Spaces:
Running
Running
File size: 9,617 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Various function to compute the ground truth map for training etc.
"""
import copy
import skimage.morphology
import logging
import numpy as np
import scipy.ndimage
import matplotlib.pyplot as plt
import PIL
import src.utils as utils
import cv2
def _get_xy_bounding_box(vertex, padding):
"""Returns the xy bounding box of the environment."""
min_ = np.floor(np.min(vertex[:, :2], axis=0) - padding).astype(np.int)
max_ = np.ceil(np.max(vertex[:, :2], axis=0) + padding).astype(np.int)
return min_, max_
def _project_to_map(map, vertex, wt=None, ignore_points_outside_map=False):
"""Projects points to map, returns how many points are present at each
location."""
num_points = np.zeros((map.size[1], map.size[0]))
vertex_ = vertex[:, :2] - map.origin
vertex_ = np.round(vertex_ / map.resolution).astype(np.int)
if ignore_points_outside_map:
good_ind = np.all(np.array([vertex_[:,1] >= 0, vertex_[:,1] < map.size[1],
vertex_[:,0] >= 0, vertex_[:,0] < map.size[0]]),
axis=0)
vertex_ = vertex_[good_ind, :]
if wt is not None:
wt = wt[good_ind, :]
if wt is None:
np.add.at(num_points, (vertex_[:, 1], vertex_[:, 0]), 1)
else:
assert(wt.shape[0] == vertex.shape[0]), \
'number of weights should be same as vertices.'
np.add.at(num_points, (vertex_[:, 1], vertex_[:, 0]), wt)
return num_points
def make_map(padding, resolution, vertex=None, sc=1.):
"""Returns a map structure."""
min_, max_ = _get_xy_bounding_box(vertex*sc, padding=padding)
sz = np.ceil((max_ - min_ + 1) / resolution).astype(np.int32)
max_ = min_ + sz * resolution - 1
map = utils.Foo(origin=min_, size=sz, max=max_, resolution=resolution,
padding=padding)
return map
def _fill_holes(img, thresh):
"""Fills holes less than thresh area (assumes 4 connectivity when computing
hole area."""
l, n = scipy.ndimage.label(np.logical_not(img))
img_ = img == True
cnts = np.bincount(l.reshape(-1))
for i, cnt in enumerate(cnts):
if cnt < thresh:
l[l == i] = -1
img_[l == -1] = True
return img_
def compute_traversibility(map, robot_base, robot_height, robot_radius,
valid_min, valid_max, num_point_threshold, shapess,
sc=100., n_samples_per_face=200):
"""Returns a bit map with pixels that are traversible or not as long as the
robot center is inside this volume we are good colisions can be detected by
doing a line search on things, or walking from current location to final
location in the bitmap, or doing bwlabel on the traversibility map."""
tt = utils.Timer()
tt.tic()
num_obstcale_points = np.zeros((map.size[1], map.size[0]))
num_points = np.zeros((map.size[1], map.size[0]))
for i, shapes in enumerate(shapess):
for j in range(shapes.get_number_of_meshes()):
p, face_areas, face_idx = shapes.sample_points_on_face_of_shape(
j, n_samples_per_face, sc)
wt = face_areas[face_idx]/n_samples_per_face
ind = np.all(np.concatenate(
(p[:, [2]] > robot_base,
p[:, [2]] < robot_base + robot_height), axis=1),axis=1)
num_obstcale_points += _project_to_map(map, p[ind, :], wt[ind])
ind = np.all(np.concatenate(
(p[:, [2]] > valid_min,
p[:, [2]] < valid_max), axis=1),axis=1)
num_points += _project_to_map(map, p[ind, :], wt[ind])
selem = skimage.morphology.disk(robot_radius / map.resolution)
obstacle_free = skimage.morphology.binary_dilation(
_fill_holes(num_obstcale_points > num_point_threshold, 20), selem) != True
valid_space = _fill_holes(num_points > num_point_threshold, 20)
traversible = np.all(np.concatenate((obstacle_free[...,np.newaxis],
valid_space[...,np.newaxis]), axis=2),
axis=2)
# plt.imshow(np.concatenate((obstacle_free, valid_space, traversible), axis=1))
# plt.show()
map_out = copy.deepcopy(map)
map_out.num_obstcale_points = num_obstcale_points
map_out.num_points = num_points
map_out.traversible = traversible
map_out.obstacle_free = obstacle_free
map_out.valid_space = valid_space
tt.toc(log_at=1, log_str='src.map_utils.compute_traversibility: ')
return map_out
def resize_maps(map, map_scales, resize_method):
scaled_maps = []
for i, sc in enumerate(map_scales):
if resize_method == 'antialiasing':
# Resize using open cv so that we can compute the size.
# Use PIL resize to use anti aliasing feature.
map_ = cv2.resize(map*1, None, None, fx=sc, fy=sc, interpolation=cv2.INTER_LINEAR)
w = map_.shape[1]; h = map_.shape[0]
map_img = PIL.Image.fromarray((map*255).astype(np.uint8))
map__img = map_img.resize((w,h), PIL.Image.ANTIALIAS)
map_ = np.asarray(map__img).astype(np.float32)
map_ = map_/255.
