File size: 13,680 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Functions to create bandit problems from datasets."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import pandas as pd
import tensorflow as tf


def one_hot(df, cols):
  """Returns one-hot encoding of DataFrame df including columns in cols."""
  for col in cols:
    dummies = pd.get_dummies(df[col], prefix=col, drop_first=False)
    df = pd.concat([df, dummies], axis=1)
    df = df.drop(col, axis=1)
  return df


def sample_mushroom_data(file_name,
                         num_contexts,
                         r_noeat=0,
                         r_eat_safe=5,
                         r_eat_poison_bad=-35,
                         r_eat_poison_good=5,
                         prob_poison_bad=0.5):
  """Samples bandit game from Mushroom UCI Dataset.

  Args:
    file_name: Route of file containing the original Mushroom UCI dataset.
    num_contexts: Number of points to sample, i.e. (context, action rewards).
    r_noeat: Reward for not eating a mushroom.
    r_eat_safe: Reward for eating a non-poisonous mushroom.
    r_eat_poison_bad: Reward for eating a poisonous mushroom if harmed.
    r_eat_poison_good: Reward for eating a poisonous mushroom if not harmed.
    prob_poison_bad: Probability of being harmed by eating a poisonous mushroom.

  Returns:
    dataset: Sampled matrix with n rows: (context, eat_reward, no_eat_reward).
    opt_vals: Vector of expected optimal (reward, action) for each context.

  We assume r_eat_safe > r_noeat, and r_eat_poison_good > r_eat_poison_bad.
  """

  # first two cols of df encode whether mushroom is edible or poisonous
  df = pd.read_csv(file_name, header=None)
  df = one_hot(df, df.columns)
  ind = np.random.choice(range(df.shape[0]), num_contexts, replace=True)

  contexts = df.iloc[ind, 2:]
  no_eat_reward = r_noeat * np.ones((num_contexts, 1))
  random_poison = np.random.choice(
      [r_eat_poison_bad, r_eat_poison_good],
      p=[prob_poison_bad, 1 - prob_poison_bad],
      size=num_contexts)
  eat_reward = r_eat_safe * df.iloc[ind, 0]
  eat_reward += np.multiply(random_poison, df.iloc[ind, 1])
  eat_reward = eat_reward.values.reshape((num_contexts, 1))

  # compute optimal expected reward and optimal actions
  exp_eat_poison_reward = r_eat_poison_bad * prob_poison_bad
  exp_eat_poison_reward += r_eat_poison_good * (1 - prob_poison_bad)
  opt_exp_reward = r_eat_safe * df.iloc[ind, 0] + max(
      r_noeat, exp_eat_poison_reward) * df.iloc[ind, 1]

  if r_noeat > exp_eat_poison_reward:
    # actions: no eat = 0 ; eat = 1
    opt_actions = df.iloc[ind, 0]  # indicator of edible
  else:
    # should always eat (higher expected reward)
    opt_actions = np.ones((num_contexts, 1))

  opt_vals = (opt_exp_reward.values, opt_actions.values)

  return np.hstack((contexts, no_eat_reward, eat_reward)), opt_vals


def sample_stock_data(file_name, context_dim, num_actions, num_contexts,
                      sigma, shuffle_rows=True):
  """Samples linear bandit game from stock prices dataset.

  Args:
    file_name: Route of file containing the stock prices dataset.
    context_dim: Context dimension (i.e. vector with the price of each stock).
    num_actions: Number of actions (different linear portfolio strategies).
    num_contexts: Number of contexts to sample.
    sigma: Vector with additive noise levels for each action.
    shuffle_rows: If True, rows from original dataset are shuffled.

  Returns:
    dataset: Sampled matrix with rows: (context, reward_1, ..., reward_k).
    opt_vals: Vector of expected optimal (reward, action) for each context.
  """

  with tf.gfile.Open(file_name, 'r') as f:
    contexts = np.loadtxt(f, skiprows=1)

  if shuffle_rows:
    np.random.shuffle(contexts)
  contexts = contexts[:num_contexts, :]

  betas = np.random.uniform(-1, 1, (context_dim, num_actions))
  betas /= np.linalg.norm(betas, axis=0)

  mean_rewards = np.dot(contexts, betas)
  noise = np.random.normal(scale=sigma, size=mean_rewards.shape)
  rewards = mean_rewards + noise

  opt_actions = np.argmax(mean_rewards, axis=1)
  opt_rewards = [mean_rewards[i, a] for i, a in enumerate(opt_actions)]
  return np.hstack((contexts, rewards)), (np.array(opt_rewards), opt_actions)


def sample_jester_data(file_name, context_dim, num_actions, num_contexts,
                       shuffle_rows=True, shuffle_cols=False):
  """Samples bandit game from (user, joke) dense subset of Jester dataset.

