Spaces:
Running
Running
File size: 20,165 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Various function to manipulate graphs for computing distances.
"""
import skimage.morphology
import numpy as np
import networkx as nx
import itertools
import logging
from datasets.nav_env import get_path_ids
import graph_tool as gt
import graph_tool.topology
import graph_tool.generation
import src.utils as utils
# Compute shortest path from all nodes to or from all source nodes
def get_distance_node_list(gtG, source_nodes, direction, weights=None):
gtG_ = gt.Graph(gtG)
v = gtG_.add_vertex()
if weights is not None:
weights = gtG_.edge_properties[weights]
for s in source_nodes:
e = gtG_.add_edge(s, int(v))
if weights is not None:
weights[e] = 0.
if direction == 'to':
dist = gt.topology.shortest_distance(
gt.GraphView(gtG_, reversed=True), source=gtG_.vertex(int(v)),
target=None, weights=weights)
elif direction == 'from':
dist = gt.topology.shortest_distance(
gt.GraphView(gtG_, reversed=False), source=gtG_.vertex(int(v)),
target=None, weights=weights)
dist = np.array(dist.get_array())
dist = dist[:-1]
if weights is None:
dist = dist-1
return dist
# Functions for semantically labelling nodes in the traversal graph.
def generate_lattice(sz_x, sz_y):
"""Generates a lattice with sz_x vertices along x and sz_y vertices along y
direction Each of these vertices is step_size distance apart. Origin is at
(0,0). """
g = gt.generation.lattice([sz_x, sz_y])
x, y = np.meshgrid(np.arange(sz_x), np.arange(sz_y))
x = np.reshape(x, [-1,1]); y = np.reshape(y, [-1,1]);
nodes = np.concatenate((x,y), axis=1)
return g, nodes
def add_diagonal_edges(g, nodes, sz_x, sz_y, edge_len):
offset = [sz_x+1, sz_x-1]
for o in offset:
s = np.arange(nodes.shape[0]-o-1)
t = s + o
ind = np.all(np.abs(nodes[s,:] - nodes[t,:]) == np.array([[1,1]]), axis=1)
s = s[ind][:,np.newaxis]
t = t[ind][:,np.newaxis]
st = np.concatenate((s,t), axis=1)
for i in range(st.shape[0]):
e = g.add_edge(st[i,0], st[i,1], add_missing=False)
g.ep['wts'][e] = edge_len
def convert_traversible_to_graph(traversible, ff_cost=1., fo_cost=1.,
oo_cost=1., connectivity=4):
assert(connectivity == 4 or connectivity == 8)
sz_x = traversible.shape[1]
sz_y = traversible.shape[0]
g, nodes = generate_lattice(sz_x, sz_y)
# Assign costs.
edge_wts = g.new_edge_property('float')
g.edge_properties['wts'] = edge_wts
wts = np.ones(g.num_edges(), dtype=np.float32)
edge_wts.get_array()[:] = wts
if connectivity == 8:
add_diagonal_edges(g, nodes, sz_x, sz_y, np.sqrt(2.))
se = np.array([[int(e.source()), int(e.target())] for e in g.edges()])
s_xy = nodes[se[:,0]]
t_xy = nodes[se[:,1]]
s_t = np.ravel_multi_index((s_xy[:,1], s_xy[:,0]), traversible.shape)
t_t = np.ravel_multi_index((t_xy[:,1], t_xy[:,0]), traversible.shape)
s_t = traversible.ravel()[s_t]
t_t = traversible.ravel()[t_t]
wts = np.zeros(g.num_edges(), dtype=np.float32)
wts[np.logical_and(s_t == True, t_t == True)] = ff_cost
wts[np.logical_and(s_t == False, t_t == False)] = oo_cost
wts[np.logical_xor(s_t, t_t)] = fo_cost
edge_wts = g.edge_properties['wts']
for i, e in enumerate(g.edges()):
edge_wts[e] = edge_wts[e] * wts[i]
# d = edge_wts.get_array()*1.
# edge_wts.get_array()[:] = d*wts
return g, nodes
def label_nodes_with_class(nodes_xyt, class_maps, pix):
"""
Returns:
class_maps__: one-hot class_map for each class.
