File size: 15,997 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

"""Tests for pg_agent."""

from collections import Counter

from absl import logging
import numpy as np
from six.moves import xrange
import tensorflow as tf

from common import utils  # brain coder
from single_task import data  # brain coder
from single_task import defaults  # brain coder
from single_task import misc  # brain coder
from single_task import pg_agent as agent_lib  # brain coder
from single_task import pg_train  # brain coder


# Symmetric mean absolute percentage error (SMAPE).
# https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error
def smape(a, b):
  return 2.0 * abs(a - b) / float(a + b)


def onehot(dim, num_dims):
  value = np.zeros(num_dims, dtype=np.float32)
  value[dim] = 1
  return value


def random_sequence(max_length, num_tokens, eos=0):
  length = np.random.randint(1, max_length - 1)
  return np.append(np.random.randint(1, num_tokens, length), eos)


def repeat_and_pad(v, rep, total_len):
  return [v] * rep + [0.0] * (total_len - rep)


class AgentTest(tf.test.TestCase):

  def testProcessEpisodes(self):
    batch_size = 3

    def reward_fn(code_string):
      return misc.RewardInfo(
          episode_rewards=[float(ord(c)) for c in code_string],
          input_case=[],
          correct_output=[],
          code_output=[],
          input_type=misc.IOType.integer,
          output_type=misc.IOType.integer,
          reason='none')

    rl_batch = data.RLBatch(
        reward_fns=[reward_fn for _ in range(batch_size)],
        batch_size=batch_size,
        good_reward=10.0)
    batch_actions = np.asarray([
        [4, 5, 3, 6, 8, 1, 0, 0],
        [1, 2, 3, 4, 0, 0, 0, 0],
        [8, 7, 6, 5, 4, 3, 2, 1]], dtype=np.int32)
    batch_values = np.asarray([
        [0, 1, 2, 1, 0, 1, 1, 0],
        [0, 2, 1, 2, 1, 0, 0, 0],
        [0, 1, 1, 0, 0, 0, 1, 1]], dtype=np.float32)
    episode_lengths = np.asarray([7, 5, 8], dtype=np.int32)

    scores = agent_lib.compute_rewards(
        rl_batch, batch_actions, episode_lengths)
    batch_targets, batch_returns = agent_lib.process_episodes(
        scores.batch_rewards, episode_lengths, a2c=True,
        batch_values=batch_values)
    self.assertEqual(
        [[473.0, 428.0, 337.0, 294.0, 201.0, 157.0, 95.0, 0.0],
         [305.0, 243.0, 183.0, 140.0, 95.0, 0.0, 0.0, 0.0],
         [484.0, 440.0, 394.0, 301.0, 210.0, 165.0, 122.0, 62.0]],
        batch_returns.tolist())
    self.assertEqual(
        [[473.0, 427.0, 335.0, 293.0, 201.0, 156.0, 94.0, 0.0],
         [305.0, 241.0, 182.0, 138.0, 94.0, 0.0, 0.0, 0.0],
         [484.0, 439.0, 393.0, 301.0, 210.0, 165.0, 121.0, 61.0]],
        batch_targets.tolist())

  def testVarUpdates(self):
    """Tests that variables get updated as expected.

    For the RL update, check that gradients are non-zero and that the global
    model gets updated.
    """
    config = defaults.default_config_with_updates(
        'env=c(task="reverse"),'
        'agent=c(algorithm="pg",eos_token=True,optimizer="sgd",lr=1.0)')
    lr = config.agent.lr

    tf.reset_default_graph()
    trainer = pg_train.AsyncTrainer(
        config, task_id=0, ps_tasks=0, num_workers=1)
    global_init_op = tf.variables_initializer(
        tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'global'))
    with tf.Session() as sess:
      sess.run(global_init_op)  # Initialize global copy.
      trainer.initialize(sess)
      model = trainer.model
      global_vars = sess.run(trainer.global_model.trainable_variables)
      local_vars = sess.run(model.trainable_variables)

      # Make sure names match.
      g_prefix = 'global/'
      l_prefix = 'local/'
      for g, l in zip(trainer.global_model.trainable_variables,
                      model.trainable_variables):
        self.assertEqual(g.name[len(g_prefix):], l.name[len(l_prefix):])

