Spaces:
Running
Running
File size: 13,173 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Initializes at random location and visualizes the optimal path.
Different modes of execution:
1) benchmark: It generates benchmark_iter sample trajectory to random goals
and plots the histogram of path lengths. It can be also used to see how fast
it runs.
2) vis: It visualizes the generated paths by image, semantic segmentation, and
so on.
3) human: allows the user to navigate through environment from keyboard input.
python viz_active_vision_dataset_main -- \
--mode=benchmark --benchmark_iter=1000 --gin_config=envs/configs/active_vision_config.gin
python viz_active_vision_dataset_main -- \
--mode=vis \
--gin_config=envs/configs/active_vision_config.gin
python viz_active_vision_dataset_main -- \
--mode=human \
--gin_config=envs/configs/active_vision_config.gin
python viz_active_vision_dataset_main.py --mode=eval --eval_folder=/usr/local/google/home/$USER/checkin_log_det/evals/ --output_folder=/usr/local/google/home/$USER/test_imgs/ --gin_config=envs/configs/active_vision_config.gin
"""
import matplotlib
# pylint: disable=g-import-not-at-top
# Need Tk for interactive plots.
matplotlib.use('TkAgg')
import tensorflow as tf
from matplotlib import pyplot as plt
import numpy as np
import os
from pyglib import app
from pyglib import flags
import gin
import cv2
from envs import active_vision_dataset_env
from envs import task_env
VIS_MODE = 'vis'
HUMAN_MODE = 'human'
BENCHMARK_MODE = 'benchmark'
GRAPH_MODE = 'graph'
EVAL_MODE = 'eval'
flags.DEFINE_enum('mode', VIS_MODE,
[VIS_MODE, HUMAN_MODE, BENCHMARK_MODE, GRAPH_MODE, EVAL_MODE],
'mode of the execution')
flags.DEFINE_integer('benchmark_iter', 1000,
'number of iterations for benchmarking')
flags.DEFINE_string('eval_folder', '', 'the path to the eval folder')
flags.DEFINE_string('output_folder', '',
'the path to which the images and gifs are written')
flags.DEFINE_multi_string('gin_config', [],
'List of paths to a gin config files for the env.')
flags.DEFINE_multi_string('gin_params', [],
'Newline separated list of Gin parameter bindings.')
mt = task_env.ModalityTypes
FLAGS = flags.FLAGS
def benchmark(env, targets):
"""Benchmarks the speed of sequence generation by env.
Args:
env: environment.
targets: list of target classes.
"""
episode_lengths = {}
all_init_configs = {}
all_actions = dict([(a, 0.) for a in env.actions])
for i in range(FLAGS.benchmark_iter):
path, actions, _, _ = env.random_step_sequence()
selected_actions = np.argmax(actions, axis=-1)
new_actions = dict([(a, 0.) for a in env.actions])
for a in selected_actions:
new_actions[env.actions[a]] += 1. / selected_actions.shape[0]
for a in new_actions:
all_actions[a] += new_actions[a] / FLAGS.benchmark_iter
start_image_id, world, goal = env.get_init_config(path)
print world
if world not in all_init_configs:
all_init_configs[world] = set()
all_init_configs[world].add((start_image_id, goal, len(actions)))
if env.goal_index not in episode_lengths:
episode_lengths[env.goal_index] = []
episode_lengths[env.goal_index].append(len(actions))
for i, cls in enumerate(episode_lengths):
plt.subplot(231 + i)
plt.hist(episode_lengths[cls])
plt.title(targets[cls])
plt.show()
def human(env, targets):
"""Lets user play around the env manually."""
