File size: 10,019 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

import os, sys
import numpy as np
from tensorflow.python.platform import app
from tensorflow.python.platform import flags
import logging
import src.utils as utils
import cfgs.config_common as cc


import tensorflow as tf


rgb_resnet_v2_50_path = 'data/init_models/resnet_v2_50/model.ckpt-5136169'
d_resnet_v2_50_path = 'data/init_models/distill_rgb_to_d_resnet_v2_50/model.ckpt-120002'

def get_default_args():
  summary_args = utils.Foo(display_interval=1, test_iters=26,
                           arop_full_summary_iters=14)

  control_args = utils.Foo(train=False, test=False,
                           force_batchnorm_is_training_at_test=False,
                           reset_rng_seed=False, only_eval_when_done=False,
                           test_mode=None)
  return summary_args, control_args

def get_default_cmp_args():
  batch_norm_param = {'center': True, 'scale': True,
                      'activation_fn':tf.nn.relu}

  mapper_arch_args = utils.Foo(
      dim_reduce_neurons=64,
      fc_neurons=[1024, 1024],
      fc_out_size=8,
      fc_out_neurons=64,
      encoder='resnet_v2_50',
      deconv_neurons=[64, 32, 16, 8, 4, 2],
      deconv_strides=[2, 2, 2, 2, 2, 2],
      deconv_layers_per_block=2,
      deconv_kernel_size=4,
      fc_dropout=0.5,
      combine_type='wt_avg_logits',
      batch_norm_param=batch_norm_param)

  readout_maps_arch_args = utils.Foo(
      num_neurons=[],
      strides=[],
      kernel_size=None,
      layers_per_block=None)

  arch_args = utils.Foo(
      vin_val_neurons=8, vin_action_neurons=8, vin_ks=3, vin_share_wts=False,
      pred_neurons=[64, 64], pred_batch_norm_param=batch_norm_param,
      conv_on_value_map=0, fr_neurons=16, fr_ver='v2', fr_inside_neurons=64,
      fr_stride=1, crop_remove_each=30, value_crop_size=4,
      action_sample_type='sample', action_sample_combine_type='one_or_other',
      sample_gt_prob_type='inverse_sigmoid_decay', dagger_sample_bn_false=True,
      vin_num_iters=36, isd_k=750., use_agent_loc=False, multi_scale=True,
      readout_maps=False, rom_arch=readout_maps_arch_args)

  return arch_args, mapper_arch_args

def get_arch_vars(arch_str):
  if arch_str == '': vals = []
  else: vals = arch_str.split('_')
  ks = ['var1', 'var2', 'var3']
  ks = ks[:len(vals)]
  
  # Exp Ver.
  if len(vals) == 0: ks.append('var1'); vals.append('v0')
  # custom arch.
  if len(vals) == 1: ks.append('var2'); vals.append('')
  # map scape for projection baseline.
  if len(vals) == 2: ks.append('var3'); vals.append('fr2')

  assert(len(vals) == 3)

  vars = utils.Foo()
  for k, v in zip(ks, vals):
    setattr(vars, k, v)

  logging.error('arch_vars: %s', vars)
  return vars

def process_arch_str(args, arch_str):
  # This function modifies args.
  args.arch, args.mapper_arch = get_default_cmp_args()

  arch_vars = get_arch_vars(arch_str)

  args.navtask.task_params.outputs.ego_maps = True
  args.navtask.task_params.outputs.ego_goal_imgs = True
  args.navtask.task_params.outputs.egomotion = True
  args.navtask.task_params.toy_problem = False

  if arch_vars.var1 == 'lmap':
    args = process_arch_learned_map(args, arch_vars)

  elif arch_vars.var1 == 'pmap':
    args = process_arch_projected_map(args, arch_vars)

  else:
    logging.fatal('arch_vars.var1 should be lmap or pmap, but is %s', arch_vars.var1)
    assert(False)

  return args

def process_arch_learned_map(args, arch_vars):
  # Multiscale vision based system.
  args.navtask.task_params.input_type = 'vision'
  args.navtask.task_params.outputs.images = True
  
  if args.navtask.camera_param.modalities[0] == 'rgb':
    args.solver.pretrained_path = rgb_resnet_v2_50_path
  elif args.navtask.camera_param.modalities[0] == 'depth':
    args.solver.pretrained_path = d_resnet_v2_50_path

  if arch_vars.var2 == 'Ssc':
    sc = 1./args.navtask.task_params.step_size
    args.arch.vin_num_iters = 40
    args.navtask.task_params.map_scales = [sc]
    max_dist = args.navtask.task_params.max_dist * \
        args.navtask.task_params.num_goals
    args.navtask.task_params.map_crop_sizes = [2*max_dist]

    args.arch.fr_stride = 1
    args.arch.vin_action_neurons = 8
    args.arch.vin_val_neurons = 3
    args.arch.fr_inside_neurons = 32

    args.mapper_arch.pad_map_with_zeros_each = [24]
    args.mapper_arch.deconv_neurons = [64, 32, 16]
    args.mapper_arch.deconv_strides = [1, 2, 1]

  elif (arch_vars.var2 == 'Msc' or arch_vars.var2 == 'MscROMms' or
        arch_vars.var2 == 'MscROMss' or arch_vars.var2 == 'MscNoVin'):
    # Code for multi-scale planner.
    args.arch.vin_num_iters = 8
    args.arch.crop_remove_each = 4
    args.arch.value_crop_size = 8

