Spaces:
Runtime error
Runtime error
| # This file contains Transformer network | |
| # Most of the code is copied from http://nlp.seas.harvard.edu/2018/04/03/attention.html | |
| # The cfg name correspondance: | |
| # N=num_layers | |
| # d_model=input_encoding_size | |
| # d_ff=rnn_size | |
| # h is always 8 | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from . import utils | |
| import copy | |
| import math | |
| import numpy as np | |
| from .CaptionModel import CaptionModel | |
| from .AttModel import sort_pack_padded_sequence, pad_unsort_packed_sequence, pack_wrapper, AttModel | |
| class EncoderDecoder(nn.Module): | |
| """ | |
| A standard Encoder-Decoder architecture. Base for this and many | |
| other models. | |
| """ | |
| def __init__(self, encoder, decoder, src_embed, tgt_embed, generator): | |
| super(EncoderDecoder, self).__init__() | |
| self.encoder = encoder | |
| self.decoder = decoder | |
| self.src_embed = src_embed | |
| self.tgt_embed = tgt_embed | |
| self.generator = generator | |
| def forward(self, src, tgt, src_mask, tgt_mask): | |
| "Take in and process masked src and target sequences." | |
| return self.decode(self.encode(src, src_mask), src_mask, | |
| tgt, tgt_mask) | |
| def encode(self, src, src_mask): | |
| return self.encoder(self.src_embed(src), src_mask) | |
| def decode(self, memory, src_mask, tgt, tgt_mask): | |
| return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask) | |
| class Generator(nn.Module): | |
| "Define standard linear + softmax generation step." | |
| def __init__(self, d_model, vocab): | |
| super(Generator, self).__init__() | |
| self.proj = nn.Linear(d_model, vocab) | |
| def forward(self, x): | |
| return F.log_softmax(self.proj(x), dim=-1) | |
| def clones(module, N): | |
| "Produce N identical layers." | |
| return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) | |
| class Encoder(nn.Module): | |
| "Core encoder is a stack of N layers" | |
| def __init__(self, layer, N): | |
| super(Encoder, self).__init__() | |
| self.layers = clones(layer, N) | |
| self.norm = LayerNorm(layer.size) | |
| def forward(self, x, mask): | |
| "Pass the input (and mask) through each layer in turn." | |
| for layer in self.layers: | |
| x = layer(x, mask) | |
| return self.norm(x) | |
| class LayerNorm(nn.Module): | |
| "Construct a layernorm module (See citation for details)." | |
| def __init__(self, features, eps=1e-6): | |
| super(LayerNorm, self).__init__() | |
| self.a_2 = nn.Parameter(torch.ones(features)) | |
| self.b_2 = nn.Parameter(torch.zeros(features)) | |
| self.eps = eps | |
| def forward(self, x): | |
| mean = x.mean(-1, keepdim=True) | |
| std = x.std(-1, keepdim=True) | |
| return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 | |
| class SublayerConnection(nn.Module): | |
| """ | |
| A residual connection followed by a layer norm. | |
| Note for code simplicity the norm is first as opposed to last. | |
| """ | |
| def __init__(self, size, dropout): | |
| super(SublayerConnection, self).__init__() | |
| self.norm = LayerNorm(size) | |
| self.dropout = nn.Dropout(dropout) | |
| def forward(self, x, sublayer): | |
| "Apply residual connection to any sublayer with the same size." | |
| return x + self.dropout(sublayer(self.norm(x))) | |
| class EncoderLayer(nn.Module): | |
| "Encoder is made up of self-attn and feed forward (defined below)" | |
| def __init__(self, size, self_attn, feed_forward, dropout): | |
| super(EncoderLayer, self).__init__() | |
| self.self_attn = self_attn | |
| self.feed_forward = feed_forward | |
| self.sublayer = clones(SublayerConnection(size, dropout), 2) | |
| self.size = size | |
| def forward(self, x, mask): | |
| "Follow Figure 1 (left) for connections." | |
| x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) | |
| return self.sublayer[1](x, self.feed_forward) | |
| class Decoder(nn.Module): | |
| "Generic N layer decoder with masking." | |
| def __init__(self, layer, N): | |
| super(Decoder, self).__init__() | |
| self.layers = clones(layer, N) | |
| self.norm = LayerNorm(layer.size) | |
| def forward(self, x, memory, src_mask, tgt_mask): | |
| for layer in self.layers: | |
| x = layer(x, memory, src_mask, tgt_mask) | |