      # Assert that shapes and values are the same between global and local
      # models.
      for g, l in zip(global_vars, local_vars):
        self.assertEqual(g.shape, l.shape)
        self.assertTrue(np.array_equal(g, l))

      # Make all gradients dense tensors.
      for param, grad in model.gradients_dict.items():
        if isinstance(grad, tf.IndexedSlices):
          # Converts to dense tensor.
          model.gradients_dict[param] = tf.multiply(grad, 1.0)

      # Perform update.
      results = model.update_step(
          sess, trainer.data_manager.sample_rl_batch(), trainer.train_op,
          trainer.global_step, return_gradients=True)
      grads_dict = results.gradients_dict
      for grad in grads_dict.values():
        self.assertIsNotNone(grad)
        self.assertTrue(np.count_nonzero(grad) > 0)
      global_update = sess.run(trainer.global_model.trainable_variables)
      for tf_var, var_before, var_after in zip(
          model.trainable_variables, local_vars, global_update):
        # Check that the params were updated.
        self.assertTrue(np.allclose(
            var_after,
            var_before - grads_dict[tf_var] * lr))

      # Test that global to local sync works.
      sess.run(trainer.sync_op)
      global_vars = sess.run(trainer.global_model.trainable_variables)
      local_vars = sess.run(model.trainable_variables)
      for l, g in zip(local_vars, global_vars):
        self.assertTrue(np.allclose(l, g))

  def testMonteCarloGradients(self):
    """Test Monte Carlo estimate of REINFORCE gradient.

    Test that the Monte Carlo estimate of the REINFORCE gradient is
    approximately equal to the true gradient. We compute the true gradient for a
    toy environment with a very small action space.

    Similar to section 5 of https://arxiv.org/pdf/1505.00521.pdf.
    """
    # Test may have different outcome on different machines due to different
    # rounding behavior of float arithmetic.
    tf.reset_default_graph()
    tf.set_random_seed(12345678987654321)
    np.random.seed(1294024302)
    max_length = 2
    num_tokens = misc.bf_num_tokens()
    eos = misc.BF_EOS_INT
    assert eos == 0
    def sequence_iterator(max_length):
      """Iterates through all sequences up to the given length."""
      yield [eos]
      for a in xrange(1, num_tokens):
        if max_length > 1:
          for sub_seq in sequence_iterator(max_length - 1):
            yield [a] + sub_seq
        else:
          yield [a]
    actions = list(sequence_iterator(max_length))

    # This batch contains all possible episodes up to max_length.
    actions_batch = utils.stack_pad(actions, 0)
    lengths_batch = [len(s) for s in actions]

    reward_map = {tuple(a): np.random.randint(-1, 7) for a in actions_batch}
    # reward_map = {tuple(a): np.random.normal(3, 1)
    #               for a in actions_batch}  # normal distribution
    # reward_map = {tuple(a): 1.0
    #               for a in actions_batch}  # expected reward is 1

    n = 100000  # MC sample size.
    config = defaults.default_config_with_updates(
        'env=c(task="print"),'
        'agent=c(algorithm="pg",optimizer="sgd",lr=1.0,ema_baseline_decay=0.99,'
        'entropy_beta=0.0,topk_loss_hparam=0.0,regularizer=0.0,'
        'policy_lstm_sizes=[10],eos_token=True),'
        'batch_size='+str(n)+',timestep_limit='+str(max_length))

    dtype = tf.float64
    trainer = pg_train.AsyncTrainer(
        config, task_id=0, ps_tasks=0, num_workers=1, dtype=dtype)
    model = trainer.model
    actions_ph = model.actions
    lengths_ph = model.adjusted_lengths
    multipliers_ph = model.policy_multipliers

    global_init_op = tf.variables_initializer(
        tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'global'))
    with tf.Session() as sess, sess.graph.as_default():
      sess.run(global_init_op)  # Initialize global copy.
      trainer.initialize(sess)

