Spaces:
Running
Running
File size: 14,851 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Trains the PixelDA model."""
from functools import partial
import os
# Dependency imports
import tensorflow as tf
from domain_adaptation.datasets import dataset_factory
from domain_adaptation.pixel_domain_adaptation import pixelda_losses
from domain_adaptation.pixel_domain_adaptation import pixelda_model
from domain_adaptation.pixel_domain_adaptation import pixelda_preprocess
from domain_adaptation.pixel_domain_adaptation import pixelda_utils
from domain_adaptation.pixel_domain_adaptation.hparams import create_hparams
slim = tf.contrib.slim
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('master', '', 'BNS name of the TensorFlow master to use.')
flags.DEFINE_integer(
'ps_tasks', 0,
'The number of parameter servers. If the value is 0, then the parameters '
'are handled locally by the worker.')
flags.DEFINE_integer(
'task', 0,
'The Task ID. This value is used when training with multiple workers to '
'identify each worker.')
flags.DEFINE_string('train_log_dir', '/tmp/pixelda/',
'Directory where to write event logs.')
flags.DEFINE_integer(
'save_summaries_steps', 500,
'The frequency with which summaries are saved, in seconds.')
flags.DEFINE_integer('save_interval_secs', 300,
'The frequency with which the model is saved, in seconds.')
flags.DEFINE_boolean('summarize_gradients', False,
'Whether to summarize model gradients')
flags.DEFINE_integer(
'print_loss_steps', 100,
'The frequency with which the losses are printed, in steps.')
flags.DEFINE_string('source_dataset', 'mnist', 'The name of the source dataset.'
' If hparams="arch=dcgan", this flag is ignored.')
flags.DEFINE_string('target_dataset', 'mnist_m',
'The name of the target dataset.')
flags.DEFINE_string('source_split_name', 'train',
'Name of the train split for the source.')
flags.DEFINE_string('target_split_name', 'train',
'Name of the train split for the target.')
flags.DEFINE_string('dataset_dir', '',
'The directory where the datasets can be found.')
flags.DEFINE_integer(
'num_readers', 4,
'The number of parallel readers that read data from the dataset.')
flags.DEFINE_integer('num_preprocessing_threads', 4,
'The number of threads used to create the batches.')
# HParams
flags.DEFINE_string('hparams', '', 'Comma separated hyperparameter values')
def _get_vars_and_update_ops(hparams, scope):
"""Returns the variables and update ops for a particular variable scope.
Args:
hparams: The hyperparameters struct.
scope: The variable scope.
Returns:
A tuple consisting of trainable variables and update ops.
"""
is_trainable = lambda x: x in tf.trainable_variables()
var_list = filter(is_trainable, slim.get_model_variables(scope))
global_step = slim.get_or_create_global_step()
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope)
tf.logging.info('All variables for scope: %s',
slim.get_model_variables(scope))
tf.logging.info('Trainable variables for scope: %s', var_list)
return var_list, update_ops
def _train(discriminator_train_op,
generator_train_op,
logdir,
master='',
is_chief=True,
scaffold=None,
hooks=None,
chief_only_hooks=None,
save_checkpoint_secs=600,
save_summaries_steps=100,
hparams=None):
"""Runs the training loop.
Args:
discriminator_train_op: A `Tensor` that, when executed, will apply the
gradients and return the loss value for the discriminator.
generator_train_op: A `Tensor` that, when executed, will apply the
gradients and return the loss value for the generator.
logdir: The directory where the graph and checkpoints are saved.
master: The URL of the master.
is_chief: Specifies whether or not the training is being run by the primary
replica during replica training.
scaffold: An tf.train.Scaffold instance.
hooks: List of `tf.train.SessionRunHook` callbacks which are run inside the
training loop.
chief_only_hooks: List of `tf.train.SessionRunHook` instances which are run
inside the training loop for the chief trainer only.
save_checkpoint_secs: The frequency, in seconds, that a checkpoint is saved
using a default checkpoint saver. If `save_checkpoint_secs` is set to
`None`, then the default checkpoint saver isn't used.
save_summaries_steps: The frequency, in number of global steps, that the
summaries are written to disk using a default summary saver. If
`save_summaries_steps` is set to `None`, then the default summary saver
isn't used.
hparams: The hparams struct.
