File size: 8,412 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
from __future__ import print_function

import h5py
import numpy as np
import os
import tensorflow as tf         # used for flags here

from utils import write_datasets
from synthetic_data_utils import add_alignment_projections, generate_data
from synthetic_data_utils import generate_rnn, get_train_n_valid_inds
from synthetic_data_utils import nparray_and_transpose
from synthetic_data_utils import spikify_data, gaussify_data, split_list_by_inds
import matplotlib
import matplotlib.pyplot as plt
import scipy.signal

matplotlib.rcParams['image.interpolation'] = 'nearest'
DATA_DIR = "rnn_synth_data_v1.0"

flags = tf.app.flags
flags.DEFINE_string("save_dir", "/tmp/" + DATA_DIR + "/",
                    "Directory for saving data.")
flags.DEFINE_string("datafile_name", "thits_data",
                    "Name of data file for input case.")
flags.DEFINE_string("noise_type", "poisson", "Noise type for data.")
flags.DEFINE_integer("synth_data_seed", 5, "Random seed for RNN generation.")
flags.DEFINE_float("T", 1.0, "Time in seconds to generate.")
flags.DEFINE_integer("C", 100, "Number of conditions")
flags.DEFINE_integer("N", 50, "Number of units for the RNN")
flags.DEFINE_integer("S", 50, "Number of sampled units from RNN")
flags.DEFINE_integer("npcs", 10, "Number of PCS for multi-session case.")
flags.DEFINE_float("train_percentage", 4.0/5.0,
                   "Percentage of train vs validation trials")
flags.DEFINE_integer("nreplications", 40,
                     "Number of noise replications of the same underlying rates.")
flags.DEFINE_float("g", 1.5, "Complexity of dynamics")
flags.DEFINE_float("x0_std", 1.0,
                   "Volume from which to pull initial conditions (affects diversity of dynamics.")
flags.DEFINE_float("tau", 0.025, "Time constant of RNN")
flags.DEFINE_float("dt", 0.010, "Time bin")
flags.DEFINE_float("input_magnitude", 20.0,
                   "For the input case, what is the value of the input?")
flags.DEFINE_float("max_firing_rate", 30.0, "Map 1.0 of RNN to a spikes per second")
FLAGS = flags.FLAGS


# Note that with N small, (as it is 25 above), the finite size effects
# will have pretty dramatic effects on the dynamics of the random RNN.
# If you want more complex dynamics, you'll have to run the script a
# lot, or increase N (or g).

# Getting hard vs. easy data can be a little stochastic, so we set the seed.

# Pull out some commonly used parameters.
# These are user parameters (configuration)
rng = np.random.RandomState(seed=FLAGS.synth_data_seed)
T = FLAGS.T
C = FLAGS.C
N = FLAGS.N
S = FLAGS.S
input_magnitude = FLAGS.input_magnitude
nreplications = FLAGS.nreplications
E = nreplications * C         # total number of trials
# S is the number of measurements in each datasets, w/ each
# dataset having a different set of observations.
ndatasets = N/S                 # ok if rounded down
train_percentage = FLAGS.train_percentage
ntime_steps = int(T / FLAGS.dt)
# End of user parameters

rnn = generate_rnn(rng, N, FLAGS.g, FLAGS.tau, FLAGS.dt, FLAGS.max_firing_rate)

# Check to make sure the RNN is the one we used in the paper.
if N == 50:
  assert abs(rnn['W'][0,0] - 0.06239899) < 1e-8, 'Error in random seed?'
  rem_check = nreplications * train_percentage
  assert  abs(rem_check - int(rem_check)) < 1e-8, \
    'Train percentage  * nreplications should be integral number.'


