Spaces:
Running
Running
File size: 15,997 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
"""Tests for pg_agent."""
from collections import Counter
from absl import logging
import numpy as np
from six.moves import xrange
import tensorflow as tf
from common import utils # brain coder
from single_task import data # brain coder
from single_task import defaults # brain coder
from single_task import misc # brain coder
from single_task import pg_agent as agent_lib # brain coder
from single_task import pg_train # brain coder
# Symmetric mean absolute percentage error (SMAPE).
# https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error
def smape(a, b):
return 2.0 * abs(a - b) / float(a + b)
def onehot(dim, num_dims):
value = np.zeros(num_dims, dtype=np.float32)
value[dim] = 1
return value
def random_sequence(max_length, num_tokens, eos=0):
length = np.random.randint(1, max_length - 1)
return np.append(np.random.randint(1, num_tokens, length), eos)
def repeat_and_pad(v, rep, total_len):
return [v] * rep + [0.0] * (total_len - rep)
class AgentTest(tf.test.TestCase):
def testProcessEpisodes(self):
batch_size = 3
def reward_fn(code_string):
return misc.RewardInfo(
episode_rewards=[float(ord(c)) for c in code_string],
input_case=[],
correct_output=[],
code_output=[],
input_type=misc.IOType.integer,
output_type=misc.IOType.integer,
reason='none')
rl_batch = data.RLBatch(
reward_fns=[reward_fn for _ in range(batch_size)],
batch_size=batch_size,
good_reward=10.0)
batch_actions = np.asarray([
[4, 5, 3, 6, 8, 1, 0, 0],
[1, 2, 3, 4, 0, 0, 0, 0],
[8, 7, 6, 5, 4, 3, 2, 1]], dtype=np.int32)
batch_values = np.asarray([
[0, 1, 2, 1, 0, 1, 1, 0],
[0, 2, 1, 2, 1, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 1, 1]], dtype=np.float32)
episode_lengths = np.asarray([7, 5, 8], dtype=np.int32)
scores = agent_lib.compute_rewards(
rl_batch, batch_actions, episode_lengths)
batch_targets, batch_returns = agent_lib.process_episodes(
scores.batch_rewards, episode_lengths, a2c=True,
batch_values=batch_values)
self.assertEqual(
[[473.0, 428.0, 337.0, 294.0, 201.0, 157.0, 95.0, 0.0],
[305.0, 243.0, 183.0, 140.0, 95.0, 0.0, 0.0, 0.0],
[484.0, 440.0, 394.0, 301.0, 210.0, 165.0, 122.0, 62.0]],
batch_returns.tolist())
self.assertEqual(
[[473.0, 427.0, 335.0, 293.0, 201.0, 156.0, 94.0, 0.0],
[305.0, 241.0, 182.0, 138.0, 94.0, 0.0, 0.0, 0.0],
[484.0, 439.0, 393.0, 301.0, 210.0, 165.0, 121.0, 61.0]],
batch_targets.tolist())
def testVarUpdates(self):
"""Tests that variables get updated as expected.
For the RL update, check that gradients are non-zero and that the global
model gets updated.
"""
config = defaults.default_config_with_updates(
'env=c(task="reverse"),'
'agent=c(algorithm="pg",eos_token=True,optimizer="sgd",lr=1.0)')
lr = config.agent.lr
tf.reset_default_graph()
trainer = pg_train.AsyncTrainer(
config, task_id=0, ps_tasks=0, num_workers=1)
global_init_op = tf.variables_initializer(
tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'global'))
with tf.Session() as sess:
sess.run(global_init_op) # Initialize global copy.