Returns:
the value of the loss function after training.
Raises:
ValueError: if `logdir` is `None` and either `save_checkpoint_secs` or
`save_summaries_steps` are `None.
"""
global_step = slim.get_or_create_global_step()
scaffold = scaffold or tf.train.Scaffold()
hooks = hooks or []
if is_chief:
session_creator = tf.train.ChiefSessionCreator(
scaffold=scaffold, checkpoint_dir=logdir, master=master)
if chief_only_hooks:
hooks.extend(chief_only_hooks)
hooks.append(tf.train.StepCounterHook(output_dir=logdir))
if save_summaries_steps:
if logdir is None:
raise ValueError(
'logdir cannot be None when save_summaries_steps is None')
hooks.append(
tf.train.SummarySaverHook(
scaffold=scaffold,
save_steps=save_summaries_steps,
output_dir=logdir))
if save_checkpoint_secs:
if logdir is None:
raise ValueError(
'logdir cannot be None when save_checkpoint_secs is None')
hooks.append(
tf.train.CheckpointSaverHook(
logdir, save_secs=save_checkpoint_secs, scaffold=scaffold))
else:
session_creator = tf.train.WorkerSessionCreator(
scaffold=scaffold, master=master)
with tf.train.MonitoredSession(
session_creator=session_creator, hooks=hooks) as session:
loss = None
while not session.should_stop():
# Run the domain classifier op X times.
for _ in range(hparams.discriminator_steps):
if session.should_stop():
return loss
loss, np_global_step = session.run(
[discriminator_train_op, global_step])
if np_global_step % FLAGS.print_loss_steps == 0:
tf.logging.info('Step %d: Discriminator Loss = %.2f', np_global_step,
loss)
# Run the generator op X times.
for _ in range(hparams.generator_steps):
if session.should_stop():
return loss
loss, np_global_step = session.run([generator_train_op, global_step])
if np_global_step % FLAGS.print_loss_steps == 0:
tf.logging.info('Step %d: Generator Loss = %.2f', np_global_step,
loss)
return loss
def run_training(run_dir, checkpoint_dir, hparams):
"""Runs the training loop.
Args:
run_dir: The directory where training specific logs are placed
checkpoint_dir: The directory where the checkpoints and log files are
stored.
hparams: The hyperparameters struct.
Raises:
ValueError: if hparams.arch is not recognized.
"""
for path in [run_dir, checkpoint_dir]:
if not tf.gfile.Exists(path):
tf.gfile.MakeDirs(path)
# Serialize hparams to log dir
hparams_filename = os.path.join(checkpoint_dir, 'hparams.json')
with tf.gfile.FastGFile(hparams_filename, 'w') as f:
f.write(hparams.to_json())
with tf.Graph().as_default():
with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):
global_step = slim.get_or_create_global_step()
#########################
# Preprocess the inputs #
#########################
target_dataset = dataset_factory.get_dataset(
FLAGS.target_dataset,
split_name='train',
dataset_dir=FLAGS.dataset_dir)
target_images, _ = dataset_factory.provide_batch(
FLAGS.target_dataset, 'train', FLAGS.dataset_dir, FLAGS.num_readers,
hparams.batch_size, FLAGS.num_preprocessing_threads)
num_target_classes = target_dataset.num_classes
if hparams.arch not in ['dcgan']:
source_dataset = dataset_factory.get_dataset(
FLAGS.source_dataset,
split_name='train',
dataset_dir=FLAGS.dataset_dir)
num_source_classes = source_dataset.num_classes
source_images, source_labels = dataset_factory.provide_batch(
FLAGS.source_dataset, 'train', FLAGS.dataset_dir, FLAGS.num_readers,
hparams.batch_size, FLAGS.num_preprocessing_threads)