| return self.norm(x) | |
| class DecoderLayer(nn.Module): | |
| "Decoder is made of self-attn, src-attn, and feed forward (defined below)" | |
| def __init__(self, size, self_attn, src_attn, feed_forward, dropout): | |
| super(DecoderLayer, self).__init__() | |
| self.size = size | |
| self.self_attn = self_attn | |
| self.src_attn = src_attn | |
| self.feed_forward = feed_forward | |
| self.sublayer = clones(SublayerConnection(size, dropout), 3) | |
| def forward(self, x, memory, src_mask, tgt_mask): | |
| "Follow Figure 1 (right) for connections." | |
| m = memory | |
| x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) | |
| x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) | |
| return self.sublayer[2](x, self.feed_forward) | |
| def subsequent_mask(size): | |
| "Mask out subsequent positions." | |
| attn_shape = (1, size, size) | |
| subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') | |
| return torch.from_numpy(subsequent_mask) == 0 | |
| def attention(query, key, value, mask=None, dropout=None): | |
| "Compute 'Scaled Dot Product Attention'" | |
| d_k = query.size(-1) | |
| scores = torch.matmul(query, key.transpose(-2, -1)) \ | |
| / math.sqrt(d_k) | |
| if mask is not None: | |
| scores = scores.masked_fill(mask == 0, float('-inf')) | |
| p_attn = F.softmax(scores, dim = -1) | |
| if dropout is not None: | |
| p_attn = dropout(p_attn) | |
| return torch.matmul(p_attn, value), p_attn | |
| class MultiHeadedAttention(nn.Module): | |
| def __init__(self, h, d_model, dropout=0.1): | |
| "Take in model size and number of heads." | |
| super(MultiHeadedAttention, self).__init__() | |
| assert d_model % h == 0 | |
| # We assume d_v always equals d_k | |
| self.d_k = d_model // h | |
| self.h = h | |
| self.linears = clones(nn.Linear(d_model, d_model), 4) | |
| self.attn = None | |
| self.dropout = nn.Dropout(p=dropout) | |
| def forward(self, query, key, value, mask=None): | |
| "Implements Figure 2" | |
| if mask is not None: | |
| # Same mask applied to all h heads. | |
| mask = mask.unsqueeze(1) | |
| nbatches = query.size(0) | |
| # 1) Do all the linear projections in batch from d_model => h x d_k | |
| query, key, value = \ | |
| [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) | |
| for l, x in zip(self.linears, (query, key, value))] | |
| # 2) Apply attention on all the projected vectors in batch. | |
| x, self.attn = attention(query, key, value, mask=mask, | |
| dropout=self.dropout) | |
| # 3) "Concat" using a view and apply a final linear. | |
| x = x.transpose(1, 2).contiguous() \ | |
| .view(nbatches, -1, self.h * self.d_k) | |
| return self.linears[-1](x) | |
| class PositionwiseFeedForward(nn.Module): | |
| "Implements FFN equation." | |
| def __init__(self, d_model, d_ff, dropout=0.1): | |
| super(PositionwiseFeedForward, self).__init__() | |
| self.w_1 = nn.Linear(d_model, d_ff) | |
| self.w_2 = nn.Linear(d_ff, d_model) | |
| self.dropout = nn.Dropout(dropout) | |
| def forward(self, x): | |
| return self.w_2(self.dropout(F.relu(self.w_1(x)))) | |
| class Embeddings(nn.Module): | |
| def __init__(self, d_model, vocab): | |
| super(Embeddings, self).__init__() | |
| self.lut = nn.Embedding(vocab, d_model) | |
| self.d_model = d_model | |
| def forward(self, x): | |
| return self.lut(x) * math.sqrt(self.d_model) | |
| class PositionalEncoding(nn.Module): | |
| "Implement the PE function." | |
| def __init__(self, d_model, dropout, max_len=5000): | |
| super(PositionalEncoding, self).__init__() | |
| self.dropout = nn.Dropout(p=dropout) | |
| # Compute the positional encodings once in log space. | |
| pe = torch.zeros(max_len, d_model) | |
| position = torch.arange(0, max_len).unsqueeze(1).float() | |
| div_term = torch.exp(torch.arange(0, d_model, 2).float() * | |
| -(math.log(10000.0) / d_model)) | |
| pe[:, 0::2] = torch.sin(position * div_term) | |
| pe[:, 1::2] = torch.cos(position * div_term) | |
| pe = pe.unsqueeze(0) | |
| self.register_buffer('pe', pe) | |
| def forward(self, x): | |
| x = x + self.pe[:, :x.size(1)] | |
| return self.dropout(x) | |
| class TransformerModel(AttModel): | |
| def make_model(self, src_vocab, tgt_vocab, N_enc=6, N_dec=6, | |