trainer.initialize(sess)
model = trainer.model
global_vars = sess.run(trainer.global_model.trainable_variables)
local_vars = sess.run(model.trainable_variables)
# Make sure names match.
g_prefix = 'global/'
l_prefix = 'local/'
for g, l in zip(trainer.global_model.trainable_variables,
model.trainable_variables):
self.assertEqual(g.name[len(g_prefix):], l.name[len(l_prefix):])
# Assert that shapes and values are the same between global and local
# models.
for g, l in zip(global_vars, local_vars):
self.assertEqual(g.shape, l.shape)
self.assertTrue(np.array_equal(g, l))
# Make all gradients dense tensors.
for param, grad in model.gradients_dict.items():
if isinstance(grad, tf.IndexedSlices):
# Converts to dense tensor.
model.gradients_dict[param] = tf.multiply(grad, 1.0)
# Perform update.
results = model.update_step(
sess, trainer.data_manager.sample_rl_batch(), trainer.train_op,
trainer.global_step, return_gradients=True)
grads_dict = results.gradients_dict
for grad in grads_dict.values():
self.assertIsNotNone(grad)
self.assertTrue(np.count_nonzero(grad) > 0)
global_update = sess.run(trainer.global_model.trainable_variables)
for tf_var, var_before, var_after in zip(
model.trainable_variables, local_vars, global_update):
# Check that the params were updated.
self.assertTrue(np.allclose(
var_after,
var_before - grads_dict[tf_var] * lr))
# Test that global to local sync works.
sess.run(trainer.sync_op)
global_vars = sess.run(trainer.global_model.trainable_variables)
local_vars = sess.run(model.trainable_variables)
for l, g in zip(local_vars, global_vars):
self.assertTrue(np.allclose(l, g))
def testMonteCarloGradients(self):
"""Test Monte Carlo estimate of REINFORCE gradient.
Test that the Monte Carlo estimate of the REINFORCE gradient is
approximately equal to the true gradient. We compute the true gradient for a
toy environment with a very small action space.
Similar to section 5 of https://arxiv.org/pdf/1505.00521.pdf.
"""
# Test may have different outcome on different machines due to different
# rounding behavior of float arithmetic.
tf.reset_default_graph()
tf.set_random_seed(12345678987654321)
np.random.seed(1294024302)
max_length = 2
num_tokens = misc.bf_num_tokens()
eos = misc.BF_EOS_INT
assert eos == 0
def sequence_iterator(max_length):
"""Iterates through all sequences up to the given length."""
yield [eos]
for a in xrange(1, num_tokens):
if max_length > 1:
for sub_seq in sequence_iterator(max_length - 1):
yield [a] + sub_seq
else:
yield [a]
actions = list(sequence_iterator(max_length))
# This batch contains all possible episodes up to max_length.
actions_batch = utils.stack_pad(actions, 0)
lengths_batch = [len(s) for s in actions]
reward_map = {tuple(a): np.random.randint(-1, 7) for a in actions_batch}
# reward_map = {tuple(a): np.random.normal(3, 1)
# for a in actions_batch} # normal distribution
# reward_map = {tuple(a): 1.0
# for a in actions_batch} # expected reward is 1
n = 100000 # MC sample size.
config = defaults.default_config_with_updates(
'env=c(task="print"),'
'agent=c(algorithm="pg",optimizer="sgd",lr=1.0,ema_baseline_decay=0.99,'
'entropy_beta=0.0,topk_loss_hparam=0.0,regularizer=0.0,'
'policy_lstm_sizes=[10],eos_token=True),'
'batch_size='+str(n)+',timestep_limit='+str(max_length))
dtype = tf.float64
trainer = pg_train.AsyncTrainer(
config, task_id=0, ps_tasks=0, num_workers=1, dtype=dtype)
model = trainer.model
actions_ph = model.actions
lengths_ph = model.adjusted_lengths
multipliers_ph = model.policy_multipliers
global_init_op = tf.variables_initializer(
tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'global'))
with tf.Session() as sess, sess.graph.as_default():
sess.run(global_init_op) # Initialize global copy.