# Data provider provides 1 hot labels, but we expect categorical.
source_labels['class'] = tf.argmax(source_labels['classes'], 1)
del source_labels['classes']
if num_source_classes != num_target_classes:
raise ValueError(
'Source and Target datasets must have same number of classes. '
'Are %d and %d' % (num_source_classes, num_target_classes))
else:
source_images = None
source_labels = None
####################
# Define the model #
####################
end_points = pixelda_model.create_model(
hparams,
target_images,
source_images=source_images,
source_labels=source_labels,
is_training=True,
num_classes=num_target_classes)
#################################
# Get the variables to optimize #
#################################
generator_vars, generator_update_ops = _get_vars_and_update_ops(
hparams, 'generator')
discriminator_vars, discriminator_update_ops = _get_vars_and_update_ops(
hparams, 'discriminator')
########################
# Configure the losses #
########################
generator_loss = pixelda_losses.g_step_loss(
source_images,
source_labels,
end_points,
hparams,
num_classes=num_target_classes)
discriminator_loss = pixelda_losses.d_step_loss(
end_points, source_labels, num_target_classes, hparams)
###########################
# Create the training ops #
###########################
learning_rate = hparams.learning_rate
if hparams.lr_decay_steps:
learning_rate = tf.train.exponential_decay(
learning_rate,
slim.get_or_create_global_step(),
decay_steps=hparams.lr_decay_steps,
decay_rate=hparams.lr_decay_rate,
staircase=True)
tf.summary.scalar('Learning_rate', learning_rate)
if hparams.discriminator_steps == 0:
discriminator_train_op = tf.no_op()
else:
discriminator_optimizer = tf.train.AdamOptimizer(
learning_rate, beta1=hparams.adam_beta1)
discriminator_train_op = slim.learning.create_train_op(
discriminator_loss,
discriminator_optimizer,
update_ops=discriminator_update_ops,
variables_to_train=discriminator_vars,
clip_gradient_norm=hparams.clip_gradient_norm,
summarize_gradients=FLAGS.summarize_gradients)
if hparams.generator_steps == 0:
generator_train_op = tf.no_op()
else:
generator_optimizer = tf.train.AdamOptimizer(
learning_rate, beta1=hparams.adam_beta1)
generator_train_op = slim.learning.create_train_op(
generator_loss,
generator_optimizer,
update_ops=generator_update_ops,
variables_to_train=generator_vars,
clip_gradient_norm=hparams.clip_gradient_norm,
summarize_gradients=FLAGS.summarize_gradients)
#############
# Summaries #
#############
pixelda_utils.summarize_model(end_points)
pixelda_utils.summarize_transferred_grid(
end_points['transferred_images'], source_images, name='Transferred')
if 'source_images_recon' in end_points:
pixelda_utils.summarize_transferred_grid(
end_points['source_images_recon'],
source_images,
name='Source Reconstruction')
pixelda_utils.summaries_color_distributions(end_points['transferred_images'],
'Transferred')
pixelda_utils.summaries_color_distributions(target_images, 'Target')
if source_images is not None:
pixelda_utils.summarize_transferred(source_images,
end_points['transferred_images'])
pixelda_utils.summaries_color_distributions(source_images, 'Source')
pixelda_utils.summaries_color_distributions(
tf.abs(source_images - end_points['transferred_images']),
'Abs(Source_minus_Transferred)')
number_of_steps = None
if hparams.num_training_examples:
# Want to control by amount of data seen, not # steps
number_of_steps = hparams.num_training_examples / hparams.batch_size
hooks = [tf.train.StepCounterHook(),]
chief_only_hooks = [
tf.train.CheckpointSaverHook(
saver=tf.train.Saver(),
checkpoint_dir=run_dir,
save_secs=FLAGS.save_interval_secs)
]
if number_of_steps:
hooks.append(tf.train.StopAtStepHook(last_step=number_of_steps))
_train(
discriminator_train_op,
generator_train_op,
logdir=run_dir,
master=FLAGS.master,
is_chief=FLAGS.task == 0,
hooks=hooks,
chief_only_hooks=chief_only_hooks,
save_checkpoint_secs=None,
save_summaries_steps=FLAGS.save_summaries_steps,
hparams=hparams)
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
hparams = create_hparams(FLAGS.hparams)
run_training(
run_dir=FLAGS.train_log_dir,
checkpoint_dir=FLAGS.train_log_dir,
hparams=hparams)
if __name__ == '__main__':
tf.app.run()
|