node_class_label: one-hot class_map for each class, nodes_xyt.shape[0] x n_classes
"""
# Assign each pixel to a node.
selem = skimage.morphology.disk(pix)
class_maps_ = class_maps*1.
for i in range(class_maps.shape[2]):
class_maps_[:,:,i] = skimage.morphology.dilation(class_maps[:,:,i]*1, selem)
class_maps__ = np.argmax(class_maps_, axis=2)
class_maps__[np.max(class_maps_, axis=2) == 0] = -1
# For each node pick out the label from this class map.
x = np.round(nodes_xyt[:,[0]]).astype(np.int32)
y = np.round(nodes_xyt[:,[1]]).astype(np.int32)
ind = np.ravel_multi_index((y,x), class_maps__.shape)
node_class_label = class_maps__.ravel()[ind][:,0]
# Convert to one hot versions.
class_maps_one_hot = np.zeros(class_maps.shape, dtype=np.bool)
node_class_label_one_hot = np.zeros((node_class_label.shape[0], class_maps.shape[2]), dtype=np.bool)
for i in range(class_maps.shape[2]):
class_maps_one_hot[:,:,i] = class_maps__ == i
node_class_label_one_hot[:,i] = node_class_label == i
return class_maps_one_hot, node_class_label_one_hot
def label_nodes_with_class_geodesic(nodes_xyt, class_maps, pix, traversible,
ff_cost=1., fo_cost=1., oo_cost=1.,
connectivity=4):
"""Labels nodes in nodes_xyt with class labels using geodesic distance as
defined by traversible from class_maps.
Inputs:
nodes_xyt
class_maps: counts for each class.
pix: distance threshold to consider close enough to target.
traversible: binary map of whether traversible or not.
Output:
labels: For each node in nodes_xyt returns a label of the class or -1 is
unlabelled.
"""
g, nodes = convert_traversible_to_graph(traversible, ff_cost=ff_cost,
fo_cost=fo_cost, oo_cost=oo_cost,
connectivity=connectivity)
class_dist = np.zeros_like(class_maps*1.)
n_classes = class_maps.shape[2]
if False:
# Assign each pixel to a class based on number of points.
selem = skimage.morphology.disk(pix)
class_maps_ = class_maps*1.
class_maps__ = np.argmax(class_maps_, axis=2)
class_maps__[np.max(class_maps_, axis=2) == 0] = -1
# Label nodes with classes.
for i in range(n_classes):
# class_node_ids = np.where(class_maps__.ravel() == i)[0]
class_node_ids = np.where(class_maps[:,:,i].ravel() > 0)[0]
dist_i = get_distance_node_list(g, class_node_ids, 'to', weights='wts')
class_dist[:,:,i] = np.reshape(dist_i, class_dist[:,:,i].shape)
class_map_geodesic = (class_dist <= pix)
class_map_geodesic = np.reshape(class_map_geodesic, [-1, n_classes])