  Args:
    file_name: Route of file containing the modified Jester dataset.
    context_dim: Context dimension (i.e. vector with some ratings from a user).
    num_actions: Number of actions (number of joke ratings to predict).
    num_contexts: Number of contexts to sample.
    shuffle_rows: If True, rows from original dataset are shuffled.
    shuffle_cols: Whether or not context/action jokes are randomly shuffled.

  Returns:
    dataset: Sampled matrix with rows: (context, rating_1, ..., rating_k).
    opt_vals: Vector of deterministic optimal (reward, action) for each context.
  """

  with tf.gfile.Open(file_name, 'rb') as f:
    dataset = np.load(f)

  if shuffle_cols:
    dataset = dataset[:, np.random.permutation(dataset.shape[1])]
  if shuffle_rows:
    np.random.shuffle(dataset)
  dataset = dataset[:num_contexts, :]

  assert context_dim + num_actions == dataset.shape[1], 'Wrong data dimensions.'

  opt_actions = np.argmax(dataset[:, context_dim:], axis=1)
  opt_rewards = np.array([dataset[i, context_dim + a]
                          for i, a in enumerate(opt_actions)])

  return dataset, (opt_rewards, opt_actions)


def sample_statlog_data(file_name, num_contexts, shuffle_rows=True,
                        remove_underrepresented=False):
  """Returns bandit problem dataset based on the UCI statlog data.

  Args:
    file_name: Route of file containing the Statlog dataset.
    num_contexts: Number of contexts to sample.
    shuffle_rows: If True, rows from original dataset are shuffled.
    remove_underrepresented: If True, removes arms with very few rewards.

  Returns:
    dataset: Sampled matrix with rows: (context, action rewards).
    opt_vals: Vector of deterministic optimal (reward, action) for each context.

  https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
  """

  with tf.gfile.Open(file_name, 'r') as f:
    data = np.loadtxt(f)

  num_actions = 7  # some of the actions are very rarely optimal.

  # Shuffle data
  if shuffle_rows:
    np.random.shuffle(data)
  data = data[:num_contexts, :]

  # Last column is label, rest are features
  contexts = data[:, :-1]
  labels = data[:, -1].astype(int) - 1  # convert to 0 based index

  if remove_underrepresented:
    contexts, labels = remove_underrepresented_classes(contexts, labels)

  return classification_to_bandit_problem(contexts, labels, num_actions)


def sample_adult_data(file_name, num_contexts, shuffle_rows=True,
                      remove_underrepresented=False):
  """Returns bandit problem dataset based on the UCI adult data.

  Args:
    file_name: Route of file containing the Adult dataset.
    num_contexts: Number of contexts to sample.
    shuffle_rows: If True, rows from original dataset are shuffled.
    remove_underrepresented: If True, removes arms with very few rewards.

  Returns:
    dataset: Sampled matrix with rows: (context, action rewards).
    opt_vals: Vector of deterministic optimal (reward, action) for each context.

  Preprocessing:
    * drop rows with missing values
    * convert categorical variables to 1 hot encoding

  https://archive.ics.uci.edu/ml/datasets/census+income
  """
  with tf.gfile.Open(file_name, 'r') as f:
    df = pd.read_csv(f, header=None,
                     na_values=[' ?']).dropna()

  num_actions = 14

  if shuffle_rows:
    df = df.sample(frac=1)
  df = df.iloc[:num_contexts, :]

  labels = df[6].astype('category').cat.codes.as_matrix()
  df = df.drop([6], axis=1)

  # Convert categorical variables to 1 hot encoding
  cols_to_transform = [1, 3, 5, 7, 8, 9, 13, 14]
  df = pd.get_dummies(df, columns=cols_to_transform)

  if remove_underrepresented:
    df, labels = remove_underrepresented_classes(df, labels)
  contexts = df.as_matrix()

  return classification_to_bandit_problem(contexts, labels, num_actions)


def sample_census_data(file_name, num_contexts, shuffle_rows=True,
                       remove_underrepresented=False):
  """Returns bandit problem dataset based on the UCI census data.

  Args:
    file_name: Route of file containing the Census dataset.
    num_contexts: Number of contexts to sample.
    shuffle_rows: If True, rows from original dataset are shuffled.
    remove_underrepresented: If True, removes arms with very few rewards.

