Spaces:
Running
Running
# Lint as: python3 | |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Multi-head BERT encoder network with classification heads. | |
Includes configurations and instantiation methods. | |
""" | |
from typing import List, Optional, Text | |
import dataclasses | |
import tensorflow as tf | |
from official.modeling import tf_utils | |
from official.modeling.hyperparams import base_config | |
from official.modeling.hyperparams import config_definitions as cfg | |
from official.nlp.configs import encoders | |
from official.nlp.modeling import layers | |
from official.nlp.modeling.models import bert_pretrainer | |
class ClsHeadConfig(base_config.Config): | |
inner_dim: int = 0 | |
num_classes: int = 2 | |
activation: Optional[Text] = "tanh" | |
dropout_rate: float = 0.0 | |
cls_token_idx: int = 0 | |
name: Optional[Text] = None | |
class BertPretrainerConfig(base_config.Config): | |
"""BERT encoder configuration.""" | |
num_masked_tokens: int = 76 | |
encoder: encoders.TransformerEncoderConfig = ( | |
encoders.TransformerEncoderConfig()) | |
cls_heads: List[ClsHeadConfig] = dataclasses.field(default_factory=list) | |
def instantiate_classification_heads_from_cfgs( | |
cls_head_configs: List[ClsHeadConfig]) -> List[layers.ClassificationHead]: | |
return [ | |
layers.ClassificationHead(**cfg.as_dict()) for cfg in cls_head_configs | |
] if cls_head_configs else [] | |
def instantiate_bertpretrainer_from_cfg( | |
config: BertPretrainerConfig, | |
encoder_network: Optional[tf.keras.Model] = None | |
) -> bert_pretrainer.BertPretrainerV2: | |
"""Instantiates a BertPretrainer from the config.""" | |
encoder_cfg = config.encoder | |
if encoder_network is None: | |
encoder_network = encoders.instantiate_encoder_from_cfg(encoder_cfg) | |
return bert_pretrainer.BertPretrainerV2( | |
config.num_masked_tokens, | |
mlm_activation=tf_utils.get_activation(encoder_cfg.hidden_activation), | |
mlm_initializer=tf.keras.initializers.TruncatedNormal( | |
stddev=encoder_cfg.initializer_range), | |
encoder_network=encoder_network, | |
classification_heads=instantiate_classification_heads_from_cfgs( | |
config.cls_heads)) | |
class BertPretrainDataConfig(cfg.DataConfig): | |
"""Data config for BERT pretraining task (tasks/masked_lm).""" | |
input_path: str = "" | |
global_batch_size: int = 512 | |
is_training: bool = True | |
seq_length: int = 512 | |
max_predictions_per_seq: int = 76 | |
use_next_sentence_label: bool = True | |
use_position_id: bool = False | |
class BertPretrainEvalDataConfig(BertPretrainDataConfig): | |
"""Data config for the eval set in BERT pretraining task (tasks/masked_lm).""" | |
input_path: str = "" | |
global_batch_size: int = 512 | |
is_training: bool = False | |
class SentencePredictionDataConfig(cfg.DataConfig): | |
"""Data config for sentence prediction task (tasks/sentence_prediction).""" | |
input_path: str = "" | |
global_batch_size: int = 32 | |
is_training: bool = True | |
seq_length: int = 128 | |
class SentencePredictionDevDataConfig(cfg.DataConfig): | |
"""Dev Data config for sentence prediction (tasks/sentence_prediction).""" | |
input_path: str = "" | |
global_batch_size: int = 32 | |
is_training: bool = False | |
seq_length: int = 128 | |
drop_remainder: bool = False | |
class QADataConfig(cfg.DataConfig): | |
"""Data config for question answering task (tasks/question_answering).""" | |
input_path: str = "" | |
global_batch_size: int = 48 | |
is_training: bool = True | |
seq_length: int = 384 | |
class QADevDataConfig(cfg.DataConfig): | |
"""Dev Data config for queston answering (tasks/question_answering).""" | |
input_path: str = "" | |
global_batch_size: int = 48 | |
is_training: bool = False | |
seq_length: int = 384 | |
drop_remainder: bool = False | |
class TaggingDataConfig(cfg.DataConfig): | |
"""Data config for tagging (tasks/tagging).""" | |
input_path: str = "" | |
global_batch_size: int = 48 | |
is_training: bool = True | |
seq_length: int = 384 | |
class TaggingDevDataConfig(cfg.DataConfig): | |
"""Dev Data config for tagging (tasks/tagging).""" | |
input_path: str = "" | |
global_batch_size: int = 48 | |
is_training: bool = False | |
seq_length: int = 384 | |
drop_remainder: bool = False | |