# For each node pick out the label from this class map.
x = np.round(nodes_xyt[:,[0]]).astype(np.int32)
y = np.round(nodes_xyt[:,[1]]).astype(np.int32)
ind = np.ravel_multi_index((y,x), class_dist[:,:,0].shape)
node_class_label = class_map_geodesic[ind[:,0],:]
class_map_geodesic = class_dist <= pix
return class_map_geodesic, node_class_label
def _get_next_nodes_undirected(n, sc, n_ori):
nodes_to_add = []
nodes_to_validate = []
(p, q, r) = n
nodes_to_add.append((n, (p, q, r), 0))
if n_ori == 4:
for _ in [1, 2, 3, 4]:
if _ == 1:
v = (p - sc, q, r)
elif _ == 2:
v = (p + sc, q, r)
elif _ == 3:
v = (p, q - sc, r)
elif _ == 4:
v = (p, q + sc, r)
nodes_to_validate.append((n, v, _))
return nodes_to_add, nodes_to_validate
def _get_next_nodes(n, sc, n_ori):
nodes_to_add = []
nodes_to_validate = []
(p, q, r) = n
for r_, a_ in zip([-1, 0, 1], [1, 0, 2]):
nodes_to_add.append((n, (p, q, np.mod(r+r_, n_ori)), a_))
if n_ori == 6:
if r == 0:
v = (p + sc, q, r)
elif r == 1:
v = (p + sc, q + sc, r)
elif r == 2:
v = (p, q + sc, r)
elif r == 3:
v = (p - sc, q, r)
elif r == 4:
v = (p - sc, q - sc, r)
elif r == 5:
v = (p, q - sc, r)
elif n_ori == 4:
if r == 0:
v = (p + sc, q, r)
elif r == 1:
v = (p, q + sc, r)
elif r == 2:
v = (p - sc, q, r)
elif r == 3:
v = (p, q - sc, r)
nodes_to_validate.append((n,v,3))
return nodes_to_add, nodes_to_validate
def generate_graph(valid_fn_vec=None, sc=1., n_ori=6,
starting_location=(0, 0, 0), vis=False, directed=True):
timer = utils.Timer()
timer.tic()
if directed: G = nx.DiGraph(directed=True)
else: G = nx.Graph()
G.add_node(starting_location)
new_nodes = G.nodes()
while len(new_nodes) != 0:
nodes_to_add = []
nodes_to_validate = []
for n in new_nodes:
if directed:
na, nv = _get_next_nodes(n, sc, n_ori)
else:
na, nv = _get_next_nodes_undirected(n, sc, n_ori)
nodes_to_add = nodes_to_add + na
if valid_fn_vec is not None:
nodes_to_validate = nodes_to_validate + nv
else:
node_to_add = nodes_to_add + nv
# Validate nodes.
vs = [_[1] for _ in nodes_to_validate]
valids = valid_fn_vec(vs)
for nva, valid in zip(nodes_to_validate, valids):
if valid:
nodes_to_add.append(nva)
new_nodes = []
for n,v,a in nodes_to_add:
if not G.has_node(v):
new_nodes.append(v)
G.add_edge(n, v, action=a)
timer.toc(average=True, log_at=1, log_str='src.graph_utils.generate_graph')
return (G)
def vis_G(G, ax, vertex_color='r', edge_color='b', r=None):
if edge_color is not None:
for e in G.edges():
XYT = zip(*e)
x = XYT[-3]
y = XYT[-2]
t = XYT[-1]
if r is None or t[0] == r:
ax.plot(x, y, edge_color)
if vertex_color is not None:
XYT = zip(*G.nodes())
x = XYT[-3]
y = XYT[-2]
t = XYT[-1]
ax.plot(x, y, vertex_color + '.')
def convert_to_graph_tool(G):
timer = utils.Timer()
timer.tic()
gtG = gt.Graph(directed=G.is_directed())
gtG.ep['action'] = gtG.new_edge_property('int')
nodes_list = G.nodes()
nodes_array = np.array(nodes_list)
nodes_id = np.zeros((nodes_array.shape[0],), dtype=np.int64)
for i in range(nodes_array.shape[0]):
v = gtG.add_vertex()
nodes_id[i] = int(v)
# d = {key: value for (key, value) in zip(nodes_list, nodes_id)}
d = dict(itertools.izip(nodes_list, nodes_id))
for src, dst, data in G.edges_iter(data=True):
e = gtG.add_edge(d[src], d[dst])
gtG.ep['action'][e] = data['action']
nodes_to_id = d
timer.toc(average=True, log_at=1, log_str='src.graph_utils.convert_to_graph_tool')
return gtG, nodes_array, nodes_to_id
def _rejection_sampling(rng, sampling_d, target_d, bins, hardness, M):
bin_ind = np.digitize(hardness, bins)-1
i = 0
ratio = target_d[bin_ind] / (M*sampling_d[bin_ind])
while i < ratio.size and rng.rand() > ratio[i]:
i = i+1
return i
def heuristic_fn_vec(n1, n2, n_ori, step_size):
