Spaces:
Running
Running
File size: 7,937 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# Lint as: python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Definitions for high level configuration groups.."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Any, List, Mapping, Optional
import dataclasses
from official.modeling import hyperparams
from official.modeling.hyperparams import config_definitions
CallbacksConfig = config_definitions.CallbacksConfig
TensorboardConfig = config_definitions.TensorboardConfig
RuntimeConfig = config_definitions.RuntimeConfig
@dataclasses.dataclass
class ExportConfig(hyperparams.Config):
"""Configuration for exports.
Attributes:
checkpoint: the path to the checkpoint to export.
destination: the path to where the checkpoint should be exported.
"""
checkpoint: str = None
destination: str = None
@dataclasses.dataclass
class MetricsConfig(hyperparams.Config):
"""Configuration for Metrics.
Attributes:
accuracy: Whether or not to track accuracy as a Callback. Defaults to None.
top_5: Whether or not to track top_5_accuracy as a Callback. Defaults to
None.
"""
accuracy: bool = None
top_5: bool = None
@dataclasses.dataclass
class TimeHistoryConfig(hyperparams.Config):
"""Configuration for the TimeHistory callback.
Attributes:
log_steps: Interval of steps between logging of batch level stats.
"""
log_steps: int = None
@dataclasses.dataclass
class TrainConfig(hyperparams.Config):
"""Configuration for training.
Attributes:
resume_checkpoint: Whether or not to enable load checkpoint loading.
Defaults to None.
epochs: The number of training epochs to run. Defaults to None.
steps: The number of steps to run per epoch. If None, then this will be
inferred based on the number of images and batch size. Defaults to None.
callbacks: An instance of CallbacksConfig.
metrics: An instance of MetricsConfig.
tensorboard: An instance of TensorboardConfig.
set_epoch_loop: Whether or not to set `experimental_steps_per_execution` to
equal the number of training steps in `model.compile`. This reduces the
number of callbacks run per epoch which significantly improves end-to-end
TPU training time.
"""
resume_checkpoint: bool = None
epochs: int = None
steps: int = None
callbacks: CallbacksConfig = CallbacksConfig()
metrics: MetricsConfig = None
tensorboard: TensorboardConfig = TensorboardConfig()
time_history: TimeHistoryConfig = TimeHistoryConfig()
set_epoch_loop: bool = False
@dataclasses.dataclass
class EvalConfig(hyperparams.Config):
"""Configuration for evaluation.
Attributes:
epochs_between_evals: The number of train epochs to run between evaluations.
Defaults to None.
steps: The number of eval steps to run during evaluation. If None, this will
be inferred based on the number of images and batch size. Defaults to
None.
skip_eval: Whether or not to skip evaluation.
"""
epochs_between_evals: int = None
steps: int = None
skip_eval: bool = False
@dataclasses.dataclass
class LossConfig(hyperparams.Config):
"""Configuration for Loss.
Attributes:
name: The name of the loss. Defaults to None.
label_smoothing: Whether or not to apply label smoothing to the loss. This
only applies to 'categorical_cross_entropy'.
"""
name: str = None
label_smoothing: float = None
@dataclasses.dataclass
class OptimizerConfig(hyperparams.Config):
"""Configuration for Optimizers.
Attributes:
name: The name of the optimizer. Defaults to None.
decay: Decay or rho, discounting factor for gradient. Defaults to None.
epsilon: Small value used to avoid 0 denominator. Defaults to None.
momentum: Plain momentum constant. Defaults to None.
nesterov: Whether or not to apply Nesterov momentum. Defaults to None.
moving_average_decay: The amount of decay to apply. If 0 or None, then
exponential moving average is not used. Defaults to None.
lookahead: Whether or not to apply the lookahead optimizer. Defaults to
None.
beta_1: The exponential decay rate for the 1st moment estimates. Used in the
Adam optimizers. Defaults to None.
beta_2: The exponential decay rate for the 2nd moment estimates. Used in the
Adam optimizers. Defaults to None.
epsilon: Small value used to avoid 0 denominator. Defaults to 1e-7.
"""
name: str = None
decay: float = None
epsilon: float = None
momentum: float = None
nesterov: bool = None
moving_average_decay: Optional[float] = None
lookahead: Optional[bool] = None
beta_1: float = None
beta_2: float = None
epsilon: float = None
@dataclasses.dataclass
class LearningRateConfig(hyperparams.Config):
"""Configuration for learning rates.
Attributes:
name: The name of the learning rate. Defaults to None.
initial_lr: The initial learning rate. Defaults to None.
decay_epochs: The number of decay epochs. Defaults to None.
decay_rate: The rate of decay. Defaults to None.
warmup_epochs: The number of warmup epochs. Defaults to None.
batch_lr_multiplier: The multiplier to apply to the base learning rate, if
necessary. Defaults to None.
examples_per_epoch: the number of examples in a single epoch. Defaults to
None.
boundaries: boundaries used in piecewise constant decay with warmup.
multipliers: multipliers used in piecewise constant decay with warmup.
scale_by_batch_size: Scale the learning rate by a fraction of the batch
size. Set to 0 for no scaling (default).
staircase: Apply exponential decay at discrete values instead of continuous.
"""
name: str = None
initial_lr: float = None
decay_epochs: float = None
decay_rate: float = None
warmup_epochs: int = None
examples_per_epoch: int = None
boundaries: List[int] = None
multipliers: List[float] = None
scale_by_batch_size: float = 0.
staircase: bool = None
@dataclasses.dataclass
class ModelConfig(hyperparams.Config):
"""Configuration for Models.
Attributes:
name: The name of the model. Defaults to None.
model_params: The parameters used to create the model. Defaults to None.
num_classes: The number of classes in the model. Defaults to None.
loss: A `LossConfig` instance. Defaults to None.
optimizer: An `OptimizerConfig` instance. Defaults to None.
"""
name: str = None
model_params: hyperparams.Config = None
num_classes: int = None
loss: LossConfig = None
optimizer: OptimizerConfig = None
@dataclasses.dataclass
class ExperimentConfig(hyperparams.Config):
"""Base configuration for an image classification experiment.
Attributes:
model_dir: The directory to use when running an experiment.
mode: e.g. 'train_and_eval', 'export'
runtime: A `RuntimeConfig` instance.
train: A `TrainConfig` instance.
evaluation: An `EvalConfig` instance.
model: A `ModelConfig` instance.
export: An `ExportConfig` instance.
"""
model_dir: str = None
model_name: str = None
mode: str = None
runtime: RuntimeConfig = None
train_dataset: Any = None
validation_dataset: Any = None
train: TrainConfig = None
evaluation: EvalConfig = None
model: ModelConfig = None
export: ExportConfig = None
|