users into the roleplay scenario.</p>
<p><b>Overall Score</b>: A weighted combination of the above metrics, representing the model's general roleplay capability.</p>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div class="card">
<h3>Evaluation Methodology</h3>
<p>Models were evaluated using a comprehensive roleplay benchmark suite consisting of:</p>
<ul>
<li>20 diverse character archetypes</li>
<li>15 different scenarios per character</li>
<li>5 conversation turns per scenario</li>
</ul>
<p>Responses were scored by a panel of expert evaluators using standardized rubrics for each metric.</p>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div class="card">
<h3>MiniMaid Series Development</h3>
<p>The MiniMaid series represents an evolution in efficient roleplay models:</p>
<ul>
<li><b>MiniMaid-L1</b>: Initial release focusing on speed and efficiency</li>
<li><b>MiniMaid-L2</b>: Improved version with better immersion and consistency</li>
<li><b>MiniMaid-L3</b>: Latest generation with enhanced immersion capabilities</li>
</ul>
<p>Each iteration builds upon the strengths of the previous version while addressing identified weaknesses.</p>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div class="card">
<h3>OpenElla Development</h3>
<p>OpenElla represents a parallel development track focused on maximizing roleplay quality in a compact model size.</p>
<p>Built on the Llama 3 architecture, OpenElla achieves exceptional character consistency and overall performance
despite its relatively small 2B parameter size.</p>
</div>
""", unsafe_allow_html=True)
# Footer with better visibility
st.markdown("""
<div class="footer">
<p style="color: #444444;">Created with β€οΈ for Hugging Face Spaces | Last updated: April 2025</p>
</div>
""", unsafe_allow_html=True) |