map_ = np.minimum(map_, 1.0)
map_ = np.maximum(map_, 0.0)
elif resize_method == 'linear_noantialiasing':
map_ = cv2.resize(map*1, None, None, fx=sc, fy=sc, interpolation=cv2.INTER_LINEAR)
else:
logging.error('Unknown resizing method')
scaled_maps.append(map_)
return scaled_maps
def pick_largest_cc(traversible):
out = scipy.ndimage.label(traversible)[0]
cnt = np.bincount(out.reshape(-1))[1:]
return out == np.argmax(cnt) + 1
def get_graph_origin_loc(rng, traversible):
"""Erode the traversibility mask so that we get points in the bulk of the
graph, and not end up with a situation where the graph is localized in the
corner of a cramped room. Output Locs is in the coordinate frame of the
map."""
aa = pick_largest_cc(skimage.morphology.binary_erosion(traversible == True,
selem=np.ones((15,15))))
y, x = np.where(aa > 0)
ind = rng.choice(y.size)
locs = np.array([x[ind], y[ind]])
locs = locs + rng.rand(*(locs.shape)) - 0.5
return locs
def generate_egocentric_maps(scaled_maps, map_scales, map_crop_sizes, loc,
x_axis, y_axis, theta):
maps = []
for i, (map_, sc, map_crop_size) in enumerate(zip(scaled_maps, map_scales, map_crop_sizes)):
maps_i = np.array(get_map_to_predict(loc*sc, x_axis, y_axis, map_,
map_crop_size,
interpolation=cv2.INTER_LINEAR)[0])
maps_i[np.isnan(maps_i)] = 0
maps.append(maps_i)
return maps
def generate_goal_images(map_scales, map_crop_sizes, n_ori, goal_dist,
goal_theta, rel_goal_orientation):
goal_dist = goal_dist[:,0]
goal_theta = goal_theta[:,0]
rel_goal_orientation = rel_goal_orientation[:,0]
goals = [];
# Generate the map images.
for i, (sc, map_crop_size) in enumerate(zip(map_scales, map_crop_sizes)):
goal_i = np.zeros((goal_dist.shape[0], map_crop_size, map_crop_size, n_ori),
dtype=np.float32)
x = goal_dist*np.cos(goal_theta)*sc + (map_crop_size-1.)/2.
y = goal_dist*np.sin(goal_theta)*sc + (map_crop_size-1.)/2.
for j in range(goal_dist.shape[0]):
gc = rel_goal_orientation[j]
x0 = np.floor(x[j]).astype(np.int32); x1 = x0 + 1;
y0 = np.floor(y[j]).astype(np.int32); y1 = y0 + 1;
if x0 >= 0 and x0 <= map_crop_size-1:
if y0 >= 0 and y0 <= map_crop_size-1:
goal_i[j, y0, x0, gc] = (x1-x[j])*(y1-y[j])
if y1 >= 0 and y1 <= map_crop_size-1:
goal_i[j, y1, x0, gc] = (x1-x[j])*(y[j]-y0)
if x1 >= 0 and x1 <= map_crop_size-1:
if y0 >= 0 and y0 <= map_crop_size-1:
goal_i[j, y0, x1, gc] = (x[j]-x0)*(y1-y[j])
if y1 >= 0 and y1 <= map_crop_size-1:
goal_i[j, y1, x1, gc] = (x[j]-x0)*(y[j]-y0)
goals.append(goal_i)
return goals
def get_map_to_predict(src_locs, src_x_axiss, src_y_axiss, map, map_size,
interpolation=cv2.INTER_LINEAR):
fss = []
valids = []
center = (map_size-1.0)/2.0
dst_theta = np.pi/2.0
dst_loc = np.array([center, center])
dst_x_axis = np.array([np.cos(dst_theta), np.sin(dst_theta)])
dst_y_axis = np.array([np.cos(dst_theta+np.pi/2), np.sin(dst_theta+np.pi/2)])
def compute_points(center, x_axis, y_axis):
points = np.zeros((3,2),dtype=np.float32)
points[0,:] = center
points[1,:] = center + x_axis
points[2,:] = center + y_axis
return points
dst_points = compute_points(dst_loc, dst_x_axis, dst_y_axis)
for i in range(src_locs.shape[0]):
src_loc = src_locs[i,:]
src_x_axis = src_x_axiss[i,:]
src_y_axis = src_y_axiss[i,:]
src_points = compute_points(src_loc, src_x_axis, src_y_axis)
M = cv2.getAffineTransform(src_points, dst_points)
fs = cv2.warpAffine(map, M, (map_size, map_size), None, flags=interpolation,
borderValue=np.NaN)
valid = np.invert(np.isnan(fs))
valids.append(valid)
fss.append(fs)
return fss, valids
|