# n1 is a vector and n2 is a single point.
dx = (n1[:,0] - n2[0,0])/step_size
dy = (n1[:,1] - n2[0,1])/step_size
dt = n1[:,2] - n2[0,2]
dt = np.mod(dt, n_ori)
dt = np.minimum(dt, n_ori-dt)
if n_ori == 6:
if dx*dy > 0:
d = np.maximum(np.abs(dx), np.abs(dy))
else:
d = np.abs(dy-dx)
elif n_ori == 4:
d = np.abs(dx) + np.abs(dy)
return (d + dt).reshape((-1,1))
def get_hardness_distribution(gtG, max_dist, min_dist, rng, trials, bins, nodes,
n_ori, step_size):
heuristic_fn = lambda node_ids, node_id: \
heuristic_fn_vec(nodes[node_ids, :], nodes[[node_id], :], n_ori, step_size)
num_nodes = gtG.num_vertices()
gt_dists = []; h_dists = [];
for i in range(trials):
end_node_id = rng.choice(num_nodes)
gt_dist = gt.topology.shortest_distance(gt.GraphView(gtG, reversed=True),
source=gtG.vertex(end_node_id),
target=None, max_dist=max_dist)
gt_dist = np.array(gt_dist.get_array())
ind = np.where(np.logical_and(gt_dist <= max_dist, gt_dist >= min_dist))[0]
gt_dist = gt_dist[ind]
h_dist = heuristic_fn(ind, end_node_id)[:,0]
gt_dists.append(gt_dist)
h_dists.append(h_dist)
gt_dists = np.concatenate(gt_dists)
h_dists = np.concatenate(h_dists)
hardness = 1. - h_dists*1./gt_dists
hist, _ = np.histogram(hardness, bins)
hist = hist.astype(np.float64)
hist = hist / np.sum(hist)
return hist
def rng_next_goal_rejection_sampling(start_node_ids, batch_size, gtG, rng,
max_dist, min_dist, max_dist_to_compute,
sampling_d, target_d,
nodes, n_ori, step_size, bins, M):
sample_start_nodes = start_node_ids is None
dists = []; pred_maps = []; end_node_ids = []; start_node_ids_ = [];
hardnesss = []; gt_dists = [];
num_nodes = gtG.num_vertices()
for i in range(batch_size):
done = False
while not done:
if sample_start_nodes:
start_node_id = rng.choice(num_nodes)
else:
start_node_id = start_node_ids[i]
gt_dist = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=False), source=start_node_id, target=None,
max_dist=max_dist)
gt_dist = np.array(gt_dist.get_array())
ind = np.where(np.logical_and(gt_dist <= max_dist, gt_dist >= min_dist))[0]
ind = rng.permutation(ind)
gt_dist = gt_dist[ind]*1.
h_dist = heuristic_fn_vec(nodes[ind, :], nodes[[start_node_id], :],
n_ori, step_size)[:,0]
hardness = 1. - h_dist / gt_dist
sampled_ind = _rejection_sampling(rng, sampling_d, target_d, bins,
hardness, M)
if sampled_ind < ind.size:
# print sampled_ind
end_node_id = ind[sampled_ind]
hardness = hardness[sampled_ind]
gt_dist = gt_dist[sampled_ind]
done = True
# Compute distance from end node to all nodes, to return.
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=True), source=end_node_id, target=None,
max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
pred_map = np.array(pred_map.get_array())
hardnesss.append(hardness); dists.append(dist); pred_maps.append(pred_map);
start_node_ids_.append(start_node_id); end_node_ids.append(end_node_id);
gt_dists.append(gt_dist);
paths = None
return start_node_ids_, end_node_ids, dists, pred_maps, paths, hardnesss, gt_dists
def rng_next_goal(start_node_ids, batch_size, gtG, rng, max_dist,
max_dist_to_compute, node_room_ids, nodes=None,
compute_path=False, dists_from_start_node=None):
# Compute the distance field from the starting location, and then pick a
# destination in another room if possible otherwise anywhere outside this
# room.
dists = []; pred_maps = []; paths = []; end_node_ids = [];
for i in range(batch_size):
room_id = node_room_ids[start_node_ids[i]]
# Compute distances.
if dists_from_start_node == None:
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=False), source=gtG.vertex(start_node_ids[i]),
target=None, max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
else:
dist = dists_from_start_node[i]
# Randomly sample nodes which are within max_dist.
near_ids = dist <= max_dist
near_ids = near_ids[:, np.newaxis]
