Spaces:
Running
Running
File size: 4,018 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for DSN losses."""
from functools import partial
import numpy as np
import tensorflow as tf
import losses
import utils
def MaximumMeanDiscrepancySlow(x, y, sigmas):
num_samples = x.get_shape().as_list()[0]
def AverageGaussianKernel(x, y, sigmas):
result = 0
for sigma in sigmas:
dist = tf.reduce_sum(tf.square(x - y))
result += tf.exp((-1.0 / (2.0 * sigma)) * dist)
return result / num_samples**2
total = 0
for i in range(num_samples):
for j in range(num_samples):
total += AverageGaussianKernel(x[i, :], x[j, :], sigmas)
total += AverageGaussianKernel(y[i, :], y[j, :], sigmas)
total += -2 * AverageGaussianKernel(x[i, :], y[j, :], sigmas)
return total
class LogQuaternionLossTest(tf.test.TestCase):
def test_log_quaternion_loss_batch(self):
with self.test_session():
predictions = tf.random_uniform((10, 4), seed=1)
predictions = tf.nn.l2_normalize(predictions, 1)
labels = tf.random_uniform((10, 4), seed=1)
labels = tf.nn.l2_normalize(labels, 1)
params = {'batch_size': 10, 'use_logging': False}
x = losses.log_quaternion_loss_batch(predictions, labels, params)
self.assertTrue(((10,) == tf.shape(x).eval()).all())
class MaximumMeanDiscrepancyTest(tf.test.TestCase):
def test_mmd_name(self):
with self.test_session():
x = tf.random_uniform((2, 3), seed=1)
kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([1.]))
loss = losses.maximum_mean_discrepancy(x, x, kernel)
self.assertEquals(loss.op.name, 'MaximumMeanDiscrepancy/value')
def test_mmd_is_zero_when_inputs_are_same(self):
with self.test_session():
x = tf.random_uniform((2, 3), seed=1)
kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([1.]))
self.assertEquals(0, losses.maximum_mean_discrepancy(x, x, kernel).eval())
def test_fast_mmd_is_similar_to_slow_mmd(self):
with self.test_session():
x = tf.constant(np.random.normal(size=(2, 3)), tf.float32)
y = tf.constant(np.random.rand(2, 3), tf.float32)
cost_old = MaximumMeanDiscrepancySlow(x, y, [1.]).eval()
kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([1.]))
cost_new = losses.maximum_mean_discrepancy(x, y, kernel).eval()
self.assertAlmostEqual(cost_old, cost_new, delta=1e-5)
def test_multiple_sigmas(self):
with self.test_session():
x = tf.constant(np.random.normal(size=(2, 3)), tf.float32)
y = tf.constant(np.random.rand(2, 3), tf.float32)
sigmas = tf.constant([2., 5., 10, 20, 30])
kernel = partial(utils.gaussian_kernel_matrix, sigmas=sigmas)
cost_old = MaximumMeanDiscrepancySlow(x, y, [2., 5., 10, 20, 30]).eval()
cost_new = losses.maximum_mean_discrepancy(x, y, kernel=kernel).eval()
self.assertAlmostEqual(cost_old, cost_new, delta=1e-5)
def test_mmd_is_zero_when_distributions_are_same(self):
with self.test_session():
x = tf.random_uniform((1000, 10), seed=1)
y = tf.random_uniform((1000, 10), seed=3)
kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([100.]))
loss = losses.maximum_mean_discrepancy(x, y, kernel=kernel).eval()
self.assertAlmostEqual(0, loss, delta=1e-4)
if __name__ == '__main__':
tf.test.main()
|