# Initial condition generation, and condition label generation.  This
# happens outside of the dataset loop, so that all datasets have the
# same conditions, which is similar to a neurophys setup.
condition_number = 0
x0s = []
condition_labels = []
for c in range(C):
  x0 = FLAGS.x0_std * rng.randn(N, 1)
  x0s.append(np.tile(x0, nreplications)) # replicate x0 nreplications times
  # replicate the condition label nreplications times
  for ns in range(nreplications):
    condition_labels.append(condition_number)
  condition_number += 1
x0s = np.concatenate(x0s, axis=1)

# Containers for storing data across data.
datasets = {}
for n in range(ndatasets):
  print(n+1, " of ", ndatasets)

  # First generate all firing rates. in the next loop, generate all
  # replications this allows the random state for rate generation to be
  # independent of n_replications.
  dataset_name = 'dataset_N' + str(N) + '_S' + str(S)
  if S < N:
    dataset_name += '_n' + str(n+1)

  # Sample neuron subsets.  The assumption is the PC axes of the RNN
  # are not unit aligned, so sampling units is adequate to sample all
  # the high-variance PCs.
  P_sxn = np.eye(S,N)
  for m in range(n):
    P_sxn = np.roll(P_sxn, S, axis=1)

  if input_magnitude > 0.0:
    # time of "hits" randomly chosen between [1/4 and 3/4] of total time
    input_times = rng.choice(int(ntime_steps/2), size=[E]) + int(ntime_steps/4)
  else:
    input_times = None

  rates, x0s, inputs = \
      generate_data(rnn, T=T, E=E, x0s=x0s, P_sxn=P_sxn,
                    input_magnitude=input_magnitude,
                    input_times=input_times)

  if FLAGS.noise_type == "poisson":
    noisy_data = spikify_data(rates, rng, rnn['dt'], rnn['max_firing_rate'])
  elif FLAGS.noise_type == "gaussian":
    noisy_data = gaussify_data(rates, rng, rnn['dt'], rnn['max_firing_rate'])
  else:
    raise ValueError("Only noise types supported are poisson or gaussian")

    # split into train and validation sets
  train_inds, valid_inds = get_train_n_valid_inds(E, train_percentage,
                                                  nreplications)

  # Split the data, inputs, labels and times into train vs. validation.
  rates_train, rates_valid = \
      split_list_by_inds(rates, train_inds, valid_inds)
  noisy_data_train, noisy_data_valid = \
      split_list_by_inds(noisy_data, train_inds, valid_inds)
  input_train, inputs_valid = \
      split_list_by_inds(inputs, train_inds, valid_inds)
  condition_labels_train, condition_labels_valid = \
      split_list_by_inds(condition_labels, train_inds, valid_inds)
  input_times_train, input_times_valid = \
      split_list_by_inds(input_times, train_inds, valid_inds)

  # Turn rates, noisy_data, and input into numpy arrays.
  rates_train = nparray_and_transpose(rates_train)
  rates_valid = nparray_and_transpose(rates_valid)
  noisy_data_train = nparray_and_transpose(noisy_data_train)
  noisy_data_valid = nparray_and_transpose(noisy_data_valid)
  input_train = nparray_and_transpose(input_train)
  inputs_valid = nparray_and_transpose(inputs_valid)

  # Note that we put these 'truth' rates and input into this
  # structure, the only data that is used in LFADS are the noisy
  # data e.g. spike trains.  The rest is either for printing or posterity.
  data = {'train_truth': rates_train,
          'valid_truth': rates_valid,
          'input_train_truth' : input_train,
          'input_valid_truth' : inputs_valid,
          'train_data' : noisy_data_train,
          'valid_data' : noisy_data_valid,
          'train_percentage' : train_percentage,
          'nreplications' : nreplications,
          'dt' : rnn['dt'],
          'input_magnitude' : input_magnitude,
          'input_times_train' : input_times_train,
          'input_times_valid' : input_times_valid,
          'P_sxn' : P_sxn,
          'condition_labels_train' : condition_labels_train,
          'condition_labels_valid' : condition_labels_valid,
          'conversion_factor': 1.0 / rnn['conversion_factor']}
  datasets[dataset_name] = data

if S < N:
  # Note that this isn't necessary for this synthetic example, but
  # it's useful to see how the input factor matrices were initialized
  # for actual neurophysiology data.
  datasets = add_alignment_projections(datasets, npcs=FLAGS.npcs)

# Write out the datasets.
write_datasets(FLAGS.save_dir, FLAGS.datafile_name, datasets)