trainer.initialize(sess)
# Compute exact gradients.
# exact_grads = sum(P(a) * grad(log P(a)) * R(a) for a in actions_batch)
true_loss_unnormalized = 0.0
exact_grads = [np.zeros(v.shape) for v in model.trainable_variables]
episode_probs_map = {}
grads_map = {}
for a_idx in xrange(len(actions_batch)):
a = actions_batch[a_idx]
grads_result, probs_result, loss = sess.run(
[model.dense_unclipped_grads, model.chosen_probs, model.loss],
{actions_ph: [a],
lengths_ph: [lengths_batch[a_idx]],
multipliers_ph: [
repeat_and_pad(reward_map[tuple(a)],
lengths_batch[a_idx],
max_length)]})
# Take product over time axis.
episode_probs_result = np.prod(probs_result[0, :lengths_batch[a_idx]])
for i in range(0, len(exact_grads)):
exact_grads[i] += grads_result[i] * episode_probs_result
episode_probs_map[tuple(a)] = episode_probs_result
reward_map[tuple(a)] = reward_map[tuple(a)]
grads_map[tuple(a)] = grads_result
true_loss_unnormalized += loss
# Normalize loss. Since each episode is feed into the model one at a time,
# normalization needs to be done manually.
true_loss = true_loss_unnormalized / float(len(actions_batch))
# Compute Monte Carlo gradients.
# E_a~P[grad(log P(a)) R(a)] is aprox. eq. to
# sum(grad(log P(a)) R(a) for a in actions_sampled_from_P) / n
# where len(actions_sampled_from_P) == n.
#
# In other words, sample from the policy and compute the gradients of the
# log probs weighted by the returns. This will excersize the code in
# agent.py
sampled_actions, sampled_lengths = sess.run(
[model.sampled_tokens, model.episode_lengths])
pi_multipliers = [
repeat_and_pad(reward_map[tuple(a)], l, max_length)
for a, l in zip(sampled_actions, sampled_lengths)]
mc_grads_unnormalized, sampled_probs, mc_loss_unnormalized = sess.run(
[model.dense_unclipped_grads, model.chosen_probs, model.loss],
{actions_ph: sampled_actions,
multipliers_ph: pi_multipliers,
lengths_ph: sampled_lengths})
# Loss is already normalized across the minibatch, so no normalization
# is needed.
mc_grads = mc_grads_unnormalized
mc_loss = mc_loss_unnormalized
# Make sure true loss and MC loss are similar.
loss_error = smape(true_loss, mc_loss)
self.assertTrue(loss_error < 0.15, msg='actual: %s' % loss_error)
# Check that probs computed for episodes sampled from the model are the same
# as the recorded true probs.
for i in range(100):
acs = tuple(sampled_actions[i].tolist())
sampled_prob = np.prod(sampled_probs[i, :sampled_lengths[i]])
self.assertTrue(np.isclose(episode_probs_map[acs], sampled_prob))
# Make sure MC estimates of true probs are close.
counter = Counter(tuple(e) for e in sampled_actions)
for acs, count in counter.iteritems():
mc_prob = count / float(len(sampled_actions))
true_prob = episode_probs_map[acs]
error = smape(mc_prob, true_prob)
self.assertTrue(
error < 0.15,
msg='actual: %s; count: %s; mc_prob: %s; true_prob: %s'
% (error, count, mc_prob, true_prob))
# Manually recompute MC gradients and make sure they match MC gradients
# computed in TF.
mc_grads_recompute = [np.zeros(v.shape) for v in model.trainable_variables]
for i in range(n):
acs = tuple(sampled_actions[i].tolist())
for i in range(0, len(mc_grads_recompute)):
mc_grads_recompute[i] += grads_map[acs][i]
for i in range(0, len(mc_grads_recompute)):
self.assertTrue(np.allclose(mc_grads[i], mc_grads_recompute[i] / n))
# Check angle between gradients as fraction of pi.
for index in range(len(mc_grads)):
v1 = mc_grads[index].reshape(-1)
v2 = exact_grads[index].reshape(-1)
# angle = arccos(v1 . v2 / (|v1|*|v2|))
angle_rad = np.arccos(
np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)))
logging.info('angle / pi: %s', angle_rad / np.pi)
angle_frac = angle_rad / np.pi
self.assertTrue(angle_frac < 0.02, msg='actual: %s' % angle_frac)
# Check norms.
for index in range(len(mc_grads)):
v1_norm = np.linalg.norm(mc_grads[index].reshape(-1))
v2_norm = np.linalg.norm(exact_grads[index].reshape(-1))
error = smape(v1_norm, v2_norm)
self.assertTrue(error < 0.02, msg='actual: %s' % error)