string_key_map = {
'a': 'left',
'd': 'right',
'w': 'forward',
's': 'backward',
'j': 'rotate_ccw',
'l': 'rotate_cw',
'n': 'stop'
}
integer_key_map = {
'a': env.actions.index('left'),
'd': env.actions.index('right'),
'w': env.actions.index('forward'),
's': env.actions.index('backward'),
'j': env.actions.index('rotate_ccw'),
'l': env.actions.index('rotate_cw'),
'n': env.actions.index('stop')
}
for k in integer_key_map:
integer_key_map[k] = np.int32(integer_key_map[k])
plt.ion()
for _ in range(20):
obs = env.reset()
steps = -1
action = None
while True:
print 'distance = ', obs[task_env.ModalityTypes.DISTANCE]
steps += 1
depth_value = obs[task_env.ModalityTypes.DEPTH][:, :, 0]
depth_mask = obs[task_env.ModalityTypes.DEPTH][:, :, 1]
seg_mask = np.squeeze(obs[task_env.ModalityTypes.SEMANTIC_SEGMENTATION])
det_mask = np.argmax(
obs[task_env.ModalityTypes.OBJECT_DETECTION], axis=-1)
img = obs[task_env.ModalityTypes.IMAGE]
plt.subplot(231)
plt.title('steps = {}'.format(steps))
plt.imshow(img.astype(np.uint8))
plt.subplot(232)
plt.imshow(depth_value)
plt.title('depth value')
plt.subplot(233)
plt.imshow(depth_mask)
plt.title('depth mask')
plt.subplot(234)
plt.imshow(seg_mask)
plt.title('seg')
plt.subplot(235)
plt.imshow(det_mask)
plt.title('det')
plt.subplot(236)
plt.title('goal={}'.format(targets[env.goal_index]))
plt.draw()
while True:
s = raw_input('key = ')
if np.random.rand() > 0.5:
key_map = string_key_map
else:
key_map = integer_key_map
if s in key_map:
action = key_map[s]
break
else:
print 'invalid action'
print 'action = {}'.format(action)
if action == 'stop':
print 'dist to goal: {}'.format(len(env.path_to_goal()) - 2)
break
obs, reward, done, info = env.step(action)
print 'reward = {}, done = {}, success = {}'.format(
reward, done, info['success'])
def visualize_random_step_sequence(env):
"""Visualizes random sequence of steps."""
plt.ion()
for _ in range(20):
path, actions, _, step_outputs = env.random_step_sequence(max_len=30)
print 'path = {}'.format(path)
for action, step_output in zip(actions, step_outputs):
obs, _, done, _ = step_output
depth_value = obs[task_env.ModalityTypes.DEPTH][:, :, 0]
depth_mask = obs[task_env.ModalityTypes.DEPTH][:, :, 1]
seg_mask = np.squeeze(obs[task_env.ModalityTypes.SEMANTIC_SEGMENTATION])
det_mask = np.argmax(
obs[task_env.ModalityTypes.OBJECT_DETECTION], axis=-1)
img = obs[task_env.ModalityTypes.IMAGE]
plt.subplot(231)
plt.imshow(img.astype(np.uint8))
plt.subplot(232)
plt.imshow(depth_value)
plt.title('depth value')
plt.subplot(233)
plt.imshow(depth_mask)
plt.title('depth mask')
plt.subplot(234)
plt.imshow(seg_mask)
plt.title('seg')
plt.subplot(235)
plt.imshow(det_mask)
plt.title('det')
plt.subplot(236)
print 'action = {}'.format(action)
print 'done = {}'.format(done)
plt.draw()
if raw_input('press \'n\' to go to the next random sequence. Otherwise, '
'press any key to continue...') == 'n':
break
def visualize(env, input_folder, output_root_folder):
"""visualizes images for sequence of steps from the evals folder."""
def which_env(file_name):
img_name = file_name.split('_')[0][2:5]
env_dict = {'161': 'Home_016_1', '131': 'Home_013_1', '111': 'Home_011_1'}
if img_name in env_dict:
return env_dict[img_name]
else:
raise ValueError('could not resolve env: {} {}'.format(
img_name, file_name))
def which_goal(file_name):
return file_name[file_name.find('_')+1:]
output_images_folder = os.path.join(output_root_folder, 'images')
output_gifs_folder = os.path.join(output_root_folder, 'gifs')
if not tf.gfile.IsDirectory(output_images_folder):
tf.gfile.MakeDirs(output_images_folder)
if not tf.gfile.IsDirectory(output_gifs_folder):
tf.gfile.MakeDirs(output_gifs_folder)
npy_files = [
os.path.join(input_folder, name)
for name in tf.gfile.ListDirectory(input_folder)
if name.find('npy') >= 0
]
for i, npy_file in enumerate(npy_files):
print 'saving images {}/{}'.format(i, len(npy_files))
pure_name = npy_file[npy_file.rfind('/') + 1:-4]
output_folder = os.path.join(output_images_folder, pure_name)
if not tf.gfile.IsDirectory(output_folder):
tf.gfile.MakeDirs(output_folder)
print '*******'
print pure_name[0:pure_name.find('_')]
env.reset_for_eval(which_env(pure_name),
which_goal(pure_name),
pure_name[0:pure_name.find('_')],
)
with tf.gfile.Open(npy_file) as h:
states = np.load(h).item()['states']
images = [
env.observation(state)[mt.IMAGE] for state in states
]
for j, img in enumerate(images):
cv2.imwrite(os.path.join(output_folder, '{0:03d}'.format(j) + '.jpg'),
img[:, :, ::-1])
print 'converting to gif'
os.system(
'convert -set delay 20 -colors 256 -dispose 1 {}/*.jpg {}.gif'.format(
output_folder,
os.path.join(output_gifs_folder, pure_name + '.gif')
)
)
def evaluate_folder(env, folder_path):
"""Evaluates the performance from the evals folder."""