| d_model=512, d_ff=2048, h=8, dropout=0.1): | |
| "Helper: Construct a model from hyperparameters." | |
| c = copy.deepcopy | |
| attn = MultiHeadedAttention(h, d_model, dropout) | |
| ff = PositionwiseFeedForward(d_model, d_ff, dropout) | |
| position = PositionalEncoding(d_model, dropout) | |
| model = EncoderDecoder( | |
| Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N_enc), | |
| Decoder(DecoderLayer(d_model, c(attn), c(attn), | |
| c(ff), dropout), N_dec), | |
| lambda x:x, # nn.Sequential(Embeddings(d_model, src_vocab), c(position)), | |
| nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)), | |
| Generator(d_model, tgt_vocab)) | |
| # This was important from their code. | |
| # Initialize parameters with Glorot / fan_avg. | |
| for p in model.parameters(): | |
| if p.dim() > 1: | |
| nn.init.xavier_uniform_(p) | |
| return model | |
| def __init__(self, opt): | |
| super(TransformerModel, self).__init__(opt) | |
| self.opt = opt | |
| # self.config = yaml.load(open(opt.config_file)) | |
| self.N_enc = getattr(opt, 'N_enc', opt.num_layers) | |
| self.N_dec = getattr(opt, 'N_dec', opt.num_layers) | |
| self.d_model = getattr(opt, 'd_model', opt.input_encoding_size) | |
| self.d_ff = getattr(opt, 'd_ff', opt.rnn_size) | |
| self.h = getattr(opt, 'num_att_heads', 8) | |
| self.dropout = getattr(opt, 'dropout', 0.1) | |
| delattr(self, 'att_embed') | |
| self.att_embed = nn.Sequential(*( | |
| ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+ | |
| (nn.Linear(self.att_feat_size, self.d_model), | |
| nn.ReLU(), | |
| nn.Dropout(self.drop_prob_lm))+ | |
| ((nn.BatchNorm1d(self.d_model),) if self.use_bn==2 else ()))) | |
| delattr(self, 'embed') | |
| self.embed = lambda x : x | |
| delattr(self, 'fc_embed') | |
| self.fc_embed = lambda x : x | |
| delattr(self, 'logit') | |
| del self.ctx2att | |
| tgt_vocab = self.vocab_size + 1 | |
| self.model = self.make_model(0, tgt_vocab, | |
| N_enc=self.N_enc, | |
| N_dec=self.N_dec, | |
| d_model=self.d_model, | |
| d_ff=self.d_ff, | |
| h=self.h, | |
| dropout=self.dropout) | |
| def logit(self, x): # unsafe way | |
| return self.model.generator.proj(x) | |
| def init_hidden(self, bsz): | |
| return [] | |
| def _prepare_feature(self, fc_feats, att_feats, att_masks): | |
| att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks) | |
| memory = self.model.encode(att_feats, att_masks) | |
| return fc_feats[...,:0], att_feats[...,:0], memory, att_masks | |
| def _prepare_feature_forward(self, att_feats, att_masks=None, seq=None): | |
| att_feats, att_masks = self.clip_att(att_feats, att_masks) | |
| att_feats = pack_wrapper(self.att_embed, att_feats, att_masks) | |
| if att_masks is None: | |
| att_masks = att_feats.new_ones(att_feats.shape[:2], dtype=torch.long) | |
| att_masks = att_masks.unsqueeze(-2) | |
| if seq is not None: | |
| # crop the last one | |
| # seq = seq[:,:-1] | |
| seq_mask = (seq.data != self.eos_idx) & (seq.data != self.pad_idx) | |
| seq_mask[:,0] = 1 # bos | |
| seq_mask = seq_mask.unsqueeze(-2) | |
| seq_mask = seq_mask & subsequent_mask(seq.size(-1)).to(seq_mask) | |
| seq_per_img = seq.shape[0] // att_feats.shape[0] | |
| if seq_per_img > 1: | |
| att_feats, att_masks = utils.repeat_tensors(seq_per_img, | |
| [att_feats, att_masks] | |
| ) | |
| else: | |
| seq_mask = None | |
| return att_feats, seq, att_masks, seq_mask | |
| def _forward(self, fc_feats, att_feats, seq, att_masks=None): | |
| if seq.ndim == 3: # B * seq_per_img * seq_len | |
| seq = seq.reshape(-1, seq.shape[2]) | |
| att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks, seq) | |
| out = self.model(att_feats, seq, att_masks, seq_mask) | |
| outputs = self.model.generator(out) | |
| return outputs | |
| # return torch.cat([_.unsqueeze(1) for _ in outputs], 1) | |
| def core(self, it, fc_feats_ph, att_feats_ph, memory, state, mask): | |
| """ | |
| state = [ys.unsqueeze(0)] | |
| """ | |
| if len(state) == 0: | |
| ys = it.unsqueeze(1) | |
| else: | |
| ys = torch.cat([state[0][0], it.unsqueeze(1)], dim=1) | |
| out = self.model.decode(memory, mask, | |
| ys, | |
| subsequent_mask(ys.size(1)) | |
| .to(memory.device)) | |
| return out[:, -1], [ys.unsqueeze(0)] |