  Returns:
    dataset: Sampled matrix with rows: (context, action rewards).
    opt_vals: Vector of deterministic optimal (reward, action) for each context.

  Preprocessing:
    * drop rows with missing labels
    * convert categorical variables to 1 hot encoding

  Note: this is the processed (not the 'raw') dataset. It contains a subset
  of the raw features and they've all been discretized.

  https://archive.ics.uci.edu/ml/datasets/US+Census+Data+%281990%29
  """
  # Note: this dataset is quite large. It will be slow to load and preprocess.
  with tf.gfile.Open(file_name, 'r') as f:
    df = (pd.read_csv(f, header=0, na_values=['?'])
          .dropna())

  num_actions = 9

  if shuffle_rows:
    df = df.sample(frac=1)
  df = df.iloc[:num_contexts, :]

  # Assuming what the paper calls response variable is the label?
  labels = df['dOccup'].astype('category').cat.codes.as_matrix()
  # In addition to label, also drop the (unique?) key.
  df = df.drop(['dOccup', 'caseid'], axis=1)

  # All columns are categorical. Convert to 1 hot encoding.
  df = pd.get_dummies(df, columns=df.columns)

  if remove_underrepresented:
    df, labels = remove_underrepresented_classes(df, labels)
  contexts = df.as_matrix()

  return classification_to_bandit_problem(contexts, labels, num_actions)


def sample_covertype_data(file_name, num_contexts, shuffle_rows=True,
                          remove_underrepresented=False):
  """Returns bandit problem dataset based on the UCI Cover_Type data.

  Args:
    file_name: Route of file containing the Covertype dataset.
    num_contexts: Number of contexts to sample.
    shuffle_rows: If True, rows from original dataset are shuffled.
    remove_underrepresented: If True, removes arms with very few rewards.

  Returns:
    dataset: Sampled matrix with rows: (context, action rewards).
    opt_vals: Vector of deterministic optimal (reward, action) for each context.

  Preprocessing:
    * drop rows with missing labels
    * convert categorical variables to 1 hot encoding

  https://archive.ics.uci.edu/ml/datasets/Covertype
  """
  with tf.gfile.Open(file_name, 'r') as f:
    df = (pd.read_csv(f, header=0, na_values=['?'])
          .dropna())

  num_actions = 7

  if shuffle_rows:
    df = df.sample(frac=1)
  df = df.iloc[:num_contexts, :]

  # Assuming what the paper calls response variable is the label?
  # Last column is label.
  labels = df[df.columns[-1]].astype('category').cat.codes.as_matrix()
  df = df.drop([df.columns[-1]], axis=1)

  # All columns are either quantitative or already converted to 1 hot.
  if remove_underrepresented:
    df, labels = remove_underrepresented_classes(df, labels)
  contexts = df.as_matrix()

  return classification_to_bandit_problem(contexts, labels, num_actions)


def classification_to_bandit_problem(contexts, labels, num_actions=None):
  """Normalize contexts and encode deterministic rewards."""

  if num_actions is None:
    num_actions = np.max(labels) + 1
  num_contexts = contexts.shape[0]

  # Due to random subsampling in small problems, some features may be constant
  sstd = safe_std(np.std(contexts, axis=0, keepdims=True)[0, :])

  # Normalize features
  contexts = ((contexts - np.mean(contexts, axis=0, keepdims=True)) / sstd)

  # One hot encode labels as rewards
  rewards = np.zeros((num_contexts, num_actions))
  rewards[np.arange(num_contexts), labels] = 1.0

  return contexts, rewards, (np.ones(num_contexts), labels)


def safe_std(values):
  """Remove zero std values for ones."""
  return np.array([val if val != 0.0 else 1.0 for val in values])


def remove_underrepresented_classes(features, labels, thresh=0.0005):
  """Removes classes when number of datapoints fraction is below a threshold."""

  # Threshold doesn't seem to agree with https://arxiv.org/pdf/1706.04687.pdf
  # Example: for Covertype, they report 4 classes after filtering, we get 7?
  total_count = labels.shape[0]
  unique, counts = np.unique(labels, return_counts=True)
  ratios = counts.astype('float') / total_count
  vals_and_ratios = dict(zip(unique, ratios))
  print('Unique classes and their ratio of total: %s' % vals_and_ratios)
  keep = [vals_and_ratios[v] >= thresh for v in labels]
  return features[keep], labels[np.array(keep)]