targets = ['fridge', 'dining_table', 'microwave', 'tv', 'couch']
def compute_acc(npy_file):
with tf.gfile.Open(npy_file) as h:
data = np.load(h).item()
if npy_file.find('dining_table') >= 0:
category = 'dining_table'
else:
category = npy_file[npy_file.rfind('_') + 1:-4]
return category, data['distance'][-1] - 2
def evaluate_iteration(folder):
"""Evaluates the data from the folder of certain eval iteration."""
print folder
npy_files = [
os.path.join(folder, name)
for name in tf.gfile.ListDirectory(folder)
if name.find('npy') >= 0
]
eval_stats = {c: [] for c in targets}
for npy_file in npy_files:
try:
category, dist = compute_acc(npy_file)
except: # pylint: disable=bare-except
continue
eval_stats[category].append(float(dist <= 5))
for c in eval_stats:
if not eval_stats[c]:
print 'incomplete eval {}: empty class {}'.format(folder_path, c)
return None
eval_stats[c] = np.mean(eval_stats[c])
eval_stats['mean'] = np.mean(eval_stats.values())
return eval_stats
checkpoint_folders = [
folder_path + x
for x in tf.gfile.ListDirectory(folder_path)
if tf.gfile.IsDirectory(folder_path + x)
]
print '{} folders found'.format(len(checkpoint_folders))
print '------------------------'
all_iters = []
all_accs = []
for i, folder in enumerate(checkpoint_folders):
print 'processing {}/{}'.format(i, len(checkpoint_folders))
eval_stats = evaluate_iteration(folder)
if eval_stats is None:
continue
else:
iter_no = int(folder[folder.rfind('/') + 1:])
print 'result ', iter_no, eval_stats['mean']
all_accs.append(eval_stats['mean'])
all_iters.append(iter_no)
all_accs = np.asarray(all_accs)
all_iters = np.asarray(all_iters)
idx = np.argmax(all_accs)
print 'best result at iteration {} was {}'.format(all_iters[idx],
all_accs[idx])
order = np.argsort(all_iters)
all_iters = all_iters[order]
all_accs = all_accs[order]
#plt.plot(all_iters, all_accs)
#plt.show()
#print 'done plotting'
best_iteration_folder = os.path.join(folder_path, str(all_iters[idx]))
print 'generating gifs and images for {}'.format(best_iteration_folder)
visualize(env, best_iteration_folder, FLAGS.output_folder)
def main(_):
gin.parse_config_files_and_bindings(FLAGS.gin_config, FLAGS.gin_params)
print('********')
print(FLAGS.mode)
print(FLAGS.gin_config)
print(FLAGS.gin_params)
env = active_vision_dataset_env.ActiveVisionDatasetEnv(modality_types=[
task_env.ModalityTypes.IMAGE,
task_env.ModalityTypes.SEMANTIC_SEGMENTATION,
task_env.ModalityTypes.OBJECT_DETECTION, task_env.ModalityTypes.DEPTH,
task_env.ModalityTypes.DISTANCE
])
if FLAGS.mode == BENCHMARK_MODE:
benchmark(env, env.possible_targets)
elif FLAGS.mode == GRAPH_MODE:
for loc in env.worlds:
env.check_scene_graph(loc, 'fridge')
elif FLAGS.mode == HUMAN_MODE:
human(env, env.possible_targets)
elif FLAGS.mode == VIS_MODE:
visualize_random_step_sequence(env)
elif FLAGS.mode == EVAL_MODE:
evaluate_folder(env, FLAGS.eval_folder)
if __name__ == '__main__':
app.run(main)
|