      # Compute exact gradients.
      # exact_grads = sum(P(a) * grad(log P(a)) * R(a) for a in actions_batch)
      true_loss_unnormalized = 0.0
      exact_grads = [np.zeros(v.shape) for v in model.trainable_variables]
      episode_probs_map = {}
      grads_map = {}
      for a_idx in xrange(len(actions_batch)):
        a = actions_batch[a_idx]
        grads_result, probs_result, loss = sess.run(
            [model.dense_unclipped_grads, model.chosen_probs, model.loss],
            {actions_ph: [a],
             lengths_ph: [lengths_batch[a_idx]],
             multipliers_ph: [
                 repeat_and_pad(reward_map[tuple(a)],
                                lengths_batch[a_idx],
                                max_length)]})
        # Take product over time axis.
        episode_probs_result = np.prod(probs_result[0, :lengths_batch[a_idx]])
        for i in range(0, len(exact_grads)):
          exact_grads[i] += grads_result[i] * episode_probs_result
        episode_probs_map[tuple(a)] = episode_probs_result
        reward_map[tuple(a)] = reward_map[tuple(a)]
        grads_map[tuple(a)] = grads_result
        true_loss_unnormalized += loss
      # Normalize loss. Since each episode is feed into the model one at a time,
      # normalization needs to be done manually.
      true_loss = true_loss_unnormalized / float(len(actions_batch))

      # Compute Monte Carlo gradients.
      # E_a~P[grad(log P(a)) R(a)] is aprox. eq. to
      # sum(grad(log P(a)) R(a) for a in actions_sampled_from_P) / n
      # where len(actions_sampled_from_P) == n.
      #
      # In other words, sample from the policy and compute the gradients of the
      # log probs weighted by the returns. This will excersize the code in
      # agent.py
      sampled_actions, sampled_lengths = sess.run(
          [model.sampled_tokens, model.episode_lengths])
      pi_multipliers = [
          repeat_and_pad(reward_map[tuple(a)], l, max_length)
          for a, l in zip(sampled_actions, sampled_lengths)]
      mc_grads_unnormalized, sampled_probs, mc_loss_unnormalized = sess.run(
          [model.dense_unclipped_grads, model.chosen_probs, model.loss],
          {actions_ph: sampled_actions,
           multipliers_ph: pi_multipliers,
           lengths_ph: sampled_lengths})
      # Loss is already normalized across the minibatch, so no normalization
      # is needed.
      mc_grads = mc_grads_unnormalized
      mc_loss = mc_loss_unnormalized

    # Make sure true loss and MC loss are similar.
    loss_error = smape(true_loss, mc_loss)
    self.assertTrue(loss_error < 0.15, msg='actual: %s' % loss_error)

    # Check that probs computed for episodes sampled from the model are the same
    # as the recorded true probs.
    for i in range(100):
      acs = tuple(sampled_actions[i].tolist())
      sampled_prob = np.prod(sampled_probs[i, :sampled_lengths[i]])
      self.assertTrue(np.isclose(episode_probs_map[acs], sampled_prob))

    # Make sure MC estimates of true probs are close.
    counter = Counter(tuple(e) for e in sampled_actions)
    for acs, count in counter.iteritems():
      mc_prob = count / float(len(sampled_actions))
      true_prob = episode_probs_map[acs]
      error = smape(mc_prob, true_prob)
      self.assertTrue(
          error < 0.15,
          msg='actual: %s; count: %s; mc_prob: %s; true_prob: %s'
          % (error, count, mc_prob, true_prob))

    # Manually recompute MC gradients and make sure they match MC gradients
    # computed in TF.
    mc_grads_recompute = [np.zeros(v.shape) for v in model.trainable_variables]
    for i in range(n):
      acs = tuple(sampled_actions[i].tolist())
      for i in range(0, len(mc_grads_recompute)):
        mc_grads_recompute[i] += grads_map[acs][i]
    for i in range(0, len(mc_grads_recompute)):
      self.assertTrue(np.allclose(mc_grads[i], mc_grads_recompute[i] / n))

    # Check angle between gradients as fraction of pi.
    for index in range(len(mc_grads)):
      v1 = mc_grads[index].reshape(-1)
      v2 = exact_grads[index].reshape(-1)
      # angle = arccos(v1 . v2 / (|v1|*|v2|))
      angle_rad = np.arccos(
          np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)))
      logging.info('angle / pi: %s', angle_rad / np.pi)
      angle_frac = angle_rad / np.pi
      self.assertTrue(angle_frac < 0.02, msg='actual: %s' % angle_frac)
    # Check norms.
    for index in range(len(mc_grads)):
      v1_norm = np.linalg.norm(mc_grads[index].reshape(-1))
      v2_norm = np.linalg.norm(exact_grads[index].reshape(-1))
      error = smape(v1_norm, v2_norm)
      self.assertTrue(error < 0.02, msg='actual: %s' % error)

