Spaces:
Running
Running
File size: 9,856 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Transformer-based text encoder network."""
# pylint: disable=g-classes-have-attributes
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import tensorflow as tf
from official.modeling import activations
from official.nlp.modeling import layers
@tf.keras.utils.register_keras_serializable(package='Text')
class TransformerEncoder(tf.keras.Model):
"""Bi-directional Transformer-based encoder network.
This network implements a bi-directional Transformer-based encoder as
described in "BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding" (https://arxiv.org/abs/1810.04805). It includes the
embedding lookups and transformer layers, but not the masked language model
or classification task networks.
The default values for this object are taken from the BERT-Base implementation
in "BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding".
Arguments:
vocab_size: The size of the token vocabulary.
hidden_size: The size of the transformer hidden layers.
num_layers: The number of transformer layers.
num_attention_heads: The number of attention heads for each transformer. The
hidden size must be divisible by the number of attention heads.
sequence_length: The sequence length that this encoder expects. If None, the
sequence length is dynamic; if an integer, the encoder will require
sequences padded to this length.
max_sequence_length: The maximum sequence length that this encoder can
consume. If None, max_sequence_length uses the value from sequence length.
This determines the variable shape for positional embeddings.
type_vocab_size: The number of types that the 'type_ids' input can take.
intermediate_size: The intermediate size for the transformer layers.
activation: The activation to use for the transformer layers.
dropout_rate: The dropout rate to use for the transformer layers.
attention_dropout_rate: The dropout rate to use for the attention layers
within the transformer layers.
initializer: The initialzer to use for all weights in this encoder.
return_all_encoder_outputs: Whether to output sequence embedding outputs of
all encoder transformer layers.
output_range: The sequence output range, [0, output_range), by slicing the
target sequence of the last transformer layer. `None` means the entire
target sequence will attend to the source sequence, which yeilds the full
output.
embedding_width: The width of the word embeddings. If the embedding width
is not equal to hidden size, embedding parameters will be factorized into
two matrices in the shape of ['vocab_size', 'embedding_width'] and
['embedding_width', 'hidden_size'] ('embedding_width' is usually much
smaller than 'hidden_size').
embedding_layer: The word embedding layer. `None` means we will create a new
embedding layer. Otherwise, we will reuse the given embedding layer. This
parameter is originally added for ELECTRA model which needs to tie the
generator embeddings with the discriminator embeddings.
"""
def __init__(self,
vocab_size,
hidden_size=768,
num_layers=12,
num_attention_heads=12,
sequence_length=512,
max_sequence_length=None,
type_vocab_size=16,
intermediate_size=3072,
activation=activations.gelu,
dropout_rate=0.1,
attention_dropout_rate=0.1,
initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02),
return_all_encoder_outputs=False,
output_range=None,
embedding_width=None,
embedding_layer=None,
**kwargs):
activation = tf.keras.activations.get(activation)
initializer = tf.keras.initializers.get(initializer)
if not max_sequence_length:
max_sequence_length = sequence_length
self._self_setattr_tracking = False
self._config_dict = {
'vocab_size': vocab_size,
'hidden_size': hidden_size,
'num_layers': num_layers,
'num_attention_heads': num_attention_heads,
'sequence_length': sequence_length,
'max_sequence_length': max_sequence_length,
'type_vocab_size': type_vocab_size,
'intermediate_size': intermediate_size,
'activation': tf.keras.activations.serialize(activation),
'dropout_rate': dropout_rate,
'attention_dropout_rate': attention_dropout_rate,
'initializer': tf.keras.initializers.serialize(initializer),
'return_all_encoder_outputs': return_all_encoder_outputs,
'output_range': output_range,
'embedding_width': embedding_width,
}
word_ids = tf.keras.layers.Input(
shape=(sequence_length,), dtype=tf.int32, name='input_word_ids')
mask = tf.keras.layers.Input(
shape=(sequence_length,), dtype=tf.int32, name='input_mask')
type_ids = tf.keras.layers.Input(
shape=(sequence_length,), dtype=tf.int32, name='input_type_ids')
if embedding_width is None:
embedding_width = hidden_size
if embedding_layer is None:
self._embedding_layer = layers.OnDeviceEmbedding(
vocab_size=vocab_size,
embedding_width=embedding_width,
initializer=initializer,
name='word_embeddings')
else:
self._embedding_layer = embedding_layer
word_embeddings = self._embedding_layer(word_ids)
# Always uses dynamic slicing for simplicity.
self._position_embedding_layer = layers.PositionEmbedding(
initializer=initializer,
use_dynamic_slicing=True,
max_sequence_length=max_sequence_length,
name='position_embedding')
position_embeddings = self._position_embedding_layer(word_embeddings)
self._type_embedding_layer = layers.OnDeviceEmbedding(
vocab_size=type_vocab_size,
embedding_width=embedding_width,
initializer=initializer,
use_one_hot=True,
name='type_embeddings')
type_embeddings = self._type_embedding_layer(type_ids)
embeddings = tf.keras.layers.Add()(
[word_embeddings, position_embeddings, type_embeddings])
embeddings = (
tf.keras.layers.LayerNormalization(
name='embeddings/layer_norm',
axis=-1,
epsilon=1e-12,
dtype=tf.float32)(embeddings))
embeddings = (
tf.keras.layers.Dropout(rate=dropout_rate)(embeddings))
# We project the 'embedding' output to 'hidden_size' if it is not already
# 'hidden_size'.
if embedding_width != hidden_size:
self._embedding_projection = tf.keras.layers.experimental.EinsumDense(
'...x,xy->...y',
output_shape=hidden_size,
bias_axes='y',
kernel_initializer=initializer,
name='embedding_projection')
embeddings = self._embedding_projection(embeddings)
self._transformer_layers = []
data = embeddings
attention_mask = layers.SelfAttentionMask()([data, mask])
encoder_outputs = []
for i in range(num_layers):
if i == num_layers - 1 and output_range is not None:
transformer_output_range = output_range
else:
transformer_output_range = None
layer = layers.Transformer(
num_attention_heads=num_attention_heads,
intermediate_size=intermediate_size,
intermediate_activation=activation,
dropout_rate=dropout_rate,
attention_dropout_rate=attention_dropout_rate,
output_range=transformer_output_range,
kernel_initializer=initializer,
name='transformer/layer_%d' % i)
self._transformer_layers.append(layer)
data = layer([data, attention_mask])
encoder_outputs.append(data)
first_token_tensor = (
tf.keras.layers.Lambda(lambda x: tf.squeeze(x[:, 0:1, :], axis=1))(
encoder_outputs[-1]))
self._pooler_layer = tf.keras.layers.Dense(
units=hidden_size,
activation='tanh',
kernel_initializer=initializer,
name='pooler_transform')
cls_output = self._pooler_layer(first_token_tensor)
if return_all_encoder_outputs:
outputs = [encoder_outputs, cls_output]
else:
outputs = [encoder_outputs[-1], cls_output]
super(TransformerEncoder, self).__init__(
inputs=[word_ids, mask, type_ids], outputs=outputs, **kwargs)
def get_embedding_table(self):
return self._embedding_layer.embeddings
def get_embedding_layer(self):
return self._embedding_layer
def get_config(self):
return self._config_dict
@property
def transformer_layers(self):
"""List of Transformer layers in the encoder."""
return self._transformer_layers
@property
def pooler_layer(self):
"""The pooler dense layer after the transformer layers."""
return self._pooler_layer
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
|