    sc = 1./args.navtask.task_params.step_size
    max_dist = args.navtask.task_params.max_dist * \
        args.navtask.task_params.num_goals
    n_scales = np.log2(float(max_dist) / float(args.arch.vin_num_iters))
    n_scales = int(np.ceil(n_scales)+1)

    args.navtask.task_params.map_scales = \
        list(sc*(0.5**(np.arange(n_scales))[::-1]))
    args.navtask.task_params.map_crop_sizes = [16 for x in range(n_scales)]

    args.arch.fr_stride = 1
    args.arch.vin_action_neurons = 8
    args.arch.vin_val_neurons = 3
    args.arch.fr_inside_neurons = 32

    args.mapper_arch.pad_map_with_zeros_each = [0 for _ in range(n_scales)]
    args.mapper_arch.deconv_neurons = [64*n_scales, 32*n_scales, 16*n_scales]
    args.mapper_arch.deconv_strides = [1, 2, 1]

    if arch_vars.var2 == 'MscNoVin':
      # No planning version.
      args.arch.fr_stride = [1, 2, 1, 2]
      args.arch.vin_action_neurons = None
      args.arch.vin_val_neurons = 16
      args.arch.fr_inside_neurons = 32

      args.arch.crop_remove_each = 0
      args.arch.value_crop_size = 4
      args.arch.vin_num_iters = 0

    elif arch_vars.var2 == 'MscROMms' or arch_vars.var2 == 'MscROMss':
      # Code with read outs, MscROMms flattens and reads out,
      # MscROMss does not flatten and produces output at multiple scales.
      args.navtask.task_params.outputs.readout_maps = True
      args.navtask.task_params.map_resize_method = 'antialiasing'
      args.arch.readout_maps = True

      if arch_vars.var2 == 'MscROMms':
        args.arch.rom_arch.num_neurons = [64, 1]
        args.arch.rom_arch.kernel_size = 4
        args.arch.rom_arch.strides = [2,2]
        args.arch.rom_arch.layers_per_block = 2

        args.navtask.task_params.readout_maps_crop_sizes = [64]
        args.navtask.task_params.readout_maps_scales = [sc]

      elif arch_vars.var2 == 'MscROMss':
        args.arch.rom_arch.num_neurons = \
            [64, len(args.navtask.task_params.map_scales)]
        args.arch.rom_arch.kernel_size = 4
        args.arch.rom_arch.strides = [1,1]
        args.arch.rom_arch.layers_per_block = 1

        args.navtask.task_params.readout_maps_crop_sizes = \
            args.navtask.task_params.map_crop_sizes
        args.navtask.task_params.readout_maps_scales = \
            args.navtask.task_params.map_scales

  else:
    logging.fatal('arch_vars.var2 not one of Msc, MscROMms, MscROMss, MscNoVin.')
    assert(False)

  map_channels = args.mapper_arch.deconv_neurons[-1] / \
    (2*len(args.navtask.task_params.map_scales))
  args.navtask.task_params.map_channels = map_channels
  
  return args

def process_arch_projected_map(args, arch_vars):
  # Single scale vision based system which does not use a mapper but instead
  # uses an analytically estimated map.
  ds = int(arch_vars.var3[2])
  args.navtask.task_params.input_type = 'analytical_counts'
  args.navtask.task_params.outputs.analytical_counts = True

  assert(args.navtask.task_params.modalities[0] == 'depth')
  args.navtask.camera_param.img_channels = None

  analytical_counts = utils.Foo(map_sizes=[512/ds],
                                xy_resolution=[5.*ds],
                                z_bins=[[-10, 10, 150, 200]],
                                non_linearity=[arch_vars.var2])
  args.navtask.task_params.analytical_counts = analytical_counts

  sc = 1./ds
  args.arch.vin_num_iters = 36
  args.navtask.task_params.map_scales = [sc]
  args.navtask.task_params.map_crop_sizes = [512/ds]

  args.arch.fr_stride = [1,2]
  args.arch.vin_action_neurons = 8
  args.arch.vin_val_neurons = 3
  args.arch.fr_inside_neurons = 32

  map_channels = len(analytical_counts.z_bins[0]) + 1
  args.navtask.task_params.map_channels = map_channels
  args.solver.freeze_conv = False

  return args

def get_args_for_config(config_name):
  args = utils.Foo()

  args.summary, args.control = get_default_args()

  exp_name, mode_str = config_name.split('+')
  arch_str, solver_str, navtask_str = exp_name.split('.')
  logging.error('config_name: %s', config_name)
  logging.error('arch_str: %s', arch_str)
  logging.error('navtask_str: %s', navtask_str)
  logging.error('solver_str: %s', solver_str)
  logging.error('mode_str: %s', mode_str)

  args.solver = cc.process_solver_str(solver_str)
  args.navtask = cc.process_navtask_str(navtask_str)

  args = process_arch_str(args, arch_str)
  args.arch.isd_k = args.solver.isd_k

  # Train, test, etc.
  mode, imset = mode_str.split('_')
  args = cc.adjust_args_for_mode(args, mode)
  args.navtask.building_names = args.navtask.dataset.get_split(imset)
  args.control.test_name = '{:s}_on_{:s}'.format(mode, imset)

  # Log the arguments
  logging.error('%s', args)
  return args