# Check expected rewards.
# E_a~P[R(a)] approx eq sum(P(a) * R(a) for a in actions)
mc_expected_reward = np.mean(
[reward_map[tuple(a)] for a in sampled_actions])
exact_expected_reward = np.sum(
[episode_probs_map[k] * reward_map[k] for k in reward_map])
error = smape(mc_expected_reward, exact_expected_reward)
self.assertTrue(error < 0.005, msg='actual: %s' % angle_frac)
def testNumericalGradChecking(self):
# Similar to
# http://ufldl.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization.
epsilon = 1e-4
eos = misc.BF_EOS_INT
self.assertEqual(0, eos)
config = defaults.default_config_with_updates(
'env=c(task="print"),'
'agent=c(algorithm="pg",optimizer="sgd",lr=1.0,ema_baseline_decay=0.99,'
'entropy_beta=0.0,topk_loss_hparam=0.0,policy_lstm_sizes=[10],'
'eos_token=True),'
'batch_size=64')
dtype = tf.float64
tf.reset_default_graph()
tf.set_random_seed(12345678987654321)
np.random.seed(1294024302)
trainer = pg_train.AsyncTrainer(
config, task_id=0, ps_tasks=0, num_workers=1, dtype=dtype)
model = trainer.model
actions_ph = model.actions
lengths_ph = model.adjusted_lengths
multipliers_ph = model.policy_multipliers
loss = model.pi_loss
global_init_op = tf.variables_initializer(
tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'global'))
assign_add_placeholders = [None] * len(model.trainable_variables)
assign_add_ops = [None] * len(model.trainable_variables)
param_shapes = [None] * len(model.trainable_variables)
for i, param in enumerate(model.trainable_variables):
param_shapes[i] = param.get_shape().as_list()
assign_add_placeholders[i] = tf.placeholder(dtype,
np.prod(param_shapes[i]))
assign_add_ops[i] = param.assign_add(
tf.reshape(assign_add_placeholders[i], param_shapes[i]))
with tf.Session() as sess:
sess.run(global_init_op) # Initialize global copy.
trainer.initialize(sess)
actions_raw = [random_sequence(10, 9) for _ in xrange(16)]
actions_batch = utils.stack_pad(actions_raw, 0)
lengths_batch = [len(l) for l in actions_raw]
feed = {actions_ph: actions_batch,
multipliers_ph: np.ones_like(actions_batch),
lengths_ph: lengths_batch}
estimated_grads = [None] * len(model.trainable_variables)
for i, param in enumerate(model.trainable_variables):
param_size = np.prod(param_shapes[i])
estimated_grads[i] = np.zeros(param_size, dtype=np.float64)
for index in xrange(param_size):
e = onehot(index, param_size) * epsilon
sess.run(assign_add_ops[i],
{assign_add_placeholders[i]: e})
j_plus = sess.run(loss, feed)
sess.run(assign_add_ops[i],
{assign_add_placeholders[i]: -2 * e})
j_minus = sess.run(loss, feed)
sess.run(assign_add_ops[i],
{assign_add_placeholders[i]: e})
estimated_grads[i][index] = (j_plus - j_minus) / (2 * epsilon)
estimated_grads[i] = estimated_grads[i].reshape(param_shapes[i])
analytic_grads = sess.run(model.dense_unclipped_grads, feed)
for g1, g2 in zip(estimated_grads[1:], analytic_grads[1:]):
logging.info('norm (g1-g2): %s', np.abs(g1 - g2).mean())
self.assertTrue(np.allclose(g1, g2))
if __name__ == '__main__':
tf.test.main()
|