# Check to see if there is a non-negative node which is close enough.
non_same_room_ids = node_room_ids != room_id
non_hallway_ids = node_room_ids != -1
good1_ids = np.logical_and(near_ids, np.logical_and(non_same_room_ids, non_hallway_ids))
good2_ids = np.logical_and(near_ids, non_hallway_ids)
good3_ids = near_ids
if np.any(good1_ids):
end_node_id = rng.choice(np.where(good1_ids)[0])
elif np.any(good2_ids):
end_node_id = rng.choice(np.where(good2_ids)[0])
elif np.any(good3_ids):
end_node_id = rng.choice(np.where(good3_ids)[0])
else:
logging.error('Did not find any good nodes.')
# Compute distance to this new goal for doing distance queries.
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=True), source=gtG.vertex(end_node_id),
target=None, max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
pred_map = np.array(pred_map.get_array())
dists.append(dist)
pred_maps.append(pred_map)
end_node_ids.append(end_node_id)
path = None
if compute_path:
path = get_path_ids(start_node_ids[i], end_node_ids[i], pred_map)
paths.append(path)
return start_node_ids, end_node_ids, dists, pred_maps, paths
def rng_room_to_room(batch_size, gtG, rng, max_dist, max_dist_to_compute,
node_room_ids, nodes=None, compute_path=False):
# Sample one of the rooms, compute the distance field. Pick a destination in
# another room if possible otherwise anywhere outside this room.
dists = []; pred_maps = []; paths = []; start_node_ids = []; end_node_ids = [];
room_ids = np.unique(node_room_ids[node_room_ids[:,0] >= 0, 0])
for i in range(batch_size):
room_id = rng.choice(room_ids)
end_node_id = rng.choice(np.where(node_room_ids[:,0] == room_id)[0])
end_node_ids.append(end_node_id)
# Compute distances.
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=True), source=gtG.vertex(end_node_id),
target=None, max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
pred_map = np.array(pred_map.get_array())
dists.append(dist)
pred_maps.append(pred_map)
# Randomly sample nodes which are within max_dist.
near_ids = dist <= max_dist
near_ids = near_ids[:, np.newaxis]
# Check to see if there is a non-negative node which is close enough.
non_same_room_ids = node_room_ids != room_id
non_hallway_ids = node_room_ids != -1
good1_ids = np.logical_and(near_ids, np.logical_and(non_same_room_ids, non_hallway_ids))
good2_ids = np.logical_and(near_ids, non_hallway_ids)
good3_ids = near_ids
if np.any(good1_ids):
start_node_id = rng.choice(np.where(good1_ids)[0])
elif np.any(good2_ids):
start_node_id = rng.choice(np.where(good2_ids)[0])
elif np.any(good3_ids):
start_node_id = rng.choice(np.where(good3_ids)[0])
else:
logging.error('Did not find any good nodes.')
start_node_ids.append(start_node_id)
path = None
if compute_path:
path = get_path_ids(start_node_ids[i], end_node_ids[i], pred_map)
paths.append(path)
return start_node_ids, end_node_ids, dists, pred_maps, paths
def rng_target_dist_field(batch_size, gtG, rng, max_dist, max_dist_to_compute,
nodes=None, compute_path=False):
# Sample a single node, compute distance to all nodes less than max_dist,
# sample nodes which are a particular distance away.
dists = []; pred_maps = []; paths = []; start_node_ids = []
end_node_ids = rng.choice(gtG.num_vertices(), size=(batch_size,),
replace=False).tolist()
for i in range(batch_size):
dist, pred_map = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=True), source=gtG.vertex(end_node_ids[i]),
target=None, max_dist=max_dist_to_compute, pred_map=True)
dist = np.array(dist.get_array())
pred_map = np.array(pred_map.get_array())
dists.append(dist)
pred_maps.append(pred_map)
# Randomly sample nodes which are withing max_dist
near_ids = np.where(dist <= max_dist)[0]
start_node_id = rng.choice(near_ids, size=(1,), replace=False)[0]
start_node_ids.append(start_node_id)
path = None
if compute_path:
path = get_path_ids(start_node_ids[i], end_node_ids[i], pred_map)
paths.append(path)
return start_node_ids, end_node_ids, dists, pred_maps, paths
|