    # Check expected rewards.
    # E_a~P[R(a)] approx eq sum(P(a) * R(a) for a in actions)
    mc_expected_reward = np.mean(
        [reward_map[tuple(a)] for a in sampled_actions])
    exact_expected_reward = np.sum(
        [episode_probs_map[k] * reward_map[k] for k in reward_map])
    error = smape(mc_expected_reward, exact_expected_reward)
    self.assertTrue(error < 0.005, msg='actual: %s' % angle_frac)

  def testNumericalGradChecking(self):
    # Similar to
    # http://ufldl.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization.
    epsilon = 1e-4
    eos = misc.BF_EOS_INT
    self.assertEqual(0, eos)
    config = defaults.default_config_with_updates(
        'env=c(task="print"),'
        'agent=c(algorithm="pg",optimizer="sgd",lr=1.0,ema_baseline_decay=0.99,'
        'entropy_beta=0.0,topk_loss_hparam=0.0,policy_lstm_sizes=[10],'
        'eos_token=True),'
        'batch_size=64')
    dtype = tf.float64
    tf.reset_default_graph()
    tf.set_random_seed(12345678987654321)
    np.random.seed(1294024302)
    trainer = pg_train.AsyncTrainer(
        config, task_id=0, ps_tasks=0, num_workers=1, dtype=dtype)
    model = trainer.model
    actions_ph = model.actions
    lengths_ph = model.adjusted_lengths
    multipliers_ph = model.policy_multipliers
    loss = model.pi_loss
    global_init_op = tf.variables_initializer(
        tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'global'))

    assign_add_placeholders = [None] * len(model.trainable_variables)
    assign_add_ops = [None] * len(model.trainable_variables)
    param_shapes = [None] * len(model.trainable_variables)
    for i, param in enumerate(model.trainable_variables):
      param_shapes[i] = param.get_shape().as_list()
      assign_add_placeholders[i] = tf.placeholder(dtype,
                                                  np.prod(param_shapes[i]))
      assign_add_ops[i] = param.assign_add(
          tf.reshape(assign_add_placeholders[i], param_shapes[i]))

    with tf.Session() as sess:
      sess.run(global_init_op)  # Initialize global copy.
      trainer.initialize(sess)

      actions_raw = [random_sequence(10, 9) for _ in xrange(16)]
      actions_batch = utils.stack_pad(actions_raw, 0)
      lengths_batch = [len(l) for l in actions_raw]
      feed = {actions_ph: actions_batch,
              multipliers_ph: np.ones_like(actions_batch),
              lengths_ph: lengths_batch}

      estimated_grads = [None] * len(model.trainable_variables)
      for i, param in enumerate(model.trainable_variables):
        param_size = np.prod(param_shapes[i])
        estimated_grads[i] = np.zeros(param_size, dtype=np.float64)
        for index in xrange(param_size):
          e = onehot(index, param_size) * epsilon
          sess.run(assign_add_ops[i],
                   {assign_add_placeholders[i]: e})
          j_plus = sess.run(loss, feed)
          sess.run(assign_add_ops[i],
                   {assign_add_placeholders[i]: -2 * e})
          j_minus = sess.run(loss, feed)
          sess.run(assign_add_ops[i],
                   {assign_add_placeholders[i]: e})
          estimated_grads[i][index] = (j_plus - j_minus) / (2 * epsilon)
        estimated_grads[i] = estimated_grads[i].reshape(param_shapes[i])

      analytic_grads = sess.run(model.dense_unclipped_grads, feed)

      for g1, g2 in zip(estimated_grads[1:], analytic_grads[1:]):
        logging.info('norm (g1-g2): %s', np.abs(g1 - g2).mean())
        self.assertTrue(np.allclose(g1, g2))


if __name__ == '__main__':
  tf.test.main()